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Abstract

Injecting external domain-specific knowledge
(e.g., UMLS) into pretrained language models
(LMs) advances their capability to handle spe-
cialised in-domain tasks such as biomedical
entity linking (BEL). However, such abundant
expert knowledge is available only for a hand-
ful of languages (e.g., English). In this work,
by proposing a novel cross-lingual biomedical
entity linking task (XL-BEL) and establishing a
new XL-BEL benchmark spanning 10 typolog-
ically diverse languages, we first investigate
the ability of standard knowledge-agnostic as
well as knowledge-enhanced monolingual and
multilingual LMs beyond the standard mono-
lingual English BEL task. The scores indicate
large gaps to English performance. We then
address the challenge of transferring domain-
specific knowledge from resource-rich lan-
guages to resource-poor ones. To this end,
we propose and evaluate a series of cross-
lingual transfer methods for the XL-BEL task,
and demonstrate that general-domain bitext
helps propagate the available English knowl-
edge to languages with little to no in-domain
data. Remarkably, we show that our proposed
domain-specific transfer methods yield consis-
tent gains across all target languages, some-
times up to 20 Precision@1 points, without any
in-domain knowledge in the target language,
and without any in-domain parallel data.

1 Introduction

Recent work has demonstrated that it is possible to
combine the strength of 1) Transformer-based en-
coders such as BERT (Devlin et al., 2019; Liu et al.,
2019), pretrained on large general-domain data
with 2) external linguistic and world knowledge
(Zhang et al., 2019; Levine et al., 2020; Lauscher
et al., 2020). Such expert human-curated knowl-
edge is crucial for NLP applications in specialised
domains such as biomedicine. There, Liu et al.

(2021) recently proposed self-alignment pretrain-
ing (SAP), a technique to fine-tune BERT on phrase-
level synonyms extracted from the Unified Medical
Language System (UMLS; Bodenreider 2004).1

Their SAPBERT model currently holds state-of-the-
art (SotA) across all major English biomedical en-
tity linking (BEL) datasets. However, this approach
is not widely applicable to other languages: abun-
dant external resources are available only for a few
languages, hindering the development of domain-
specific NLP models in all other languages.

Simultaneously, exciting breakthroughs in cross-
lingual transfer for language understanding tasks
have been achieved (Artetxe and Schwenk, 2019;
Hu et al., 2020). However, it remains unclear
whether such transfer techniques can be used to
improve domain-specific NLP applications and mit-
igate the gap between knowledge-enhanced models
in resource-rich versus resource-poor languages. In
this paper, we thus investigate the current perfor-
mance gaps in the BEL task beyond English, and
propose several cross-lingual transfer techniques
to improve domain-specialised representations and
BEL in resource-lean languages.

In particular, we first present a novel cross-
lingual BEL (XL-BEL) task and its correspond-
ing evaluation benchmark in 10 typologically di-
verse languages, which aims to map biomedical
names/mentions in any language to the controlled
UMLS vocabulary. After empirically highlight-
ing the deficiencies of multilingual encoders (e.g,
MBERT and XLMR; Conneau et al. 2020) on XL-
BEL, we propose and evaluate a multilingual ex-
tension of the SAP technique. Our main results
suggest that expert knowledge can be transferred
from English to resource-leaner languages, yield-
ing huge gains over vanilla MBERT and XLMR,
and English-only SAPBERT. We also show that

1UMLS is a large-scale biomedical knowledge graph con-
taining more than 14M biomedical entity names.
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leveraging general-domain word and phrase trans-
lations offers substantial gains in the XL-BEL task.

Contributions. 1) We highlight the challenge of
learning (biomedical) domain-specialised cross-
lingual representations. 2) We propose a novel mul-
tilingual XL-BEL task with a comprehensive evalu-
ation benchmark in 10 languages. 3) We offer sys-
tematic evaluations of existing knowledge-agnostic
and knowledge-enhanced monolingual and multi-
lingual LMs in the XL-BEL task. 4) We present a
new SotA multilingual encoder in the biomedical
domain, which yields large gains in XL-BEL espe-
cially on resource-poor languages, and provides
strong benchmarking results to guide future work.
The code, data, and pretrained models are available
online at: github.com/cambridgeltl/sapbert.

2 Methodology

Background and Related Work. Learning
biomedical entity representations is at the core of
BioNLP, benefiting, e.g., relational knowledge dis-
covery (Wang et al., 2018) and literature search
(Lee et al., 2016). In the current era of contex-
tualised representations based on Transformer ar-
chitectures (Vaswani et al., 2017), biomedical text
encoders are pretrained via Masked Language Mod-
elling (MLM) on diverse biomedical texts such
as PubMed articles (Lee et al., 2020; Gu et al.,
2020), clinical notes (Peng et al., 2019; Alsentzer
et al., 2019), and even online health forum posts
(Basaldella et al., 2020). However, it has been
empirically verified that naively applying MLM-
pretrained models as entity encoders does not per-
form well in tasks such as biomedical entity link-
ing (Basaldella et al., 2020; Sung et al., 2020).
Recently, Liu et al. (2021) proposed SAP (Self-
Alignment Pretraning), a fine-tuning method that
leverages synonymy sets extracted from UMLS to
improve BERT’s ability to act as a biomedical entity
encoder. Their SAPBERT model currently achieves
SotA scores on all major English BEL benchmarks.

In what follows, we first outline the SAP proce-
dure, and then discuss the extension of the method
to include multilingual UMLS synonyms (§2.1),
and then introduce another SAP extension which
combines domain-specific synonyms with general-
domain translation data (§2.2).

2.1 Language-Agnostic SAP

Let (x, y) ∈ X ×Y denote the tuple of a name and
its categorical label. When learning from UMLS

synonyms, X × Y is the set of all (name, CUI2)
pairs, e.g., (vaccination, C0042196). While Liu
et al. (2021) use only English names, we here con-
sider names in other UMLS languages. During
training, the model is steered to create similar rep-
resentations for synonyms regardless of their lan-
guage.3 The learning scheme includes 1) an online
sampling procedure to select training examples and
2) a metric learning loss that encourages strings
sharing the same CUI to obtain similar representa-
tions.

Training Examples. Given a mini-batch of N
examples B = XB × YB = {(xi, yi)}Ni=1, we start
from constructing all possible triplets for all names
xi ∈ XB. Each triplet is in the form of (xa, xp, xn)
where xa is the anchor, an arbitrary name from XB;
xp is a positive match of xa (i.e., ya = yp) and xn
is a negative match of xa (i.e., ya 6= yn). Let f(·)
denote the encoder (i.e., MBERT or XLMR in this
paper). Among the constructed triplets, we select
all triplets that satisfy the following constraint:

‖f(xa)− f(xp)‖2 + λ ≥ ‖f(xa)− f(xn)‖2,

where λ is a predefined margin. In other words, we
only consider triplets with the positive sample fur-
ther to the negative sample by a margin of λ. These
‘hard’ triplets are more informative for represen-
tation learning (Liu et al., 2021). Every selected
triplet then contributes one positive pair (xa, xp)
and one negative pair (xa, xn). We collect all such
positives and negatives, and denote them as P,N .

Multi-Similarity Loss. We compute the pair-
wise cosine similarity of all the name representa-
tions and obtain a similarity matrix S ∈ R|XB|×|XB|
where each entry Sij is the cosine similarity be-
tween the i-th and j-th names in the mini-batch B.
The Multi-Similarity loss (MS, Wang et al. 2019),
is then used for learning from the triplets:

L =
1

|XB|

|XB|∑
i=1

(
1

α
log
(
1 +

∑
n∈Ni

eα(Sin−ε)
)

+
1

β
log
(
1 +

∑
p∈Pi

e−β(Sip−ε)
))

.

(1)

α, β are temperature scales; ε is an offset applied on
the similarity matrix; Pi,Ni are indices of positive
and negative samples of the i-th anchor.

2In UMLS, “CUI” means Concept Unique Identifier.
3For instance, vaccination (EN), active immunization (EN),

vacunación (ES) and予防接種 (JA) all share the same Con-
cept Unique Identifier (CUI; C0042196); thus, they should
all have similar representations.

github.com/cambridgeltl/sapbert
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#↓, language→ EN ES DE FI RU TR KO ZH JA TH

sentences - 223,506 350,193 77,736 206,060 29,473 47,702 136,054 157,670 19,066
unique titles (Wiki page) 60,598 37,935 24,059 15,182 21,044 5,251 10,618 17,972 11,002 4,541
mentions 1,067,083 204,253 431,781 105,182 221,383 29,958 60,979 197,317 220,452 31,177
unique mentions 121,669 25,169 44,390 26,184 28,302 4,110 9,032 24,825 21,949 5,064
unique mentionsmention!=title 69,199 22,162 43,753 19,409 23,935 2,833 3,740 12,046 12,571 2,480

Table 1: Construction of the XL-BEL benchmark; key statistics. See the App. §A.1 for further details.

2.2 SAP with General-Domain Bitext

We also convert word and phrase translations into
the same format (§2.1), where each ‘class’ now
contains only two examples. For a translation
pair (xp, xq), we create a unique pseudo-label
yxp,xq and produce two new name-label instances
(xp, yxp,xq) and (xq, yxp,xq),

4 and proceed as in
§2.1. This allows us to easily combine domain-
specific knowledge with general translation knowl-
edge within the same SAP framework.

3 The XL-BEL Task and Evaluation Data

A general cross-lingual entity linking (EL) task
(McNamee et al., 2011; Tsai and Roth, 2016) aims
to map a mention of an entity in free text of any lan-
guage to a controlled English vocabulary, typically
obtained from a knowledge graph (KG). In this
work, we propose XL-BEL, a cross-lingual biomed-
ical EL task. Instead of grounding entity mentions
to English-specific ontologies, we use UMLS as a
language-agnostic KG: the XL-BEL task requires
a model to associate a mention in any language
to a (language-agnostic) CUI in UMLS. XL-BEL

thus serves as an ideal evaluation benchmark for
biomedical entity representations: it challenges the
capability of both 1) representing domain entities
and also 2) associating entity names in different
languages.

Evaluation Data Creation. For English, we
take the available BEL dataset WikiMed (Vashishth
et al., 2020), which links Wikipedia mentions to
UMLS CUIs. We then follow similar procedures
as WikiMed and create an XL-BEL benchmark cov-
ering 10 languages (see Table 2). For each lan-
guage, we extract all sentences from its Wikipedia

4These pseudo-labels are not related to UMLS, but are used
to format our parallel translation data into the input convenient
for the SAP procedure. In practice, for these data we gener-
ate pseudo-labels ourselves as ‘LANGUAGE CODE+index’.
For instance, ENDE2344 indicates that this word pair is our
2,344th English-German word translation. Note that the ac-
tual coding scheme does not matter as it is only used for our
algorithm to determine what terms belong to the same (in this
case - translation) category.

dump, find all hyperlinked concepts (i.e., words
and phrases), lookup their Wikipedia pages, and
retain only concepts that are linked to UMLS.5 For
each UMLS-linked mention, we add a triplet (sen-
tence, mention, CUI) to our dataset.6 Only one
example per surface form is retained to ensure di-
versity. We then filter out examples with mentions
that have the same surface form as their Wikipedia
article page.7 Finally, 1k examples are randomly
selected for each language: they serve as the final
test sets in our XL-BEL benchmark. The statistics
of the benchmark are available in Table 1.

4 Experiments and Results

UMLS Data. We rely on the UMLS (2020AA)
as our SAP fine-tuning data, leveraging synonyms
in all available languages. The full multilingual
fine-tuning data comprises ≈15M biomedical en-
tity names associated with ≈4.2M individual CUIs.
As expected, English is dominant (69.6% of all
15M names), followed by Spanish (10.7%) and
French (2.2%). The full stats are in App. §A.3.

Translation Data. We use (a) “muse” word
translations (Lample et al., 2018), and (b) the par-
allel Wikipedia article titles (phrase-level transla-
tions; referred to as “wt”). We also list results when
using “muse” and “wt” combined (“wt+ muse”).

Training and Evaluation Details. Our SAP fine-
tuning largely follows Liu et al. (2021); we refer to
the original work and the Appendix for further tech-

5For instance, given a sentence from German Wikipedia
Die [Inkubationszeit] von COVID-19 beträgt durchschnit-
tlich fünf bis sechs Tage., we extract the hyperlinked word
Inkubationszeit as an UMLS-linked entity mention. Since
Wikipedia is inherently multilingual, if Inkubationszeit is
linked to UMLS, its cross-lingual counterparts, e.g., Incu-
bation period (EN), are all transitively linked to UMLS.

6Note that though each mention is accompanied with its
context, we regard it as out-of-context mention following the
tradition in prior work (Sung et al., 2020; Liu et al., 2021;
Tutubalina et al., 2020). According to Basaldella et al. (2020),
biomedical entity representations can be easily polluted by its
context. We leave contextual modelling for future work.

7Otherwise, the problem is easily solved by comparing
surface forms of the mention and the article title.
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language→ EN ES DE FI RU TR KO ZH JA TH avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

monolingual models

{$LANG}BERT - - 41.3 42.5 16.8 18.4 4.9 5.2 1.1 1.6 19.5 21.8 1.1 1.6 2.1 3.2 2.7 2.8 0.4 0.4 10.0 10.8
+ SAPall syn - - 60.9 66.8 35.5 40.0 18.8 23.9 36.4 42.4 44.9 49.7 13.5 16.0 18.5 23.8 21.2 25.9 0.6 0.6 27.8 32.1

SAPBERT 78.7 81.6 47.3 51.4 22.7 24.7 8.2 10.2 5.8 6.0 26.4 29.7 2.0 2.4 1.9 2.2 3.0 3.2 3.1 3.4 19.9 21.6
SAPBERTall syn 78.3 80.7 55.6 61.3 30.0 34.2 11.8 14.8 9.3 11.3 35.5 39.5 2.0 2.4 6.4 8.2 6.9 8.3 3.0 3.3 23.9 26.4

multilingual models

MBERT 0.8 1.7 0.5 0.7 0.3 0.4 0.4 0.8 0.0 0.0 0.7 1.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 0.5
+ SAPen syn 75.5 79.9 50.6 55.8 26.0 29.6 8.7 10.7 10.1 12.6 31.0 34.4 2.7 3.2 4.1 5.7 4.7 5.9 3.1 3.5 21.7 24.1
+ SAPall syn 75.0 79.7 61.4 67.0 33.4 37.8 18.4 21.9 35.1 40.3 44.5 47.7 15.1 17.6 19.5 22.7 19.9 25.0 2.8 3.4 32.5 36.3

XLMR 1.0 2.0 0.3 0.7 0.0 0.1 0.1 0.2 0.1 0.2 0.4 0.5 0.0 0.3 0.1 0.2 0.2 0.4 0.0 0.1 0.2 0.5
+ SAPen syn 78.1 80.9 47.9 53.5 27.6 32.0 12.2 14.7 21.8 25.9 29.3 35.9 4.5 6.7 7.9 11.3 8.3 11.3 11.5 16.2 24.9 28.8
+ SAPall syn 78.2 81.0 56.4 62.7 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9 16.7 21.4 18.8 23.0 24.0 28.1 20.6 27.5 34.3 39.3

Table 2: Various base models combined with SAP, using either all synonyms (all syn) or only English synonyms
(en syn) in UMLS. {$LANG} denotes the language of the corresponding column (also in Table 4). See Table 6
(App. §A.3) for the language codes. avg refers to the average performance across all target languages. Grey and

light blue rows are off-the-shelf base models and models fine-tuned with the UMLS knowledge, respectively.

language→ ES DE FI RU TR KO ZH JA TH avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

XLMR + SAPen syn 47.9 53.5 27.6 32.0 12.2 14.7 21.8 25.9 29.3 35.9 4.5 6.7 7.9 11.3 8.3 11.3 11.5 16.2 19.0 23.1
+ en-{$LANG} wt 55.0 62.2 34.6 41.4 18.6 24.4 35.0 41.5 43.3 50.6 15.9 22.3 15.9 23.0 18.7 24.4 25.1 32.4 29.1 35.8
+ en-{$LANG} muse 54.4 61.0 28.7 34.4 16.7 20.6 33.6 39.0 41.9 48.8 11.9 16.3 12.3 16.7 15.7 19.9 18.6 25.1 26.0 31.3
+ en-{$LANG} wt+muse 49.4 59.6 30.3 36.9 20.4 28.9 33.2 41.9 42.7 51.7 16.1 22.3 16.0 22.9 17.8 24.3 26.2 34.0 28.0 35.8

XLMR + SAPall syn 56.4 62.7 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9 16.7 21.4 18.8 23.0 24.0 28.1 20.6 27.5 29.5 34.7
+ en-{$LANG} wt 57.2 63.7 35.1 42.3 20.3 27.6 35.8 43.8 48.8 55.0 22.1 27.9 20.6 27.3 24.8 31.3 30.0 37.6 32.7 39.6
+ en-{$LANG} muse 57.9 63.9 33.0 38.4 23.0 27.3 39.8 45.9 47.2 54.5 22.1 25.7 19.2 25.6 25.2 30.2 25.9 32.8 32.6 38.3
+ en-{$LANG} wt+ muse 51.4 61.2 31.3 38.9 22.8 28.4 36.4 45.2 42.2 51.6 24.4 29.2 21.1 28.2 23.2 30.4 30.9 37.9 31.5 39.0

MBERT + SAPall syn 61.4 67.0 33.4 37.8 18.4 21.9 35.1 40.3 44.5 47.7 15.1 17.6 19.5 22.7 19.9 25.0 2.8 3.4 27.8 31.5
+ en-{$LANG} wt 59.2 66.9 37.5 43.9 25.6 33.0 39.6 47.2 52.7 59.7 19.8 24.3 24.1 31.9 23.5 28.7 4.8 5.9 31.9 37.9
+ en-{$LANG} muse 59.9 66.2 34.3 38.8 21.6 27.5 36.5 41.7 51.0 56.7 18.1 21.2 22.2 26.4 22.0 25.5 3.4 3.8 29.2 34.2
+ en-{$LANG} wt+ muse 59.2 67.5 35.3 42.4 30.5 37.3 41.6 49.2 57.2 64.7 19.8 25.0 24.6 32.1 24.3 28.0 5.2 6.3 33.1 39.2

Table 3: Results when applying SAP with 1) UMLS knowledge + 2) word and/or phrase translations .

nical details. The evaluation measure is standard
Precision@1 and Precision@5. In all experiments,
SAP always denotes fine-tuning of a base LM with
UMLS data. [CLS] of the last layer’s output is
used as the final representation (Liu et al., 2021).
Without explicit mentioning, we use the BASE vari-
ants of all monolingual and multilingual LMs. At
inference, given a query representation, a nearest
neighbour search is used to rank all candidates’
representations. We restrict the target ontology to
only include CUIs that appear in WikiMed (62,531
CUIs, 399,931 entity names).

4.1 Main Results and Discussion
Multilingual UMLS Knowledge Always Helps
(Table 2). Table 2 summarises the results of
applying multilingual SAP fine-tuning based on
UMLS knowledge on a wide variety of mono-
lingual, multilingual, and in-domain pretrained
encoders. Injecting UMLS knowledge is con-
sistently beneficial to the models’ performance
on XL-BEL across all languages and across all
base encoders. Using multilingual UMLS syn-

onyms to SAP-fine-tune the biomedical PUBMED-
BERT (SAPBERTall syn) instead of English-only
synonyms (SAPBERT) improves its performance
across the board. SAP-ing monolingual BERTs for
each language also yields substantial gains across
all languages; the only exception is Thai (TH),
which is not represented in UMLS. Fine-tuning
multilingual models MBERT and XLMR leads to
even larger relative gains.

Performance across Languages (Table 2).
UMLS data is heavily biased towards Romance
and Germanic languages. As a result, for
languages more similar to these families, mono-
lingual LMs (upper half, Table 2) are on par
or outperform multilingual LMs (lower half,
Table 2). However, for other (distant) languages
(e.g., KO, ZH, JA, TH), the opposite holds. For
instance, on TH, XLMR+SAPall syn outperforms
THBERT+SAPall syn by 20% Precision@1.

General Translation Knowledge is Useful (Ta-
ble 3). Table 3 summarises the results where we
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language→ ES DE RU KO avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

MBERT
+ SAPen syn 50.6 55.8 26.0 29.6 10.1 12.6 2.7 3.2 22.4 25.3
+ SAP{$LANG} syn 57.1 62.8 28.9 33.6 25.8 31.7 2.1 2.6 28.5 32.7
+ SAPen+{$LANG} syn 61.1 68.5 35.2 39.8 35.6 40.9 14.4 16.3 36.6 41.4
+ SAPall syn 61.4 67.0 33.4 37.8 35.1 40.3 15.1 17.6 36.6 40.7

XLMR
+ SAPen syn 47.9 53.5 27.6 32.0 21.8 25.9 4.5 6.7 25.5 29.5
+ SAP{$LANG} syn 52.9 55.8 25.9 30.4 28.7 34.2 2.4 2.9 24.5 30.8
+ SAPen+{$LANG} syn 55.8 62.5 27.7 32.3 36.4 42.2 15.8 19.8 33.9 39.2
+ SAPall syn 56.4 62.7 31.8 37.3 35.4 41.2 16.7 21.4 35.1 40.7

Table 4: Varying UMLS synonymy sets.

continue training on general translation data (§2.2)
after the previous UMLS-based SAP. With this vari-
ant, base multilingual LMs become powerful multi-
lingual biomedical experts. We observe additional
strong gains (cf., Table 2) with out-of-domain trans-
lation data: e.g., for MBERT the gains range from
2.4% to 12.7% on all languages except ES. For
XLMR, we report Precision@1 boosts of>10% on
RU, TR, KO, TH with XLMR+SAPen syn, and simi-
lar but smaller gains also with XLMR+SAPall syn.

We stress the case of TH, not covered in UMLS.
Precision@1 rises from 11.5% (XLMR+SAPen syn)
to 30.9%↑19.4% (XLMR+SAPall syn(+en-th wt+
muse)), achieved through the synergistic effect of
both knowledge types: 1) UMLS synonyms in
other languages push the scores to 20.6%↑9.1%;
2) translation knowledge increases it further to
30.9%↑10.3%. In general, these results suggest that
both external in-domain knowledge and general-
domain translations boost the performance in
resource-poor languages.

The More the Better (Table 4)? According
to Table 4 (lower half), it holds almost uni-
versally that all syn > en+{$LANG} syn >
en syn/{$LANG} syn on XLMR, that is, it seems
that more in-domain knowledge (even in non-
related languages) benefit cross-lingual transfer.
However, for MBERT (Table 4, upper half), the
trend is less clear, with en+{$LANG} syn some-
times outperforming the all syn variant. Despite
modest performance differences, this suggests that
the choice of source languages for knowledge trans-
fer also plays a role; this warrants further investiga-
tions in future work.

Are Large Models (Cross-Lingual) Domain Ex-
perts (Table 5)? We also investigate the LARGE

variant of XLMR, and compare it to its BASE

variant. On English, XLMRLARGE gets 73.0%
Precision@1, being in the same range as SAPBERT

data split→ EN avg

model↓ @1 @5 @1 @5

XLMR 1.0 2.0 0.2 0.5
+ SAPall syn 78.2 81.0 34.3 39.3

XLMRLARGE 73.0 75.0 12.3 13.3
+ SAPall syn 78.3 81.3 39.0 44.2

Table 5: Comparing BASE and LARGE models on XL-
BEL. Both EN results and avg across all languages are
reported. Full table available in Appendix Table 9.

(78.7%), without SAP-tuning (Table 5). The scores
without SAP fine-tuning on XLMRLARGE, although
much higher than of its BASE variant, decrease
on other (‘non-English’) languages. At the same
time, note that XLMR BASE achieves random-
level performance without SAP-tuning. After SAP

fine-tuning, on average, XLMRLARGE+SAP still
outperforms BASE models, but the gap is much
smaller: e.g., we note that the performance of the
two SAP-ed models is on par in English. This
suggests that with sufficient knowledge injection,
the underlying base model is less important (En-
glish); however, when the external data are scarce
(other languages beyond English), a heavily param-
eterised large pretrained encoder can boost knowl-
edge transfer to resource-poor languages.

5 Conclusion

We have introduced a novel cross-lingual biomed-
ical entity task (XL-BEL), establishing a wide-
coverage and reliable evaluation benchmark for
cross-lingual entity representations in the biomed-
ical domain in 10 languages, and have evaluated
current SotA biomedical entity representations on
XL-BEL. We have also presented an effective trans-
fer learning scheme that leverages general-domain
translations to improve the cross-lingual ability
of domain-specialised representation models. We
hope that our work will inspire more research on
multilingual and domain-specialised representation
learning in the future.
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A Appendix A

A.1 XL-BEL: Full Statistics
Table 1 in the main paper summarises the key
statistics of the XL-BEL benchmark. It was ex-
tracted from the 20200601 version of Wikipedia
dump. “sentences” refers to the number of sen-
tences that contain biomedical mentions in the Wiki
dump. “unique titles (Wiki page)” denotes the num-
ber of unique Wikipedia articles the biomedical
mentions link to. “mentions” denotes the num-
ber of all biomedical mentions in the Wikipedia
dump. “unique mentions” refers to the number
of mentions after filtering out examples contain-
ing duplicated mention surface forms. “unique
mentionsmention!=title” denotes the number of unique
mentions that have surface forms different from the
Wikipedia articles they link to. The 1k test sets for
each language are then randomly selected from the
examples in “unique mentionsmention!=title”.

A.2 XL-BEL: Selection of Languages
Our goal is to select a diverse and representative
sample of languages for the resource and evalua-
tion from the full set of possibly supported lan-
guages. For this reason, we exclude some Ro-
mance and Germanic languages which were too
similar to some languages already included in the
resource (e.g., since we include Spanish as a rep-
resentative of the Romance language, evaluating
on related languages such as Portuguese or Italian
would not yield additional and new insights, while
it would just imply running additional experiments).
The language list covers languages that are close
to English (Spanish, German); languages that are
very distant from English (Thai, Chinese, etc.); and
also languages that are in the middle (e.g., Turk-
ish, which is typologically different, but shares a
similar writing script with English).

The availability of biomedical texts in Wikipedia
also slightly impacted our choice of languages. The
overlapping entities of Wikipedia and UMLS are
not evenly distributed in the biomedical domain.
For example, since animal species are compre-
hensively encoded in UMLS, they become rather
dominant for certain low-resource languages. We
manually inspected the distribution of the covered
entities in each language to ensure that they are
indeed representative biomedical concepts. Lan-
guages with heavily skewed entity distributions are
filtered out. E.g., biomedical concepts in Basque
Wikipedia are heavily skewed towards plant and an-

imal species (which are valid UMLS concepts but
not representative enough). As a result, we dropped
Basque as our evaluation language. The current 10
languages all have a reasonably fair distribution
over biomedical concepts categories.

A.3 UMLS Data Preparation

All our UMLS fine-tuning data for SAP is extracted
from the MRCONSO.RRF file downloaded at
https://www.nlm.nih.gov/research/umls/

licensedcontent/umlsarchives04.html#

2020AA. The extracted data includes 147,706,62
synonyms distributed in more than 20 languages.
The detailed statistics are available in Table 6.

code language # synonyms percentage

EN English 10,277,246 69.6%
ES Spanish 1,575,109 10.7%
JA Japanese 329,333 2.2%
RU Russian 291,554 2.0%
DE German 231,098 1.6%
KO Korean 145,865 1.0%
ZH Chinese 80,602 0.5%
TR Turkish 51,328 0.3%
FI Finnish 24,767 0.2%
TH Thai 0 0.0%
FR French 428,406 2.9%
PT Portuguese 309,448 2.1%
NL Dutch 290,415 2.0%
IT Italian 242,133 1.3%
CS Czech 196,760 0.7%
NO Norwegian 63,075 0.4%
PL Polish 51,778 0.4%
ET Estonian 31,107 0.2%
SV Swedish 29,716 0.2%
HR Croatian 10,035 0.1%
EL Greek 2,281 <0.1%
LV Latvian 1,405 <0.1%

Total 147,706,62 100%

Table 6: The amount of UMLS synonyms per language.
The first 10 languages are included in our XL-BEL test
languages. However, note that Thai has no UMLS data.

A.4 Translation Data

The full statistics of the used word and phrase
translation data are listed in Table 7. The “muse”
word translations are downloaded from https://

github.com/facebookresearch/MUSE while the
Wikititle pairs (“wt”) are extracted by us, and are
made publicly available.

A.5 Pretrained Encoders

A complete listing of URLs for all used pretrained
encoders hosted on huggingface.co is provided in
Table 8. For monolingual models of each language,

https://www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html#2020AA
https://www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html#2020AA
https://www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html#2020AA
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
huggingface.co
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#↓, language→ EN-ES EN-DE EN-FI EN-RU EN-TR EN-KO EN-ZH EN-JA EN-TH

muse 112,583 101,931 43,102 48,714 68,611 20,549 39,334 25,969 25,332
wt 1,079,547 1,241,104 338,284 886,760 260,392 319,492 638,900 547,923 107,398

Table 7: Statistics of muse word translations (“muse”) and Wikipedia title pairs (“wt”).

we made the best effort to select the most popular
one (based on download counts).

A.6 Full Table for Comparing with LARGE
Models

Table 9 list results across all languages for compar-
ing BASE and LARGE models.

A.7 Future Work

Investigating Other Cross-Lingual Transfer
Learning Schemes. We also explored adapting
multilingual sentence representation transfer tech-
niques like Reimers and Gurevych (2020) that
leverage parallel data. However, we observed
no improvement comparing to the main transfer
scheme reported in the paper. We plan to inves-
tigate existing techniques more comprehensively,
and benchmark more results on XL-BEL in the fu-
ture.
Comparison with in-Domain Parallel Data.
While we used general-domain bitexts to cover
more resource-poor languages, we are aware that
in-domain bitexts exist among several “mainstream”
languages (EN, ZH, ES, PT, FR, DE, Bawden et al.
2019).8 In the future, we plan to also compare
with biomedical term/sentence translations on these
languages to gain more insights on the impact of
domain-shift.

A.8 Number of Model Parameters

All BASE models have ≈110M parameters while
LARGE models have ≈340M parameters.

A.9 Hyperparameter Optimisation

Table 10 lists the hyperparameter search space.
Note that the chosen hyperparameters yield the
overall best performance, but might be suboptimal
in any single setting. We used the same random
seed across all experiments.

A.10 Software and Hardware Dependencies

All our experiments are implemented using Py-
Torch 1.7.0 with Automatic Mixed Precision

8http://www.statmt.org/wmt19/
biomedical-translation-task.html

(AMP)9 turned on. The hardware we use is listed
in Table 11. On this machine, the SAP fine-tuning
procedure generally takes 5-10 hours with UMLS
data. SAP fine-tuning with translation data takes
10 minutes to 5 hours, depending on the amount of
the data. Inference generally takes <10 minutes.

9https://pytorch.org/docs/stable/amp.
html

http://www.statmt.org/wmt19/biomedical-translation-task.html
http://www.statmt.org/wmt19/biomedical-translation-task.html
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/amp.html
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model URL

monolingual models

SAPBERT https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
ESBERT https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
DEBERT https://huggingface.co/dbmdz/bert-base-german-uncased
FIBERT https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
RUBERT https://huggingface.co/DeepPavlov/rubert-base-cased
TRBERT https://huggingface.co/loodos/bert-base-turkish-uncased
KRBERT https://huggingface.co/snunlp/KR-BERT-char16424
ZHBERT https://huggingface.co/bert-base-chinese
JABERT https://huggingface.co/cl-tohoku/bert-base-japanese
THBERT https://huggingface.co/monsoon-nlp/bert-base-thai

cross-lingual models

MBERT https://huggingface.co/bert-base-multilingual-uncased
XLMR https://huggingface.co/xlm-roberta-base
XLMRLARGE https://huggingface.co/xlm-roberta-large
XLMRLARGE-XNLI https://huggingface.co/joeddav/xlm-roberta-large-xnli
XLMRLARGE-SQUAD2 https://huggingface.co/deepset/xlm-roberta-large-squad2

Table 8: A listing of HuggingFace URLs of all pretrained models used in this work.

language→ EN ES DE FI RU TR KO ZH JA TH avg

model↓ @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

SAPBERT 78.7 81.6 47.3 51.4 22.7 24.7 8.2 10.2 5.8 6.0 26.4 29.7 2.0 2.4 1.9 2.2 3.0 3.2 3.1 3.4 19.9 21.6
SAPBERTall syn 78.3 80.7 55.6 61.3 30.0 34.2 11.8 14.8 9.3 11.3 35.5 39.5 2.0 2.4 6.4 8.2 6.9 8.3 3.0 3.3 23.9 26.4
XLMR 1.0 2.0 0.3 0.7 0.0 0.1 0.1 0.2 0.1 0.2 0.4 0.5 0.0 0.3 0.1 0.2 0.2 0.4 0.0 0.1 0.2 0.5
XLMR + SAPall syn 78.2 81.0 56.4 62.7 31.8 37.3 18.6 22.2 35.4 41.2 42.8 48.9 16.7 21.4 18.8 23.0 24.0 28.1 20.6 27.5 34.3 39.3

XLMRLARGE 73.0 75.0 20.7 24.6 7.8 9.1 1.9 2.7 3.0 3.3 11.8 13.5 1.2 1.2 0.7 0.9 1.6 1.8 0.9 1.2 12.3 13.3
XLMRLARGE-XNLI 72.6 75.1 30.1 33.5 10.7 12.2 3.4 4.6 5.9 7.4 16.4 18.4 1.9 2.6 1.3 2.0 2.0 2.5 1.3 2.0 14.6 16.0
XLMRLARGE-SQUAD2 74.6 76.2 31.4 35.3 11.9 13.2 3.5 4.4 5.2 6.5 16.9 19.2 1.4 1.5 0.6 0.9 1.8 2.1 2.0 2.3 14.9 16.2
XLMRLARGE + SAPall syn 78.3 81.3 61.0 66.8 35.0 40.0 25.2 29.2 41.9 47.3 46.1 52.4 22.2 26.7 23.5 29.0 28.5 33.6 28.7 35.5 39.0 44.2

Table 9: A comparison of BASE (upper half) and LARGE (lower half) multilingual encoders on XL-BEL.

hyperparameters search space

pretraining learning rate 2e-5
pretraining batch size 512
pretraining training epochs 1
bitext fine-tuning learning rate 2e-5
bitext fine-tuning batch size {64, 128, 256∗}
bitext fine-tuning epochs {1, 2, 3, 4, 5∗, 10}
max seq length of tokeniser 25
λ in Online Mining 0.2
α in MS loss (Eq. (1)) 2
β in MS loss (Eq. (1)) 50
ε in MS loss (Eq. (1)) 1

Table 10: Hyperparameters along with their search
grid. ∗ marks the values used to obtain the reported
results. The hparams without any defied search grid
are adopted directly from Liu et al. (2021).

hardware specification

RAM 192 GB
CPU Intel Xeon W-2255 @3.70GHz, 10-core 20-threads
GPU NVIDIA GeForce RTX 2080 Ti (11 GB) × 4

Table 11: Hardware specifications of the used machine.
For LARGE model training, we use another server with
two NVIDIA GeForce RTX 3090 (24 GB).

https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
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https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
https://huggingface.co/DeepPavlov/rubert-base-cased
https://huggingface.co/loodos/bert-base-turkish-uncased
https://huggingface.co/snunlp/KR-BERT-char16424
https://huggingface.co/bert-base-chinese
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