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Abstract
We show that margin-based bitext mining in
a multilingual sentence space can be success-
fully scaled to operate on monolingual cor-
pora of billions of sentences. We use 32 Com-
mon Crawl snapshots (Wenzek et al., 2019), to-
talling 71 billion unique sentences. Using one
unified approach for 90 languages, we were
able to mine 10.8 billion parallel sentences,
out of which only 2.9 billions are aligned with
English. We illustrate the capability of our
scalable mining system to create high qual-
ity training sets from one language to any
other by training hundreds of different ma-
chine translation models and evaluating them
on the many-to-many TED benchmark. Fur-
ther, we evaluate on competitive translation
benchmarks such as WMT and WAT. Using
only mined bitext, we set a new state of the art
for a single system on the WMT’19 test set for
English-German/Russian/Chinese. In particu-
lar, our English/German and English/Russian
systems outperform the best single ones by
over 4 BLEU points and are on par with best
WMT’19 systems, which train on the WMT
training data and augment it with backtrans-
lation. We also achieve excellent results for
distant languages pairs like Russian/Japanese,
outperforming the best submission at the 2020
WAT workshop. All of the mined bitext will
be freely available.

1 Introduction

Parallel data, i.e. sentences in two languages which
are mutual translations, are a crucial resource for
many multilingual natural language processing
tasks. Traditionally, high quality parallel texts are
obtained from the publications of international or-
ganizations like the the United Nations (Ziemski
et al., 2016) or the European Parliament (Koehn,
2005). These are professional human translations,
but they are in a more formal language and tend
to be limited to political topics. Another direction

is to rely on volunteers to provide translations for
public texts, such as the TED corpus (Qi et al.,
2018), news commentary (Tiedemann, 2012) or
OpenSubtitles (Lison and Tiedemann, 2016), but
this approach lacks scalability.

There is also a large body of works which aims
in mining bitexts by comparing huge collections
of monolingual data. Our aim is to mine at mas-
sive scale, both in number of possible languages
and in quantity of mined parallel sentences. Most
existing large scale bitext mining techniques use a
hierarchical approach. First, a subset of texts that
may contain parallel sentences are selected at the
document level. Subsequently, sentences within
these aligned documents are compared to identify
parallel ones. This local mining is potentially fast
since only a few thousand sentences need to be
compared for each document pair. However, sen-
tences not present in these pre-selected documents
cannot be aligned, which vastly limits the quan-
tity of mineable bitext. A first system to globally
compare all sentences in monolingual collections
for many language pairs was presented in Schwenk
et al. (2019), but was limited to only Wikipedia.

In this paper, we show that this type of global
mining scales to extremely huge corpora: 71 bil-
lion sentences, about 120x larger than the work of
Schwenk et al. (2019). Our contributions are:

• development of a new highly efficient and par-
allelized processing pipeline to confront the
substantial computational challenge;

• unprecedented size: 10.8 billion mined paral-
lel sentences in 90 different languages;

• all these resources are freely available;

• we demonstrate the quality of our mined data
on a variety of machine translation bench-
marks, such as TED, WMT, and WAT, achiev-
ing highly competitive results.
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2 Related work

Much previous work has explored the automatic
creation of parallel data from monolingual re-
sources. In this section, we detail various ap-
proaches and illustrate the differences of our al-
gorithmic approach and the scale of our mining.

Mining Methodology At the start, various ap-
proaches used alignment on information beyond
text itself, such as with document metadata (Resnik,
1999; Resnik and Smith, 2003). Later, work
aligned based on text with techniques such as
Jaccard similarity (Etchegoyhen and Azpeitia,
2016; Azpeitia et al., 2017, 2018), crosslingual
document retrieval (Utiyama and Isahara, 2003;
Munteanu and Marcu, 2005), language mod-
els (Buck and Koehn, 2016), translation (Abdul-
Rauf and Schwenk, 2009; Bouamor and Sajjad,
2018), or bag-of-words (Buck and Koehn, 2016).
In contrast, we use massively multilingual sentence
embeddings trained on almost 100 languages, and
then conduct margin-based mining in the multilin-
gual embedding space (Schwenk, 2018; Artetxe
and Schwenk, 2018a,b; Kvapilı́ková et al., 2020).
Previous work such as España-Bonet et al. (2017);
Hassan et al. (2018); Guo et al. (2018); Yang et al.
(2019) used bilingual embeddings, which is not
scalable for mining many different languages.

Compared to work such as Schwenk (2018), we
drastically increase the scale of our mining and
produce two orders of magnitude more data — this
is possible by the increased efficiency and scala-
bility of our improved mining methods. A few
mining approaches were applied to large quanti-
ties of language pairs. For example, the ParaCrawl
project1 mined data for all European languages.
Bitextor (Esplà-Gomis and Forcada, 2010) was ap-
plied to many languages, but took an approach that
required identifying parallel documents first and
then extracting aligned sentences. This is similar to
the ccAligned project (El-Kishky et al., 2020). In
contrast to these, we mine much larger quantities of
parallel data due to the global margin-based mining
approach that we take.

Data used to Mine Many previous methods for
data mining focused on Wikipedia. Otero and
López (2010) and Patry and Langlais (2011), for
instance, aligned entire parallel documents. For
example, Adafre and de Rijke (2006) and Moham-
madi and GhasemAghaee (2010) used machine
translation systems to compare Dutch and Per-

sian Wikipedias to English, to identify aligned sen-
tences. Various other worked used similarities in
mentioned entities to align text, such as Gottschalk
and Demidova (2017) and Tsai and Roth (2016).
Work such as Smith et al. (2010); Tufis et al. (2013);
Aghaebrahimian (2018) used Wikipedia to mine
parallel sentences, but focused on fewer languages,
often high resource. In contrast, our system mines
not in Wikipedia but in CommonCrawl, a much
larger source of data — and is applied to a much
larger quantity of languages.

Work has extended mining beyond Wikipedia.
For example, ParaCrawl1 has been heavily used
(e.g. in WMT), which is based on several noisy
multilingual crawls (Koehn et al., 2018, 2019). El-
Kishky et al. (2019) focused on mining documents
in Common Crawl rather than sentences. Our work
continues this line of scalable mining on the web,
but pushes to large-scale mining to produce billions
of aligned sentences.

3 Distance-based mining approach

We leverage massively multilingual sentence em-
beddings and a margin-based criterion to mine par-
allel sentences. The core idea is to learn a multilin-
gual sentence embedding, or an embedding space
in which semantically similar sentences are close,
independent of the language they are written in.
This means that distance in the embedding space
can be used to determine if two sentences are mu-
tual translations or not. We use the open source
LASER (Artetxe and Schwenk, 2018b) embed-
dings as they cover over 90 different languages.2

Another recent multilingual sentence embedding is
LaBSE (Feng et al., 2020).

3.1 Margin criterion

Given two sentence embeddings, how can we de-
cide if they are mutual translations? Using an abso-
lute threshold on the cosine distance was shown to
achieve competitive results (Schwenk, 2018), but
is globally inconsistent (Guo et al., 2018). There-
fore, we use margin-based mining (Artetxe and
Schwenk, 2018a). The margin M(x, y) between
two sentence embeddings x and y is defined as the
ratio between the cosine distance between x and
y, and the average cosine similarity of its nearest

1http://www.paracrawl.eu/
2https://github.com/facebookresearch/

LASER

http://www.paracrawl.eu/
https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER
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Figure 1: Parallelized processing flow to create an FAISS index for each language.

neighbors in both directions:

M(x, y) =
cos(x, y)∑

z∈NNk(x)

cos(x, z)

2k
+

∑
z∈NNk(y)

cos(y, z)

2k

where NNk(x) denotes the k unique nearest neigh-
bors of x in the other language, and analogously
for NNk(y). We set k to 16.

Artetxe and Schwenk (2018a) describe the max-
strategy as one of the best performing ones: the
margin is calculated in both directions for all sen-
tences in languages L1 and L2. Then, the union
of forward and backward candidates is built, can-
didates are sorted, and pairs with source or target
sentences which were already used are omitted. Fi-
nally, a threshold is applied to the margin score
to decide if two sentences are mutual translations.
This strategy was motivated by evaluation on the
BUCC corpus (Zweigenbaum et al., 2018), where
the reference alignments are known to be strictly
1:1. Our aim is to mine at the billion-scale, and
at this size, the probability of finding multiple per-
fect translations increases. Therefore, we take the
union of the best forward and backward alignments,
excluding duplicate bitexts.

3.2 Scaling to billions of sentences
In this work, we mine billions of parallel sentences
from the Web by using the data released in Com-
mon Crawl.3 We preprocess the raw text following
the pipeline used to create the CCNet dataset (Wen-
zek et al., 2019). We use 32 crawls spanning the
period from December 2017 to February 2020.

Our CCNet corpus is about 120 times larger
than Wikipedia: 71 billion compared to 595 mil-
lion unique sentences (Schwenk et al., 2019). The
largest corpora are English (14.3 billion), then Ger-
man, French, and Spanish (more than 5.2 billion

3https://commoncrawl.org/

sentences). For 17 different languages, CCNet con-
tains over one billion unique sentences (see Ta-
ble 1). This requires a carefully designed mining
approach in order to tackle the substantially com-
putational complexity and successfully scale. We
developed a multi-step mining procedure that is
structured into three distinct tasks:

1. text extraction and processing including sen-
tence splitting and language identification;

2. creation of a FAISS index for each language;

3. mining parallel data for each language pair
using the sentence embeddings and indices.

Each step is parallelized as much as possible by
splitting the data into several blocks.

Text extraction. The first task, text extraction
and processing, consists of three steps: 1) ex-
tract text from the JSON data of CCNet and split
the paragraphs into sentences; 2) mark duplicate
sentences; and 3) perform language identification
(LID) and exclude sentences not in the expected
language. Each of these three steps processes
blocks in parallel. At the final step, we merge all
the block-wise deduplicated sentences and create
one set of globally unique sentences for each lan-
guage. We used a Python library4 to detect sentence
boundaries. If specific rules for a language are not
available, we fall-back to a linguistically similar
languages, e.g. using Spanish rules for Gallican,
and default to English otherwise. Most of the Asian
languages are handled by regular expressions. We
exclude sentences with more than 500 characters.
A major challenge of web data is noise. This partic-
ularly manifests in text that has the wrong language
label. As noise in this stage will affect our mining
process, we perform strict filtering using two LID
systems on each sentence, fastText (Grave et al.,

4https://pypi.org/project/
sentence-splitter/

https://commoncrawl.org/
https://pypi.org/project/sentence-splitter/
https://pypi.org/project/sentence-splitter/
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Figure 2: Parallelized processing flow to mine parallel sentences. Left: forward distances; Right: backward
distances. Middle: both distances are combined according to Equation 3.1 and the extracted bitext.

2018) and LangID (Lui and Baldwin, 2011), and
discard the data if the two disagree or have low
confidence. This processing yields a corpus of Ni

unique sentences for each language Li. These texts
are the basis for index creation and mining (see
column size in Table 1).

Index creation. We follow Schwenk et al. (2019)
and use the highly optimized FAISS library (John-
son et al., 2017)5 to create compact indices of
the sentence embedding. LASER’s sentence rep-
resentations are 1024-dimensional, which means
that the embeddings of all sentences would require
71 · 109 × 1024× 4 ≈ 290 TB to store. To practi-
cally handle this scale, we use an aggressive vector
compression based on a 64-bit product-quantizer
(Jégou et al., 2011), and 64k cells to partition the
search space. This corresponds to the index type
OPQ64,IVF65536,PQ64 in FAISS.

Exhaustive search in huge indices is tractable
only if performed on GPU. FAISS supports shard-
ing of a single index on multiple GPUs - this is
most efficient if the GPUs are in the same machine
and communicate very quickly. Our index type, us-
ing eight GPUs with 32GB of memory each, allows
us to handle an index size of 3.2 billion sentences.
Seven languages exceed this threshold, so we pro-
ceed to create multiple indices (English, German,
French, Spanish, Russian, Chinese, and Japanese).

The processing pipeline to train and create the
indices is summarized in Figure 1. We train an
index on 40 million sampled sentences of the whole
corpus. Once the index is trained, the data in each
block is independently added to this common index,
which can be performed in parallel. The individual
indices are subsequently merged into one index per
language. The largest indices have a size of around
210GB, making 90 indices total almost 4TB.

5https://github.com/facebookresearch/
faiss/wiki/Faiss-indexes

Mining. After indices for all languages are cre-
ated, we begin the mining process for each lan-
guage pair. To illustrate the process, we describe
it concretely with the example of two high re-
source languages, Italian and Portuguese, which
have 2.5 billion sentences each. This requires
2.5 109×2.5 109 = 6.25 1018 distance calculations.
Performing this on a single node with 8 GPUs
would require more than 6 months. Instead, we
tackle this computational challenge by decoupling
the distance calculations of the forward and back-
ward direction and the margin calculation, and pro-
cessing these in parallel. This processing pipeline
is illustrated in Figure 2.

For all language pairs, we compute both forward
and backward distances, even for languages with
multiple indices, such as English, French and Ger-
man. All available alignments for one pair are
merged, excluding duplicate sentence pairs.

In the current CCMatrix corpus, we have mined
data for a diverse set of 90 languages, covering a
variety of different language families and scripts
(full list in the Appendix). As the mining process is
computationally intensive, we focus on many com-
monly spoken languages to support existing trans-
lation systems, as well as mine several mid to low
resource languages to provide parallel data for di-
rections with limited to no public training data. We
organized all languages into twelve groups which
mostly correspond to well established linguistic lan-
guage families, but we have also performed some
geographic groupings, in particular for small lan-
guage families or isolated languages. In addition,
we have identified major languages in each group
and use them as “bridge languages”. We mine for
all bitexts among these 27 bridge languages. The
motivation for this bridge language approach is to
connect the languages of the various groups, but
sill avoid mining the full matrix. Additional details
are given in the Appendix.

https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
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3.3 Choosing the margin threshold

The margin threshold used to mine parallel sen-
tences impacts the quality of mined bitexts. A
higher threshold leads to better aligned sentences,
and thus higher quality bitexts, but also to smaller
datasets. Thus, there is a trade-off between size and
quality. Exploratory experiments based on train-
ing different NMT models showed that a threshold
around 1.06 gave good results. We display a repre-
sentative example on Hungarian-Danish in Fig. 3.

1.050 1.055 1.060 1.065 1.070
Margin threshold

10.2
10.4
10.6
10.8
11.0
11.2
11.4

B
LE

U
 sc

or
e

hu-da da-hu

Figure 3: BLEU scores on Hu-Da TED dev set for
various margin threshold values.

4 Quantity of Mined Data

4.1 Total Quantity

We mine a total of 10.8 billion parallel sentences
out of which only 2913 million are aligned with
English, considering a margin threshold of 1.06 for
all language pairs. Table 1 gives a summary for
the 54 largest languages. The full list of supported
languages is given in the Appendix. In contrast
to other works, such as the European ParaCrawl
project,1 we do not limit to alignments with En-
glish, but provide alignments for 1197 language
pairs.

This yielded unprecedented amounts of bitexts
of non-English language pairs, for example 286M
for Spanish-French, 24M for Arabic-French and
Spanish-Chinese, and a total of 326M bitexts with
Norwegian (which is not present in Europarl). Fur-
ther, a variety of different Asian languages were
mined, producing 7.2M pairs for Japanese-Korean,
7.8M for Indonesian-Malay, and 1.3M for Bengali-
Hindi. To the best of our knowledge, this makes
CCMatrix the largest collection of high-quality
mined parallel texts, with coverage over a wide
variety of languages. Providing multiple aligned
bitexts for many languages also opens the possibil-
ity of improved training of massively multilingual

NMT systems (Fan et al., 2020), as this substan-
tially increases the amount of bitexts for low re-
source languages. As an example, Nepali has less
than 1M bitexts with English, but 17M bitexts with
multiple languages (see last column of Table 1).

4.2 Analysis of mined bitexts

Table 1 gives the amount of mined bitexts for var-
ious language pairs. The general tendency is of
course that mining in large monolingual corpora
leads to larger extracted bitexts. This is however
not systematically true. Let us consider for example
Danish, a Germanic language. When aligned with
Norwegian, also a Germanic language, we obtain
17.7M bitexts. The pair Danish-Italian, however,
has only 14.7M bitexts although Italian has almost
six times more sentences than Norwegian. One one
hand, a possible explanation could be that LASER
alignments are more reliable for languages which
are very similar, i.e. in the same language fam-
ily. On the other hand, it may also be that people
which live in nearby countries have similar inter-
ests which increases the chance to find translations
on the Web. Additional analysis and examples are
provided in the Appendix.

5 Evaluation on Translation Benchmarks

To assess our mined bitext, we train NMT systems
only on our mined data and evaluate on several
public benchmarks. We do not use any of the train-
ing data provided with these corpora, so do not use
any available human translated data, and have no
guarantee our bitext covers the same domain as the
test sets. Nevertheless, we show on the many to
many TED corpus that our mined data produces
high quality translation systems, even through dis-
tant language pairs not aligned through English and
low resource languages. Finally, we demonstrate
that models trained on CCMatrix can surpass state
of the art systems in WMT’19 and WAT’20.

5.1 TED Evaluation

We examine the quality of our mined bitext across a
diverse set of languages, focusing on performance
of bitext pairs not aligned through English. Follow-
ing Gottschalk and Demidova (2017), we evaluate
on the test sets of the TED corpus (Qi et al., 2018),
which contains parallel TED talk transcripts in 58
languages. This corpus is tokenized, so we deto-
kenize using Moses, with the exception of pairs
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pl 7.6 20.2 18.1 19.9 19.0 18.2 25.3 21.9 12.9 6.6 12.5 23.4 12.0 13.9 19.0 18.4 12.1 4.0 13.9 19.7 14.5 - 21.4 16.8 19.4 8.8 15.0 19.9 15.6
pt 12.5 26.9 22.2 34.0 27.8 29.4 47.9 36.5 18.3 10.2 15.5 35.8 19.3 19.0 28.3 33.3 14.1 5.0 18.1 29.5 29.0 18.2 - 21.5 29.3 13.3 18.9 25.5 17.2
ru 8.4 21.3 17.1 19.1 19.1 20.0 26.9 23.2 16.0 8.1 11.4 23.8 12.6 14.2 18.7 19.8 14.1 3.6 15.7 19.5 19.4 15.2 22.4 - 20.6 6.8 20.9 20.5 17.3
sv 12.7 28.2 21.5 36.0 28.4 27.0 44.7 30.8 20.8 9.1 16.2 32.4 18.3 17.8 25.6 30.0 14.1 5.0 19.8 27.8 34.9 16.5 30.6 20.2 - 12.7 17.7 26.8 18.0
tr 8.9 16.6 14.3 19.5 19.0 18.6 29.2 22.1 13.7 8.4 11.1 22.4 12.2 14.0 19.5 20.9 12.8 4.6 12.1 18.5 19.1 12.0 21.4 11.7 19.4 - 6.6 20.8 16.7
uk 8.4 22.4 17.6 23.9 20.2 20.9 30.3 24.0 14.9 7.2 11.5 25.1 12.2 14.2 19.9 15.2 11.3 3.8 16.1 19.8 20.9 16.0 23.4 23.8 19.8 4.8 - 20.8 15.7
vi 8.5 19.9 13.0 20.1 18.5 18.7 29.0 21.4 12.7 7.8 11.5 23.6 11.8 12.1 21.8 20.6 12.6 4.3 11.8 17.3 15.9 12.6 20.4 15.4 20.5 9.2 13.4 - 16.2
zh 6.0 14.3 10.8 13.4 13.4 14.4 21.6 17.3 9.9 6.0 7.9 16.7 8.3 10.4 15.8 - 13.2 3.8 8.2 14.3 15.1 9.7 15.6 12.5 14.8 6.9 9.5 18.8 -

Table 2: BLEU scores on the TED test set. NMT systems were trained on bitexts mined in CCMatrix only.

involving Chinese, Japanese and Korean as it cre-
ates artifacts.

We consider 29 different languages, resulting in
778 NMT systems to train. We apply the same pre-
processing and training procedure for all language
pairs. We train a SentencePiece Model (Kudo and
Richardson, 2018) with a vocabulary of size 50k.
The bitext were not filtered to remove sentences
which may appear in the TED dev or test sets. Also,
we did not try to optimize the architecture of the
NMT models to to size of the bitexts for each lan-
guage pair. Instead, for all the pairs, we use the
same architecture, a Transformer model with six
layers for both the encoder and decoder. We use
a dimension of 512 and 4096 for the feed-forward.
We train each model for 50 epochs with an initial
learning rate of 0.001. We keep the model with the
best BLEU on the TED validation set.

In Table 2, we report tokenized BLEU on the test
sets. When translating into Chinese, we scored with
sacrebleu -tok zh, and Kytea6 was used
to tokenize Japanese, respectively. The average
BLEU over all pairs is 18.8 and 33.0 for pairs with
English. There are 86 pairs out of 778 with BLEU
above 30, compared to 10 out of 1620 language
pairs for WikiMatrix. The best WikiMatrix pair
reached 37.3 BLEU (for Brazilian Portuguese to
English), while here 25 pairs are over 37.3, the best
pair reaching 51.2 BLEU (Norwegian to English).

6http://www.phontron.com/kytea/

These results show the quality of the mined bitexts
and suggest that our mining strategy is robust to the
noise and domain differences existing in large cor-
pora like Common Crawl. However, since we did
not optimize the NMT systems for each language
pair, these BLEU score should not be considered
as the best possible ones based on the CCMatrix
bitexts. In particular, we anticipate that better re-
sults can be obtained when using models with more
parameters for the high-resource language pairs.

Further, our mined data provides a starting point
for those interested in training translation systems
directly between languages that currently have
no available bitext training data. In particular
CCMatrix bitexts have been used to train a mas-
sively multilingual NMT systems for 100×100 lan-
guages (Fan et al., 2020).

5.2 WMT’19 Evaluation

Next, we focus on arguably the most competitive
translation benchmark, the WMT news translation
task, to compare our mined data to the best exist-
ing systems. We only consider the high resource
directions, as they constitute the largest challenge
— existing systems perform strongly, and previous
work incorporating mined data from Paracrawl (Ott
et al., 2018) only found marginal gains.

We follow Ng et al. (2019) and trained systems
on en-de, en-ru, en-zh, and de-fr. We used the
Transformer Big architecture with FFN size 8192,

http://www.phontron.com/kytea/
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System de-en en-de en-ru ru-en zh-en en-zh de-fr fr-de

Single
systems

NT’18 WMT bitext 46.2 45.9 33.5 33.4 25.8 39.2 - -
NT’18 CCMatrix 49.9 50.3 35.7 36.9 30.2 40.8 - -

NT’19 WMT bitext 41.0 40.4 31.4 38.1 - - - -
NT’19 CCMatrix 43.3 44.5 35.5 41.8 34.8 35.6 37.9 33.5

NT’20 WMT bitext 40.3 31.9 24.0 35.5 - - - -
NT’20 CCMatrix 39.2 35.1 25.5 37.1 35.0 38.8 33.8 33.8

Ensembles
+ BT
+ Reranking

NT’19 best 42.8 44.9 36.3 40.2 39.9 44.6 37.3 35.0

Table 3: BLEU scores on the Newstest’18, Newstest’19 and Newstest’20 test sets. Newstest’18 WMT bi-
text, Newstest’19 WMT bitext and Newstest’20 WMT bitext are the results for single models trained on parallel
WMT’19 data, En-De and En-Ru using the setup from Ng et al. (2019), and En-Zh results from Sun et al. (2019).
Newstest’19 best are the best BLEU scores from ensembles trained on parallel and back-translated WMT’19 data,
according to http://matrix.statmt.org/.

Language pair src tgt

En-De 3.9% 2.2%
En-Ru 4.2% 2.5%
En-Zh 3.0% 0.7%
De-Fr 3.6% 3.1%

Table 4: 8-gram test data overlap. Percentage of 8-
gram BPE tokens from Newstest 2019 that are also
found in CCMatrix training data.

embedding size 2048, with 9 encoder/decoder lay-
ers, with LayerDrop (Fan et al., 2019). We trained
for 400k updates on 8 GPUs. Given the large
amounts of mined bitext (see Table 1), we train
only on data with a margin threshold at least 1.07,
and perform some additional filtering, resulting in
146M for en-de, 78M for en-ru, 82M for de-fr and
31M for en-zh. For each direction, we learn joint
source-target BPE (Sennrich et al., 2016) and share
input/output embeddings. We tune training param-
eters on WMT’12-13 when available and on the
WMT’19 dev set for de-fr.

In Table 3 we demonstrate that the performance
of a single model trained on mined data is better
than the performance of the best published single
models trained on WMT bitext, this can be seen as
a clear indicator of the quality of the mined data.

Because CCMatrix data is mined from the Web,
we want to make sure there is no significant leak-
age of the test sets that might be available online
into the training data. While there are no exact
matches of test and train samples, partial overlap

is still possible. Following Radford et al. (2019)
and Shoeybi et al. (2019) in Table 4 we report the
percentage of 8-gram BPE tokens from the test
data that are also found in CCMatrix training data.
Finally, in Table 3 we also report performance on
Newstest’20 tests sets that were not available at the
time of mining the data.

We further investigate the impact of training on
a combination of human translated and mined data.
We examine En-De and include the WMT’19 train-
ing data. We found that this system outperforms
the system trained on CCMatrix data only on av-
erage by only 0.6 BLEU, achieving BLEU score
50.9 on newstest2018 and 45.1 on newstest2019.

5.3 WAT’20 Evaluation

Finally, we examine the quality of our mined data
on low resource, distant language pairs. We fo-
cus on Russian-Japanese, a language direction in
the 2020 Workshop on Asian Translation (WAT)
(Nakazawa et al., 2020).The organizers provide a
tiny amount of parallel data from the Global Voices
domain for training (12k sentences), and a develop-
ment (486 sentences) and test set (600 sentences)
from the News Commentary domain, respectively.7

We trained an NMT system on CCMatrix
Japanese-Russian mined data only, without using
other resources or texts aligned with English. We
applied a threshold of 1.06 on the margin which
yielded 9.5 million parallel sentences. We filtered
the mined bitexts to exclude all sentences which

7https://github.com/aizhanti/JaRuNC

http://matrix.statmt.org/
https://github.com/aizhanti/JaRuNC
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System ja-ru ru-ja

CCMatrix dev 13.68 20.38
CCMatrix test 14.77 19.60

WAT’20 test best 14.36 18.48

Table 5: BLEU scores on WAT’20.

appear in the WAT dev or test set.
We use the same NMT architecture as in Sec-

tion 5.1. We report tokenized BLEU in Table 5.
When translating from Russian into Japanese, to-
kenization was performed with Kytea and then
scored with multi-bleu.perl.

We outperform the best performing system
at WAT’20,8 in particular when translating into
Japanese. On one hand, the participants in WAT
were constrained to only use the provided re-
sources. But on the other hand, Russian/English
and Japanese/English were included and partici-
pants were encouraged to train multilingual models,
and use techniques like monolingual pre-training
or back-translation. Therefore, our results are not
directly comparable, but remain a positive indicator
of the quality of our mined bitexts.

6 Conclusion

We show that margin-based mining in a joint multi-
lingual sentence embedding space can be scaled to
monolingual texts of more than 71 billion unique
sentences in 90 languages, including several low
resource languages. This procedure yields 10.8
billion parallel sentences, out of which only 2.9
billions are aligned with English. We performed an
extensive evaluation of the quality of the mined bi-
texts by training NMT systems for many language
pairs. Training only on mined data, we outper-
form the best single NMT systems at WMT’19
for translations between German, Russian, and
Chinese with English, as well as between Ger-
man and French. We also achieve state-of-the-art
BLEU scores for translation between Russian and
Japanese at WAT’20.

All mined data is freely available.9 We hope this
will enable widespread research on multilingual
NMT, particularly on languages where training data
is not currently available.

8See results at http://lotus.kuee.kyoto-u.ac.
jp/WAT/evaluation/index.html

9https://github.com/facebookresearch/
LASER/tree/master/tasks/CCMatrix
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