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Abstract

Monolingual word alignment is important for
studying fine-grained editing operations (i.e.,
deletion, addition, and substitution) in text-
to-text generation tasks, such as paraphrase
generation, text simplification, neutralizing bi-
ased language, etc. In this paper, we present
a novel neural semi-Markov CRF alignment
model, which unifies word and phrase align-
ments through variable-length spans. We also
create a new benchmark with human annota-
tions that cover four different text genres to
evaluate monolingual word alignment models
in more realistic settings. Experimental results
show that our proposed model outperforms
all previous approaches for monolingual word
alignment as well as a competitive QA-based
baseline, which was previously only applied
to bilingual data. Our model demonstrates
good generalizability to three out-of-domain
datasets and shows great utility in two down-
stream applications: automatic text simplifi-
cation and sentence pair classification tasks.1

1 Introduction

Monolingual word alignment aims to align words
or phrases with similar meaning in two sentences
that are written in the same language. It is
useful for improving the interpretability in nat-
ural language understanding tasks, including se-
mantic textual similarity (Li and Srikumar, 2016)
and question answering (Yao, 2014). Monolin-
gual word alignment can also support the anal-
ysis of human editing operations (Figure 1) and
improve model performance for text-to-text gen-
eration tasks, such as text simplification (Mad-
dela et al., 2021) and neutralizing biased language
(Pryzant et al., 2020). It has also been shown to be
helpful for data augmentation and label projection

1Our code and data will be available at: https://
github.com/chaojiang06/neural-Jacana

FAuthors contributed equally.

With Canadian collaborators, Lloyd went on to conduct laboratory  
simulations of his model.

 Lloyd performed successful laboratory experiments of his model.
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Figure 1: An example that illustrates monolingual word
alignment (shown as arrows) can support analysis of
human editing process and training of text generation
models (§6.1), such as for simplifying complex sen-
tences for children to read.

(Culkin et al., 2021) when combined with para-
phrase generation.

One major challenge for automatic alignment is
the need to handle not only alignments between
words and linguistic phrases (e.g., a dozen ↔
more than 10), but also non-linguistic phrases that
are semantically related given the context (e.g.,
tensions ↔ relations being strained in Figure 3).
In this paper, we present a novel neural semi-
Markov CRF alignment model, which unifies
both word and phrase alignments though variable-
length spans, calculates span-based semantic sim-
ilarities, and takes alignment label transitions into
consideration. We also create a new manually
annotated benchmark, Multi-Genre Monolingual
Word Alignment (MultiMWA), which consists of
four datasets across different text genres and is
large enough to support the training of neural-
based models (Table 1). It addresses the short-
comings of existing datasets for monolingual word
alignment: MTReference (Yao, 2014) was an-
notated by crowd-sourcing workers and contains
many obvious errors (more details in §4); iSTS
(Agirre et al., 2016) and SPADE/ESPADA (Arase
and Tsujii, 2018, 2020) were annotated based on
chunking and parsing results, which may restrict
the granularity and flexibility of the alignments.

https://github.com/chaojiang06/neural-Jacana
https://github.com/chaojiang06/neural-Jacana
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Our experimental results show that the proposed
semi-Markov CRF model achieves state-of-the-art
performance with higher precision, in comparison
to the previous monolingual word alignment mod-
els (Yao et al., 2013a,b; Sultan et al., 2014), as
well as another very competitive span-based neu-
ral model (Nagata et al., 2020) that had previously
only applied to bilingual data. Our model exceeds
90% F1 in the in-domain evaluation and also has
very good generalizability on three out-of-domain
datasets. We present a detailed ablation and er-
ror analysis to better understand the performance
gains. Finally, we demonstrate the utility of mono-
lingual word alignment in two downstream appli-
cations, namely automatic text simplification and
sentence pair classification.

2 Related Work

Word alignment has a long history and was
first proposed for statistical machine translation.
The most representative ones are the IBM mod-
els(Brown et al., 1993), which are a sequence of
unsupervised models with increased complexity
and implemented the GIZA++ toolkit (Och and
Ney, 2003). Many more works followed, such as
FastAlign (Dyer et al., 2013). Dyer et al. (2011)
also used a globally normalized log-linear model
for discriminative word alignment. Bansal et al.
(2011) proposed a hidden semi-Markov model to
handle both continuous and noncontinuous phrase
alignment. These statistical methods promoted
the development of monolingual word alignment
(MacCartney et al., 2008; Thadani and McKe-
own, 2011; Thadani et al., 2012). Yao et al.
(2013a) proposed a CRF aligner following (Blun-
som and Cohn, 2006), then extended it to a semi-
CRF model for phrase-level alignments (Yao et al.,
2013b). Sultan et al. (2014) designed a simple sys-
tem with heuristic rules based on word similarity
and contextual evidence.

Neural methods have been explored in the past
decade primarily for bilingual word alignment.
Some early attempts (Yang et al., 2013; Tamura
et al., 2014) did not match the performance of
GIZA++, but recent Transformer-based models
started to outperform. Garg et al. (2019) pro-
posed a multi-task framework for machine trans-
lation and word alignment, while Zenkel et al.
(2020) designed an alignment layer on top of
Transformer for machine translation. Both can
be trained without word alignment annotations but

rely on millions of bilingual sentence pairs. As for
supervised methods, Stengel-Eskin et al. (2019)
extracted representations from the Transformer-
based MT system, then used convolutional neu-
ral network to incorporate neighboring words for
alignment. Nagata et al. (2020) proposed a span
prediction method and formulated bilingual word
alignment as a SQuAD-style question answering
task, then solved it by fine-tuning multilingual
BERT. We adapt their method to monolingual
word alignment as a new state-of-the-art baseline
(§5.1). Some monolingual neural models have dif-
ferent settings from this work. Ouyang and McKe-
own (2019) introduced pointer networks for long,
sentence- or clause-level alignments. Arase and
Tsujii (2017, 2020) utilized constituency parsers
for compositional and non-compositional phrase
alignments. Culkin et al. (2021) considered span
alignment for FrameNet (Baker et al., 1998) anno-
tations and treated each span pair as independent
prediction.

3 Neural Semi-CRF Alignment Model

In this section, we first describe the problem for-
mulation for monolingual word alignment, then
present the architecture of our neural semi-CRF
word alignment model (Figure 2).

3.1 Problem Formulation

We formulate word alignment as a sequence tag-
ging problem following previous works (Blunsom
and Cohn, 2006; Yao et al., 2013b). Given a source
sentence s and a target sentence t of the same lan-
guage, the span alignment a consists of a sequence
of tuples (i, j), which indicates that span si in the
source sentence is aligned with span tj in the tar-
get sentence. More specifically, ai = j means
source span si is aligned with target span tj . We
consider all spans up to a maximum length of D
words. Given a source span si of d (d ≤ D) words
[swbi , s

w
bi+1, ..., s

w
bi+d−1], where bi is the beginning

word index, its corresponding label ai means ev-
ery word within the span si is aligned to the tar-
get span tai . That is, the word-level alignments
awbi , a

w
bi+1, ..., a

w
bi+d−1 have the same value j. We

use aw to denote the label sequence of alignments
between words and swbi to denote the bith word in
the source sentence. There might be cases where
span si is not aligned to any words in the target
sentence, then ai = [NULL]. When D ≥ 2, the
Markov property would no longer hold for word-
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[SEP]

Stocks

slump

on

wall

street
Pr

et
ra

in
ed

 S
pa

nB
E

R
T

 E
nc

od
er

v(si, tj)

Span Interaction Alignment Label Transition Bidirectional Training

Ta
rg

et
 (

) t
So

ur
ce

 (
) s

as2t =argmax
a P(a |s,t)

⋯
⋯

Span  
Representation

[NULL]

Wall

Stocks

slump

on

wall

street

stocks_slump

⋯
wall_street
⋯
on_wall_street

street
stocks

fell
sharply

at2s =argmax
a P(a |t,s)

Figure 2: Illustration of our neural semi-CRF word alignment model.

level alignment labels, but for span-level labels.
That is, ai depends on awbi−1, the position in the
target sentence where the source span (with ending
word index bi − 1) that precedes the current span
si is aligned to. We therefore design a discrimina-
tive model using semi-Markov conditional random
fields (Sarawagi and Cohen, 2005) to segment the
source sentence and find the best span alignment,
which we present below. One unique aspect of our
semi-Markov CRF model is that it utilizes a varied
set of labels for each sentence pair.

3.2 Our Model

The conditional probability of alignment a given
a sentence pair s and t is defined as follows:

p(a|s, t) = eψ(a,s,t)∑
a′∈A e

ψ(a′,s,t) (1)

where the set A denotes all possible alignments
between the two sentences. The potential function
ψ can be decomposed into:

ψ(a, s, t) =
∑
i

υ(si,tai) + τ(awbi−1, ai)+

cost(a,a∗)
(2)

where i denotes the indices of a subset of source
spans that are involved in the alignment a; a∗

represents the gold alignment sequence at span-
level. The potential function ψ consists of three
elements, of which the first two compose nega-
tive log-likelihood loss: the span interaction func-
tion υ, which accounts the similarity between a
source span and a target span; the Markov tran-
sition function τ , which models the transition of
alignment labels between adjacent source spans;
the cost is implemented with Hamming loss to en-
courage the predicted alignment sequence to be

consistent with gold labels. Function υ and τ are
implemented as two neural components which we
describe below.

Span Representation Layer. First, source and
target sentences are concatenated together and en-
coded by the pre-trained SpanBERT (Joshi et al.,
2020) model. The hidden representations in the
last layer of the encoder are extracted for each
WordPiece token, then averaged to form the word
representations. Following previous work (Joshi
et al., 2020), the span is represented by a self-
attention vector computed over the representations
of each word within the span, concatenated with
the Transformer output states of two endpoints.

Span Interaction Layer. The semantic similar-
ity score between source span si and target span tj
is calculated by a 2-layer feed-forward neural net-
work FFsim with Parametric Relu (PReLU) (He
et al., 2015),2 after applying layer normalization
to each span representation:

υ(si, tj) = FFsim([hsi ;h
t
j ; |hsi − htj |;hsi ◦ htj ]) (3)

where [; ] is concatenation and ◦ is element-wise
multiplication. We use hsi and htj to denote the
representation of source span si and target span
tj , respectively.

Markov Transition Layer. Monolingual word
alignment moves along the diagonal direction in
most cases. To incorporate this intuition, we pro-
pose a scoring function to model the transition be-
tween the adjacent alignment labels awbi−1 and ai.
The main feature we use is the distance between
the beginning index of current target span and the

2We also compared ReLU and GeLU, and found PReLU
works slightly better.
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end index of the target span that the prior source
span is aligned to. The distance is binned into 1
of 13 buckets with the following boundaries [-11,
-6, -4, -3, -2, -1, 0, 1, 2, 3, 5, 10], and each bucket
is encoded by a 128-dim randomly initialized em-
bedding. It is then transformed into a real-value
score by a 1-layer feed forward neural network.

Training and Inference. During training, we
minimizes the negative log-likelihood of the gold
alignment a∗, and the model is trained from both
directions (source to target, target to source):∑

(s,t,a∗)

−log p(a∗s2t|s, t)− log p(a∗t2s|t, s) (4)

where a∗s2t and a∗t2s represent the gold alignment
labels from both directions.

During inference, we use the Viterbi algorithm
to find the optimal alignment. There are differ-
ent strategies to merge the outputs from two di-
rections, including intersection, union, grow-diag
(Koehn, 2009), bidi-avg (Nagata et al., 2020), etc.
It can be seen as a hyper-parameter and decided
based on the dev set. In this work, we use intersec-
tion in our semi-CRF model for all experiments.

3.3 Implementation Details

We implement our model in PyTorch (Paszke
et al., 2017). We use the Adam optimizer and set
both the learning rate and weight decay as 1e-5.
We set the maximum span size to 3 for our neu-
ral semi-CRF model, which can converge within 5
epochs. The neural semi-CRF model has ∼2 hour
training time per epoch for MultiMWA-MTRef,
measured on a single GeForce GTX 1080 Ti GPU.

4 A Multi-Genre Benchmark for
Monolingual Word Alignment

In this section, we present the manually annotated
Multi-genre Monolingual Word Alignment (Mul-
tiMWA) benchmark that consists of four datasets
of different text genres. As summarized in Table
1, our new benchmark is the largest to date and
of higher quality compared to existing datasets.
In contrast to iSTS (Agirre et al., 2016) and
SPADE/ESPADA (Arase and Tsujii, 2018, 2020),
our annotation does not rely on external chunking
or parsing that may introduce errors or restrict the
granularity and flexibility. Our benchmark con-
tains both token alignments and a significant por-
tion of phrase alignments as they are semantically

equivalent as a whole. Our benchmark also con-
tains a large portion of semantically similar but not
strictly equivalent sentence pairs, which are com-
mon in text-to-text generation tasks and thus im-
portant for evaluating the monolingual word align-
ment models under this realistic setting.

For all four datasets, we closely follow the stan-
dard 6-page annotation guideline3 from (Callison-
Burch et al., 2006) and further extend it to improve
the phrase-level annotation consistency (more de-
tails in Appendix B.1). We describe each of the
four datasets below.

MultiMWA-MTRef. We create this dataset by
annotating 3,998 sentence pairs from the MTRef-
erence (Yao, 2014), which are human references
used in a machine translation task. The orig-
inal labels in MTReference were annotated by
crowd-sourcing workers on Amazon Mechani-
cal Turk following the guideline from (Callison-
Burch et al., 2006). In an early pilot study, we dis-
covered that these crowd-sourced annotations are
noisy and contain many obvious errors. It only
gets 73.6/96.3/83.4 for Precision/Recall/F1 on a
random sample of 100 sentence pairs, when com-
pared to the labels we manually corrected.

To address the lack of reliable annotation, we
hire two in-house annotators to correct the original
labels using GoldAlign4 (Gokcen et al., 2016), an
annotation tool for monolingual word alignment.
Both annotators have linguistic background and
extensive NLP annotation experience. We pro-
vide a three-hour training session to the the anno-
tators, during which they are asked to align 50 sen-
tence pairs and discuss until consensus. Following
previous work, we calculate the inter-annotator
agreement as 84.2 of F1 score for token-level non-
identical alignments by comparing one annotator’s
annotation against the other’s. The alignments be-
tween identical words are usually easy for human
annotators. After merging the the labels from both
annotators, we create a new split of 2398/800/800
for train/dev/test set. To ensure the quality, an ad-
judicator further exams the dev and test sets and
constructs the final labels.

MultiMWA-Newsela. Newsela corpus (Xu
et al., 2015b) consists of 1,932 English news
articles and their simplified versions written by

3http://www.cs.jhu.edu/˜ccb/
publications/paraphrase_guidelines.pdf

4https://github.com/ajdagokcen/
goldalign-repo

http://www.cs.jhu.edu/~ccb/publications/paraphrase_guidelines.pdf
http://www.cs.jhu.edu/~ccb/publications/paraphrase_guidelines.pdf
https://github.com/ajdagokcen/goldalign-repo
https://github.com/ajdagokcen/goldalign-repo
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Datasets #Train #Dev #Test Length %aligned %word/phrase %id/non-id Genre External License

Existing Monolingual Word Alignment Datesets
MSR RTE (Brockett, 2007) 800 – 800 29 / 11 37.9 90.0 / 10.0 76.6 / 23.4 Misc. – Free
Edinburgh++ (Thadani et al., 2012) 714 – 306 22 / 22 85.7 77.7 / 22.3 67.2 / 32.8 Misc. – Free

iSTS (Agirre et al., 2016) 1,506 – 750 9 / 9 74.0 6.5 / 93.5 23.3 / 76.7 News
Image captions Chunking Free

SPADE / ESPADA† (2018; 2020) 1,916 50 151 23 / 23 81.9 44.0 / 56.0 72.3 / 27.7 News Parsing LDC

Our Multi-Genre Monolingual Word Alignment (MultiMWA) Benchmark
MultiMWA-MTRef 2,398 800 800 22 / 17 88.6 62.0 / 38.0 52.6 / 47.3 News – Free
MultiMWA-Wiki 2,514 533 1,052 30 / 29 91.8 95.6 / 4.4 94.1 / 5.9 Wikipedia – Free
MultiMWA-Newsela – – 500 27 / 23 76.5 74.6 / 25.4 67.1 / 32.9 News – Free∗

MultiMWA-arXiv – – 200 29 / 28 87.8 96.6 / 3.4 93.4 / 6.6 Scientific writing – Free
Total 4,912 1,333 2,552 26 / 23 89.4 79.3 / 20.7 73.8 / 26.2 all above – Free

Table 1: Statistics of our new MultiWMA benchmark and existing datasets. Length of the longer/shorter sentence
in each pair is measured by the number of tokens. %aligned is the percentage of aligned words among all words.
%word/phrase denotes the percentage of word alignment and phrasal alignment. %id/non-id specifies the per-
centage of identical (e.g., Lloyd ↔ Lloyd) and non-identical (e.g., conduct ↔ performed) alignments. Externel
indicates whether the annotation relies on additional linguistic information. †ESPADA (train) has not been released
at the time of writing; statistics are based on the SPADE (dev/test) dataset. ∗Newsela data is free for academic
research but license needs to be requested at: https://newsela.com/data.

professional editors. It has been widely used
in text simplification research (Xu et al., 2016;
Zhang and Lapata, 2017; Zhong et al., 2020). We
randomly select 500 complex-simple sentence
pairs from the test set of Newsela-Auto (Jiang
et al., 2020),5 which is the newest sentence-
aligned version of Newsela. 214 of these 500
pairs contain sentence splitting. An in-house an-
notator6 labels the word alignment by correcting
the outputs from GIZA++ (Och and Ney, 2003).

MultiMWA-arXiv. The arXiv7 is an open-
access platform that stores more than 1.7 mil-
lion research papers with their historical versions.
It has been used to study paraphrase generation
(Dong et al., 2021) and statement strength (Tan
and Lee, 2014). We first download the LATEX
source code for 750 randomly sampled papers
and their historical versions, then use OpenDetex8

package to extract plain text from them. We use
the trained neural CRF sentence alignment model
(Jiang et al., 2020) to align sentences between dif-
ferent versions of the papers and sample 200 non-
identical aligned sentence pairs for further annota-
tion. The word alignment is annotated in a similar
procedure to that of the MultiMWA-Wiki.

MultiMWA-Wiki. Wikipedia has been widely
used in text-to-text tasks, including text simpli-

5More specifically, we sample from the exact test set used
in Table 2 in Maddela et al. (2021).

6This annotator has annotated MultiMWA-MTRef.
7https://arxiv.org/
8https://github.com/pkubowicz/

opendetex

fication (Jiang et al., 2020), sentence splitting
(Botha et al., 2018), and neutralizing bias lan-
guage (Pryzant et al., 2020). We follow the
method in (Pryzant et al., 2020) to extract par-
allel sentences from Wikipedia revision history
dump (dated 01/01/2021) and randomly sample
4,099 sentence pairs for further annotation. We
first use an earlier version of our neural semi-CRF
word aligner (§3) to automatically align words for
the sentence pairs, then ask two in-house anno-
tators to correct the aligner’s outputs. The inter-
annotator agreement is 98.1 at token-level mea-
sured by F1.9 We split the data into 2514/533/1052
sentence pairs for train/dev/test sets.

5 Experiments

In this section, we present both in-domain and out-
of-domain evaluations for different word align-
ment models on our MultiWMA benchmark. We
also provide a detailed error analysis of our neural
semi-CRF model and an ablation study to analyze
the importance of each component.

5.1 Baselines
We introduce a novel state-of-the-art baseline by
adapting the QA-based method in (Nagata et al.,
2020), which has not previously applied to mono-
lingual word alignment but only bilingual word
alignment. This method treats the word alignment
problem as a collection of independent predictions

9The inter-annotator agreement is much higher compared
to that of MultiMWA-MTRef, as the parallel sentences ex-
tracted from Wikipedia revision history have more overlap.

https://newsela.com/data
https://arxiv.org/
https://github.com/pkubowicz/opendetex
https://github.com/pkubowicz/opendetex


6820

Models
MultiMWA-MTRefSure MultiMWA-MTRefSure+Poss MultiMWA-Wiki

P
Pi / Pn

R
Ri / Rn

F1
F1i / F1n

EM P
Pi / Pn

R
Ri / Rn

F1
F1i / F1n

EM P
Pi / Pn

R
Ri / Rn

F1
F1i / F1n

EM

JacanaToken (Yao et al., 2013a) 87.9
94.4 / 65.1

72.2
94.7 / 41.3

79.3
94.6 / 50.5

2.6 82.8
93.3 / 61.7

70.5
96.7 / 43.6

76.2
95.0 / 51.1

1.3 98.8
99.3 / 77.1

95.7
99.5 / 71.6

97.2
99.4 / 74.3

59.8

JacanaPhrase (Yao et al., 2013b) 84.4
94.1 / 58.5

72.4
95.3 / 40.7

78.0
94.7 / 48.0

1.9 82.8
93.3 / 61.4

70.0
96.2 / 42.5

75.8
94.8 / 50.3

1.4 92.8
98.5 / 44.4

97.0
99.8 / 49.1

94.9
99.2 / 46.6

27.4

PipelineAligner (Sultan et al., 2014) 96.0
98.1 / 78.9

67.7
93.3 / 30.6

79.4
95.6 / 44.1

2.5 97.1
98.3 / 82.9

60.8
92.9 / 23.9

74.8
95.5 / 37.1

1.0 99.5
99.6 / 66.2

94.9
99.6 / 60.0

97.1
99.6 / 62.9

53.4

QA-based Aligner 88.4
98.2 / 76.3

92.3
99.2 / 83.9

90.3
98.7 / 79.9

14.0 91.3
98.5 / 84.1

92.9
99.2 / 86.9

92.1
98.9 / 85.5

21.3 97.4
99.5 / 82.3

97.9
99.8 / 81.9

97.6
99.7 / 82.1

67.4

Neural CRF Aligner 87.6
97.3 / 74.2

91.6
99.5 / 82.2

89.5
98.4 / 78.0

10.8 91.5
98.5 / 83.4

90.2
99.2 / 82.1

90.8
98.8 / 82.7

16.9 96.5
99.3 / 80.6

97.6
99.6 / 80.6

97.1
99.4 / 80.6

63.5

Neural semi-CRF Aligner 90.6
98.9 / 78.9

90.3
98.9 / 79.1

90.5
98.9 / 79.0

14.1 94.7
99.3 / 89.1

90.2
98.7 / 82.3

92.4
99.0 / 85.5

23.3 97.7
99.6 / 82.8

97.5
99.7 / 80.8

97.6
99.7 / 81.8∗

68.5

Table 2: In-domain evaluation of different monolingual word alignment models on the MultiMWA benchmark.
We report the precision (P), recall (R), F1, and exact match (EM), which is the percentage of sentence pairs for
which model predictions are exactly same as gold labels for the entire sentence. For each metric, we also report
the performance on identical alignments (Pi, Ri, F1i) and non-identical alignments (Pn, Rn, F1n) separately. ∗

MultiMWA-Wiki contains only about 5% non-identical alignment.

Models
MultiMWA-Newsela MultiMWA-arXiv MultiMWA-Wiki
P

Pi / Pn

R
Ri / Rn

F1
F1i / F1n

EM P
Pi / Pn

R
Ri / Rn

F1
F1i / F1n

EM P
Pi / Pn

R
Ri / Rn

F1
F1i / F1n

EM

JacanaToken (Yao et al., 2013a) 85.5
91.2 / 60.1

74.9
97.5 / 39.7

79.8
94.3 / 47.9

11.0 94.9
97.3 / 72.6

96.8
99.5 / 73.4

95.8
98.4 / 73.0

49.0 94.7
98.4 / 51.2

96.9
99.9 / 50.1

95.8
99.2 / 50.6

33.3

JacanaPhrase (Yao et al., 2013b) 84.3
91.3 / 53.9

75.0
97.4 / 38.6

79.4
94.3 / 45.0

8.2 90.9
97.1 / 53.2

96.6
99.1 / 64.7

93.7
98.1 / 58.4

31.5 92.9
98.5 / 44.9

96.9
99.8 / 49.6

94.9
99.1 / 47.1

28.0

PipelineAligner (Sultan et al., 2014) 95.2
96.9 / 64.4

69.4
95.3 / 25.4

80.3
96.1 / 36.5

10.0 98.5
98.8 / 68.3

94.6
99.0 / 62.4

96.5
98.9 / 65.2

49.0 99.5
99.6 / 66.2

94.9
99.6 / 60.0

97.1
99.6 / 62.9

53.4

QA-based Aligner 84.8
95.3 / 69.4

87.9
99.1 / 71.4

86.2
97.1 / 70.4

16.2 93.9
98.0 / 70.7

94.3
95.0 / 79.9

94.1
96.5 / 75.0

27.0 96.1
99.3 / 76.2

98.2
99.8 / 78.3

97.2
99.5 / 77.3

57.8

Neural CRF Aligner 88.2
95.3 / 72.3

85.0
99.0 / 66.3

86.6
97.1 / 69.1

15.6 92.9
96.4 / 62.9

98.7
99.8 / 73.3

95.7
98.0 / 67.7

43.5 96.1
99.1 / 70.5

98.0
99.9 / 71.9

97.0
94.5 / 71.2

52.1

Neural semi-CRF Aligner 89.4
96.7 / 76.1

85.0
98.4 / 66.5

87.2
97.6 / 71.0

21.6 96.2
98.9 / 79.3

98.4
99.6 / 83.0

97.3
99.3 / 81.1

62.5 97.2
99.6 / 80.4

97.6
99.5 / 79.5

97.4
99.5 / 79.9

64.8

Table 3: Out-of-domain evaluation of different monolingual word alignment models on the MultiMWA bench-
mark. All the models in this table are trained on the MultiMWA-MTRefSure+Poss dataset.

from every token in the source sentence to a span
in the target sentence, which is then solved by fine-
tuning multilingual BERT (Devlin et al., 2019)
similarly as for SQuAD-style question answering
task. Taking the sentence pair in Figure 1 as an
example, the word to be aligned is marked by ¶
in the source sentence and concatenated with the
entire target sentence to form the input as “With
Canadian · · · ¶conduct¶ · · · his model. Lkoyd
performed · · · his model. ”. A span prediction
model based on fine-tuning multilingual BERT is
then expected to extract performed from the tar-
get sentence. The predictions from both directions
(source to target, target to source) are symmetrized
to produce the final alignment, using a probability
threshold of 0.4 instead of the typical 0.5.

We change to use standard BERT in this model
for monolingual alignment and find that the 0.4
threshold chosen by Nagata et al. (2020) is al-
most optimal in maximizing the F1 score on
our MultiMWA-MTRef dataset. This QA-based
method alone outperforms all existing models for
monolingual word alignment, including: Jacana-

Token aligner (Yao et al., 2013a), which is a
CRF model using hand-crafted features and exter-
nal resources; JacanaPhrase aligner (Yao et al.,
2013b), which is a semi-CRF model relying on
feature templates and external resources; Pipelin-
eAligner (Sultan et al., 2014), which is a pipeline
system that utilizes word similarity and contextual
information with heuristic algorithms. We also
create a variation of our model, a Neural CRF
aligner, in which all modules remain the same but
the max span length is set to 1, to evaluate the ben-
efits of span-based alignments.

5.2 Experimental Results

Following the literature (Thadani et al., 2012;
Yao et al., 2013a,b), we present results under
both Sure and Sure + Poss settings for the
MultiMWA-MTRef dataset. Sure+ Poss setting
includes all the annotated alignments, and Sure
only contains a subset of them which are agreed by
multiple annotators. We consider Sure+Poss as
the default setting for all the other three datasets.

The in-domain evaluation results are shown in
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Neural semi-CRF Aligner F1 EM ∆F1 /∆EM

w/ SpanBERT 92.1 23.3 0.0 / 0.0

w/ BERT 90.8 18.9 -1.3 / -4.4

w/o Transition Layer 91.9 21.3 -0.2 / -2.0

w/ post-processing 92.1 23.3 0.0 / 0.0

w/ intersection 92.0 21.8 -0.1/ -1.5

w/ union 91.1 20.1 -1.0 / -3.2

w/ grow-diag 91.5 20.6 -0.6 / -2.7

Table 4: Ablation study of our neural semi-CRF
aligner with each component removed or swapped. The
results are based on the dev set of MTRefSure+Poss.

Table 2. The neural models are working remark-
ably well in comparison to the non-neural meth-
ods, especially as measured by Exact Matches
(EM). On both MTRef and Wiki datasets, our
neural semi-CRF model achieves the best F1 and
EM. QA-based aligner also has competitive per-
formance with strong recall, however, its precision
is lower compared to our model. It is worthy to
note that our model has a modular design, and can
be more easily adjusted than QA-based method to
suit different datasets and downstream tasks.

Table 3 presents the out-of-domain evaluation
results. Our neural models achieve the best perfor-
mance across all three datasets. This demonstrates
the generalization ability of our model, which can
be useful in the downstream applications.

5.3 Ablation Study

Table 4 shows the ablation study for our neural
semi-CRF model. F1 and EM drops by 1.3 and
4.4 points respectively after replacing SpanBERT
with BERT, indicating the importance of opti-
mized pre-trained representations. Markov transi-
tion layer contributes mainly to the alignment ac-
curacy (EM). We have experimented with differ-
ent strategies to merge the outputs from two direc-
tions: intersection yields better precision, grow-
diag and union bias towards recall. Leverag-
ing the span interaction matrix generated by our
model (details in §3.2), we design a simple post-
processing rule to extend the phrasal alignment
to spans that are longer than 3 tokens. Adja-
cent target words are gradually included if they
have very high semantic similarity with the same
source span. This rule further improves recall and
achieves the best F1 on the MultiMWA-MTRef.

5.4 Error Analysis

We sample 50 sentence pairs from the dev set of
MultiMWA-MTRef and analyze the errors under
Sure+Poss setup.10 Figure 4 shows how the per-
formance of different alignment models would im-
prove, if we resolve each of the 7 types of errors.
We discuss the categorization of errors and their
breakdown percentages below:

Phrase Boundary (58.6%). The phrase bound-
ary error (see 3 in Figure 3 for an example)
is the most prominent error in all models, at-
tributing 7.6 points of F1 for JacanaPhrase, 5.7
for QA aligner, and 4.7 for neural semi-CRF
aligner. For another example, instead of 3x2 align-
ment funds for research ↔ research funding, our
model captures two 1x1 alignments, funds ↔
funding and research ↔ research. This is largely
due to the fact that alignments are not limited
to linguistic phrases (e.g., noun phrases, verb
phrases, etc.), but rather, include non-linguistic
phrases. It could also be challenging to han-
dle longer spans, such as keep his position ↔
protect himself from being removed (more on this
in Appendix B.2). Although we use SpanBERT
for better phrase representation, there is still room
for improvement.

Function Words (19.1%). Function words can
be tricky to align when rewording and reordering
happens, such as 2 . Adding on the complexity,
same function word may appear more than once
in one sentence. This type of error is common in
all the models we experiment with. It attributes 4.7
points of F1 for JacanaPhrase, 1.3 for QA aligner,
and 1.5 for our neural semi-CRF aligner.

Content Words (14.2%). Similar to function
words, content words (e.g., security bureau ↔
defense ministry) can also be falsely aligned or
missed, but the difference between neural and non-
neural model is much more significant. This error
type attributes 7.7 points of F1 score for Jacana
aligner, but only 1.1 and 0.8 for neural semi-CRF
aligner and QA aligner, respectively.

Context Implication (5.6%). Some words or
phrases that are not strictly semantically equiva-
lent can also be aligned if they appear in a similar
context. For example, given the source sentence

10The strict Sure only labels exclude many alignments that
are critical for certain applications, such as label projection.
We thus focus on the Sure+Poss labels for error analysis.
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.
strained

being
relations

China-US
made
once

detained
being

’s
Fang

The
arrest
of Fang
Fuming
has
temporarily

caused
tensions
between
China
and
the United
States
.

1
2

3

Figure 3: Error examples of the semi-CRF word align-
ment model on MTRef data. Black-filled boxes denote
true positives, boxes filled with blue diagonal lines are
false negatives, and red slant lines are false positives.

‘Gaza international airport was put into operation
the day before’ and the target sentence ‘The air-
port began operations one day before’, the phrase
pair was put into ↔ began can be aligned. This
type is related to 2.8 F1 score improvement for Ja-
cana aligner, but only 0.4 and 0.2 for neural semi-
CRF and QA-based aligners, respectively.

Debatable Labels (1.9%). Word alignment an-
notation can be subjective sometimes. Take phrase
alignment two days of ↔ a two-day for example,
it can go either way to include the function word
‘a’ in the alignment, or not.

Name Variations (0.6%). While our neural
semi-CRF model is designed to handle spelling
variations or name abbreviations, it fails some-
times as shown by 1 in Figure 3 as an example.
Some cases can be very difficult, such as SAWS↔
the state’s supervision and control bureau of safe
production, where SAWS stands for State Adminis-
tration of Work Safety.

Skip Alignment (0.0%). Non-contiguous to-
kens can be aligned to the same target token or
phrase (e.g., owes ... to↔ is a result of), posing a
challenging situation for monolingual word align-
ers. However, this error is rare, as only 0.6% of all
alignments in MTRef dev set are discontinuous.

6 Downstream Applications

In this section, we apply our monolingual word
aligner to some downstream applications, includ-
ing both generation and understanding tasks.

Figure 4: Performance comparison on MTRef dev set
for 3 different aligners after resolving each error type.

6.1 Automatic Text Simplification

Text simplification aims to improve the readability
of text by rewriting complex sentences with sim-
pler language. We propose to incorporate word
alignment information into the state-of-the-art Ed-
itNTS model (Dong et al., 2019) to explicitly learn
the edit operations, including addition, deletion
and paraphrase. The EditNTS model uses a neu-
ral programmer-interpreter architecture, which de-
rives the ADD, KEEP and DELETE operation se-
quence based on the edit-distance measurements
during training time. We instead construct this edit
sequence based on the neural semi-CRF aligner’s
outputs (trained on MTRefSure+Poss) with an ad-
ditional REPLACE tag to train the EditNTS model
(more details in Appendix A).

Table 5 presents the text simplification results
on two benchmark datasets, Newsela-auto and
Wikipedia-auto (Jiang et al., 2020), where we im-
prove the SARI score (Xu et al., 2016) by 0.9
and 0.6, respectively. The SARI score averages
the F1/precision of n-grams inserted (add), kept
(keep) and deleted (del) when compared to hu-
man references. We also calculate the BLEU score
with respect to the input (s-BL), the percentage of
new words (%new) added, and the percentage of
system outputs being identical to the input (%eq)
to show the paraphrasing capability. We manu-
ally inspect 50 sentences sampled from Newsela-
auto test set and find that both models (EditNTS
and EditNTS+Aligner) generate the same output
for 10 sentences. For the remaining 40 sentences,
the original EditNTS only attempts to paraphrase
4 times (2 are good). Our modified model (Edit-
NTS+Aligner) is more aggressive, generating 25
paraphrases (11 are good). With the help of word
aligner, the modified model also produces a higher
number of good deletions (20 vs. 13) and a lower
number of bad deletions (6 vs. 12), which is con-
sistent with the better keep and del scores.
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Datasets Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq

Newsela-auto

Complex (input) 11.8 0.0 35.5 0.0 12.3 24.8 24.8 1.0 2.0 100.0 0.0 100.0
Simple (reference) 86.9 84.7 78.4 97.6 6.5 13.3 13.3 0.63 0.8 25.7 33.5 0.0
EditNTS 36.6 1.1 32.9 75.7 7.5 14.3 14.3 0.66 2.4 50.2 6.5 1.2
EditNTS + Aligner 37.5 1.3 33.4 77.9 7.2 14.3 14.3 0.66 1.5 49.1 7.6 0.8

Wikipedia-auto

Complex (input) 24.9 0.0 74.6 0.0 13.4 22.6 22.6 1.0 0.8 100.0 0.0 100.0
Simple (reference) 81.7 66.2 97.5 81.5 12.2 21.7 21.7 0.97 5.4 64.0 14.8 16.2
EditNTS 36.8 2.1 68.4 39.8 12.8 23.6 23.6 1.06 1.7 69.7 12.4 0.6
EditNTS + Aligner 37.4 1.9 69.5 40.9 12.7 23.6 23.6 1.05 0.6 74.4 10.2 2.8

Table 5: Downstream application on text simplification. By incorporating our monolingual word aligner into the
EditNTS (Dong et al., 2019) model, we improve the performance measured by SARI score (the main automatic
metric for simplification) and its three parts: precision for delete (del), F1 scores for add and keep operations.

Models
RTE MRPC STS-B STS14 WikiQA SICK PIT URL TrecQA QQP MNLI SNLI
2.5k 3.5k 5.7k 8k 8k 10k 11k 42k 53k 363k 392k 549k
Acc F1 r/ρ r MAP/MRR Acc max F1 max F1 MAP/MRR Acc Acc m/Acc mm Acc

BERT 65.3 88.2 86.7/85.8 83.6 81.8/83.0 86.2 75.0 78.7 84.4/89.6 90.8 84.8/83.1 90.5
BERT + Aligner 67.3 88.9 86.8/86.0 83.7 83.2/84.4 87.2 75.5 78.5 85.1/87.8 90.9 84.8/83.5 90.4

Table 6: Downstream applications on natural language inference (RTE, SICK, MNLI, SNLI), paraphrase identifi-
cation (MRPC, PIT, URL, QQP), question answering (WikiQA, TrecQA), and semantic textual similarity (STS-B,
STS14) tasks. The datasets in this table are ordered by the size of their training set, as shown in the second row.

6.2 Sentence Pair Modeling

We can utilize our neural aligner in sentence pair
classification tasks (Lan and Xu, 2018), adding
conditional alignment probability p(a|s, t) as an
extra feature. We concatenate it with the [CLS]
representation in fine-tuned BERT and apply the
softmax layer for prediction. We experiment with
on different datsets for various tasks, including:
natural language inference on SNLI (Bowman
et al., 2015), MNLI (Williams et al., 2018), SICK
(Marelli et al., 2014), and RTE (Giampiccolo
et al., 2007) from the GLUE benchmark (Wang
et al., 2018); semantic textual similarity on STS-B
(Cer et al., 2017) and STS14 (Agirre et al., 2014);
question answering on WikiQA (Yang et al., 2015)
and TrecQA (Wang et al., 2007); paraphrase iden-
tification on MRPC (Dolan and Brockett, 2005),
URL (Lan et al., 2017), PIT (Xu et al., 2015a),
and QQP (Iyer et al., 2017).

We implement the fine-tuned BERTbase model
using Huggingface’s library (Wolf et al., 2019).
Table 6 shows performance improvement on small
(2k-15k) datasets, which include SICK, STS-B,
MRPC, RTE, WikiQA, and PIT, but little or no im-
provement on large (40k-550k) datasets, such as
SNLI, MNLI, and QQP. We hypothesize that the
Transformer model can potentially learn the latent
word alignment through self-attentions, but not as
effectively for small data size.

7 Conclusion

In this work, we present the first neural semi-
CRF word alignment model which achieves com-
petitive performance on both in-domain and out-
of-domain evaluations. We also create a man-
ually annotated Multi-Genre Monolingual Word
Alignment (MultiMWA) benchmark which is the
largest and of higher quality compared to existing
datasets.
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Complex sentence:
[‘With’,‘Canadian’, ‘collaborators,’, ‘Lloyd’, ‘went’, ‘on’, ‘to’, ‘conduct’, ‘laboratory’, ‘simulations’, ‘of’, ‘his’,
‘model.’]
Simple sentence:
[‘Lloyd’, ‘performed’, ‘successful’, ‘laboratory’, ‘experiments’, ‘of’, ‘his’, ‘model.’]
Expert program from EditNTS:
[DEL, DEL, DEL, KEEP, ADD(‘performed’), ADD(‘successful’), DEL, DEL, DEL, DEL, ‘KEEP’,
ADD(‘experiments’), DEL, KEEP, KEEP, KEEP]

Expert program from EditNTS with Aligner:
[DEL, DEL, DEL, KEEP, ADD(‘performed’), ADD(‘successful’), DEL, DEL, DEL, DEL, ‘KEEP’, ‘REPLACE-S’,
ADD(‘experiments’), ‘REPLACE-E’, KEEP, KEEP, KEEP]

Table 7: Expert program comparison between the original EditNTS and our modified version with word alignment
for the example in Figure 1.

Models SARI add keep del FK SLen OLen CR %split s-BL %new %eq
Complex (input) 11.8 0.0 35.5 0.0 12.3 24.8 24.8 1.0 2.0 100.0 0.0 100.0
Simple (reference) 86.9 84.7 78.4 97.6 6.5 13.3 13.3 0.63 0.8 25.7 33.5 0.0
EditNTS (original) 36.6 1.1 32.9 75.7 7.5 14.3 14.3 0.66 2.4 50.2 6.5 1.2
EditNTS (original) + Aligner 36.6 1.2 32.6 75.9 7.4 14.1 14.1 0.65 2.2 49.3 6.0 1.5
EditNTS (new) 36.9 1.2 33.8 75.8 8.3 16.3 16.3 0.73 1.6 56.5 5.7 0.7
EditNTS (new) + Aligner 37.5 1.3 33.4 77.9 7.2 14.3 14.3 0.66 1.5 49.1 7.6 0.8

Table 8: Comparison experiments on Newsela-auto dataset with different versions of EditNTS model. + Aligner
means using the neural semi-CRF aligner output, EditNTS (new) means adding the REPLACE-S/E tags to the
original EditNTS model.

A EditNTS with Aligner

The original EditNTS model constructs expert
program with the shortest edit path from complex
sentence to simple sentence, specifically, it calcu-
lates the Levenshtein distances without substitu-
tions and recovers the edit path with three labels:
ADD, KEEP and DEL. Since edit distance relies
on word identity to match the sentence pair, it can-
not produce lexical paraphrases (e.g. conduct ↔
performed and simulations↔ experiments in Fig-
ure 1,). The final edit sequence will mix para-
phrase words (performed and experiments) and
normal added words (successful) together under
the same ADD label. In order to differentiate these
two types of added words, we introduced spe-
cial tags (REPLACE-S and REPLACE-E) to re-
fer to lexical paraphrases specifically. During the
edit label construction process, after checking the
word pair identity for KEEP label, we addition-
ally check whether they are aligned by our neural
semi-CRF aligner, if so, we produce REPLACE-
S/E tags, otherwise we do normal ADD/DEL tags.
See Table 7 for a specific example. Word align-
ment can arbitrarily align any words in the tar-
get sentence, this can break the sequential de-

pendency of the edit labels, we therefore discard
some lexical paraphrases to guarantee such pro-
priety (conduct↔ performed in Table 7).

In order to show the effectiveness of our mod-
ified model, we compared two more versions of
EditNTS in Table 8: EditNTS (original) + Aligner,
where we directly add word alignment informa-
tion to the original EditNTS model without any
REPLACE tags; EditNTS (new), where we keep
the REPLACE tags but don’t use any word align-
ments. The results show that EditNTS model with
REPLACE tags can improve the performance, but
it is not significant. After adding the word align-
ment information, we can further improve the
SARI score significantly, which can demonstrate
the effectiveness of our modified EditNTS with
aligner.

B More Details for MultiMWA
Benchmark

B.1 Updated Annotation Guideline
After the first round of annotation, we discovery
that the definition of phrasal alignment can be am-
biguous, which will hinder the development and
error analysis for word alignemnt models. There-
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fore, we further extend the standard 6-page an-
notation guideline11 from (Callison-Burch et al.,
2006) to cover three linguistics phenomena to im-
prove the phrase-level annotation consistency.

• “a/an/the + noun” should be aligned together
with noun if both nouns are same.
• noun1 should be only aligned to noun1 in the

phrase “noun1 and noun2”.
• noun should be only aligned to noun in the

“adjective + noun” phrase.

Utilizing the constituency parser implemented
in the AllenNLP package (Gardner et al., 2018),
we first write a script to implement these rules
and apply them to all the training/dev/test sets
of MultiMWA-MTRef. Then, we manually go
through both dev and test sets to further ensure the
annotation consistency.

B.2 Statistics of Alignment Shape
We also analyze the shape of alignment in each
dataset, and the statistics can be found in Table
9. Statistical result showes that the dev and test
of MultiMWA-MTRef contain a similar portion
of phrasal alignment, and less than the training
set. There even exists 1×10 alignment annota-
tions in MultiMWA-MTRef, which are actually
correct based on our manual inspection. Both
MultiMWA-Newsela and MultiMWA-arXiv con-
tain significantly larger portion of 1×1 alignment,
especially the latter one contains only 3.2% of
phrasal alignment.

11http://www.cs.jhu.edu/˜ccb/
publications/paraphrase_guidelines.pdf
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