@inproceedings{alshomary-etal-2021-key,
title = "Key Point Analysis via Contrastive Learning and Extractive Argument Summarization",
author = {Alshomary, Milad and
Gurcke, Timon and
Syed, Shahbaz and
Heinisch, Philipp and
Splieth{\"o}ver, Maximilian and
Cimiano, Philipp and
Potthast, Martin and
Wachsmuth, Henning},
editor = "Al-Khatib, Khalid and
Hou, Yufang and
Stede, Manfred",
booktitle = "Proceedings of the 8th Workshop on Argument Mining",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.argmining-1.19/",
doi = "10.18653/v1/2021.argmining-1.19",
pages = "184--189",
abstract = "Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis Shared Task, colocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alshomary-etal-2021-key">
<titleInfo>
<title>Key Point Analysis via Contrastive Learning and Extractive Argument Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milad</namePart>
<namePart type="family">Alshomary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timon</namePart>
<namePart type="family">Gurcke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahbaz</namePart>
<namePart type="family">Syed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Heinisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Spliethöver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Potthast</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Henning</namePart>
<namePart type="family">Wachsmuth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Al-Khatib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufang</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis Shared Task, colocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.</abstract>
<identifier type="citekey">alshomary-etal-2021-key</identifier>
<identifier type="doi">10.18653/v1/2021.argmining-1.19</identifier>
<location>
<url>https://aclanthology.org/2021.argmining-1.19/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>184</start>
<end>189</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Key Point Analysis via Contrastive Learning and Extractive Argument Summarization
%A Alshomary, Milad
%A Gurcke, Timon
%A Syed, Shahbaz
%A Heinisch, Philipp
%A Spliethöver, Maximilian
%A Cimiano, Philipp
%A Potthast, Martin
%A Wachsmuth, Henning
%Y Al-Khatib, Khalid
%Y Hou, Yufang
%Y Stede, Manfred
%S Proceedings of the 8th Workshop on Argument Mining
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F alshomary-etal-2021-key
%X Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis Shared Task, colocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.
%R 10.18653/v1/2021.argmining-1.19
%U https://aclanthology.org/2021.argmining-1.19/
%U https://doi.org/10.18653/v1/2021.argmining-1.19
%P 184-189
Markdown (Informal)
[Key Point Analysis via Contrastive Learning and Extractive Argument Summarization](https://aclanthology.org/2021.argmining-1.19/) (Alshomary et al., ArgMining 2021)
ACL
- Milad Alshomary, Timon Gurcke, Shahbaz Syed, Philipp Heinisch, Maximilian Spliethöver, Philipp Cimiano, Martin Potthast, and Henning Wachsmuth. 2021. Key Point Analysis via Contrastive Learning and Extractive Argument Summarization. In Proceedings of the 8th Workshop on Argument Mining, pages 184–189, Punta Cana, Dominican Republic. Association for Computational Linguistics.