@inproceedings{wang-etal-2021-stage,
title = "Stage-wise Fine-tuning for Graph-to-Text Generation",
author = "Wang, Qingyun and
Yavuz, Semih and
Lin, Xi Victoria and
Ji, Heng and
Rajani, Nazneen",
editor = "Kabbara, Jad and
Lin, Haitao and
Paullada, Amandalynne and
Vamvas, Jannis",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-srw.2/",
doi = "10.18653/v1/2021.acl-srw.2",
pages = "16--22",
abstract = "Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders. However, they fail to fully utilize the structure information of the input graph. In this paper, we aim to further improve the performance of the pre-trained language model by proposing a structured graph-to-text model with a two-step fine-tuning mechanism which first fine-tunes model on Wikipedia before adapting to the graph-to-text generation. In addition to using the traditional token and position embeddings to encode the knowledge graph (KG), we propose a novel tree-level embedding method to capture the inter-dependency structures of the input graph. This new approach has significantly improved the performance of all text generation metrics for the English WebNLG 2017 dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2021-stage">
<titleInfo>
<title>Stage-wise Fine-tuning for Graph-to-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qingyun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Semih</namePart>
<namePart type="family">Yavuz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="given">Victoria</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nazneen</namePart>
<namePart type="family">Rajani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jad</namePart>
<namePart type="family">Kabbara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haitao</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amandalynne</namePart>
<namePart type="family">Paullada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jannis</namePart>
<namePart type="family">Vamvas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders. However, they fail to fully utilize the structure information of the input graph. In this paper, we aim to further improve the performance of the pre-trained language model by proposing a structured graph-to-text model with a two-step fine-tuning mechanism which first fine-tunes model on Wikipedia before adapting to the graph-to-text generation. In addition to using the traditional token and position embeddings to encode the knowledge graph (KG), we propose a novel tree-level embedding method to capture the inter-dependency structures of the input graph. This new approach has significantly improved the performance of all text generation metrics for the English WebNLG 2017 dataset.</abstract>
<identifier type="citekey">wang-etal-2021-stage</identifier>
<identifier type="doi">10.18653/v1/2021.acl-srw.2</identifier>
<location>
<url>https://aclanthology.org/2021.acl-srw.2/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>16</start>
<end>22</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stage-wise Fine-tuning for Graph-to-Text Generation
%A Wang, Qingyun
%A Yavuz, Semih
%A Lin, Xi Victoria
%A Ji, Heng
%A Rajani, Nazneen
%Y Kabbara, Jad
%Y Lin, Haitao
%Y Paullada, Amandalynne
%Y Vamvas, Jannis
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F wang-etal-2021-stage
%X Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders. However, they fail to fully utilize the structure information of the input graph. In this paper, we aim to further improve the performance of the pre-trained language model by proposing a structured graph-to-text model with a two-step fine-tuning mechanism which first fine-tunes model on Wikipedia before adapting to the graph-to-text generation. In addition to using the traditional token and position embeddings to encode the knowledge graph (KG), we propose a novel tree-level embedding method to capture the inter-dependency structures of the input graph. This new approach has significantly improved the performance of all text generation metrics for the English WebNLG 2017 dataset.
%R 10.18653/v1/2021.acl-srw.2
%U https://aclanthology.org/2021.acl-srw.2/
%U https://doi.org/10.18653/v1/2021.acl-srw.2
%P 16-22
Markdown (Informal)
[Stage-wise Fine-tuning for Graph-to-Text Generation](https://aclanthology.org/2021.acl-srw.2/) (Wang et al., ACL-IJCNLP 2021)
ACL
- Qingyun Wang, Semih Yavuz, Xi Victoria Lin, Heng Ji, and Nazneen Rajani. 2021. Stage-wise Fine-tuning for Graph-to-Text Generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop, pages 16–22, Online. Association for Computational Linguistics.