@inproceedings{ryskina-knight-2021-learning,
title = "Learning Mathematical Properties of Integers",
author = "Ryskina, Maria and
Knight, Kevin",
editor = "Bastings, Jasmijn and
Belinkov, Yonatan and
Dupoux, Emmanuel and
Giulianelli, Mario and
Hupkes, Dieuwke and
Pinter, Yuval and
Sajjad, Hassan",
booktitle = "Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.blackboxnlp-1.30",
doi = "10.18653/v1/2021.blackboxnlp-1.30",
pages = "389--395",
abstract = "Embedding words in high-dimensional vector spaces has proven valuable in many natural language applications. In this work, we investigate whether similarly-trained embeddings of integers can capture concepts that are useful for mathematical applications. We probe the integer embeddings for mathematical knowledge, apply them to a set of numerical reasoning tasks, and show that by learning the representations from mathematical sequence data, we can substantially improve over number embeddings learned from English text corpora.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ryskina-knight-2021-learning">
<titleInfo>
<title>Learning Mathematical Properties of Integers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Ryskina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jasmijn</namePart>
<namePart type="family">Bastings</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Dupoux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Pinter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Embedding words in high-dimensional vector spaces has proven valuable in many natural language applications. In this work, we investigate whether similarly-trained embeddings of integers can capture concepts that are useful for mathematical applications. We probe the integer embeddings for mathematical knowledge, apply them to a set of numerical reasoning tasks, and show that by learning the representations from mathematical sequence data, we can substantially improve over number embeddings learned from English text corpora.</abstract>
<identifier type="citekey">ryskina-knight-2021-learning</identifier>
<identifier type="doi">10.18653/v1/2021.blackboxnlp-1.30</identifier>
<location>
<url>https://aclanthology.org/2021.blackboxnlp-1.30</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>389</start>
<end>395</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Mathematical Properties of Integers
%A Ryskina, Maria
%A Knight, Kevin
%Y Bastings, Jasmijn
%Y Belinkov, Yonatan
%Y Dupoux, Emmanuel
%Y Giulianelli, Mario
%Y Hupkes, Dieuwke
%Y Pinter, Yuval
%Y Sajjad, Hassan
%S Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F ryskina-knight-2021-learning
%X Embedding words in high-dimensional vector spaces has proven valuable in many natural language applications. In this work, we investigate whether similarly-trained embeddings of integers can capture concepts that are useful for mathematical applications. We probe the integer embeddings for mathematical knowledge, apply them to a set of numerical reasoning tasks, and show that by learning the representations from mathematical sequence data, we can substantially improve over number embeddings learned from English text corpora.
%R 10.18653/v1/2021.blackboxnlp-1.30
%U https://aclanthology.org/2021.blackboxnlp-1.30
%U https://doi.org/10.18653/v1/2021.blackboxnlp-1.30
%P 389-395
Markdown (Informal)
[Learning Mathematical Properties of Integers](https://aclanthology.org/2021.blackboxnlp-1.30) (Ryskina & Knight, BlackboxNLP 2021)
ACL
- Maria Ryskina and Kevin Knight. 2021. Learning Mathematical Properties of Integers. In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 389–395, Punta Cana, Dominican Republic. Association for Computational Linguistics.