@inproceedings{yu-etal-2021-language,
title = "Language Embeddings for Typology and Cross-lingual Transfer Learning",
author = "Yu, Dian and
He, Taiqi and
Sagae, Kenji",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.560",
doi = "10.18653/v1/2021.acl-long.560",
pages = "7210--7225",
abstract = "Cross-lingual language tasks typically require a substantial amount of annotated data or parallel translation data. We explore whether language representations that capture relationships among languages can be learned and subsequently leveraged in cross-lingual tasks without the use of parallel data. We generate dense embeddings for 29 languages using a denoising autoencoder, and evaluate the embeddings using the World Atlas of Language Structures (WALS) and two extrinsic tasks in a zero-shot setting: cross-lingual dependency parsing and cross-lingual natural language inference.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2021-language">
<titleInfo>
<title>Language Embeddings for Typology and Cross-lingual Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dian</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taiqi</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenji</namePart>
<namePart type="family">Sagae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-lingual language tasks typically require a substantial amount of annotated data or parallel translation data. We explore whether language representations that capture relationships among languages can be learned and subsequently leveraged in cross-lingual tasks without the use of parallel data. We generate dense embeddings for 29 languages using a denoising autoencoder, and evaluate the embeddings using the World Atlas of Language Structures (WALS) and two extrinsic tasks in a zero-shot setting: cross-lingual dependency parsing and cross-lingual natural language inference.</abstract>
<identifier type="citekey">yu-etal-2021-language</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.560</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.560</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>7210</start>
<end>7225</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language Embeddings for Typology and Cross-lingual Transfer Learning
%A Yu, Dian
%A He, Taiqi
%A Sagae, Kenji
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F yu-etal-2021-language
%X Cross-lingual language tasks typically require a substantial amount of annotated data or parallel translation data. We explore whether language representations that capture relationships among languages can be learned and subsequently leveraged in cross-lingual tasks without the use of parallel data. We generate dense embeddings for 29 languages using a denoising autoencoder, and evaluate the embeddings using the World Atlas of Language Structures (WALS) and two extrinsic tasks in a zero-shot setting: cross-lingual dependency parsing and cross-lingual natural language inference.
%R 10.18653/v1/2021.acl-long.560
%U https://aclanthology.org/2021.acl-long.560
%U https://doi.org/10.18653/v1/2021.acl-long.560
%P 7210-7225
Markdown (Informal)
[Language Embeddings for Typology and Cross-lingual Transfer Learning](https://aclanthology.org/2021.acl-long.560) (Yu et al., ACL-IJCNLP 2021)
ACL
- Dian Yu, Taiqi He, and Kenji Sagae. 2021. Language Embeddings for Typology and Cross-lingual Transfer Learning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 7210–7225, Online. Association for Computational Linguistics.