
Figure 3: Model performance on multiple sequence lengths for all tasks

475

not change either. Also note that for the most diffi-
cult tasks (T5-T7), model T-Pos+Att is consistently
better in longer sequences. Thus, the “getting in
the way” effect observed above holds for the three
tasks.

5.2 LSTM

In general, the performance of LSTM models on
our tasks is markedly worse than that of the Trans-
former, and they are impacted by sequence length
to a much larger extent (see Figure 3). This could
be expected given general results on the two ar-
chitectures (Transformers outperform LSTMs in
most computational linguistics tasks, and LSTMs
have been shown to have issues with long-distance
dependencies). There are two notable exceptions
to these general trends.

First, the accuracy of the LSTM with attention
in Task 1 shows a characteristic V-shape, dropping
at first and recovering for longer sequences (cf.
orange solid line in Figure 3).3 The result is that its
performance is on par with that of the Transformer
models in sequences of length 5 and 30.

We find that the LSTM changes its behaviour,
from a simple recurrent LSTM to an actual
attention-based LSTM. Indeed, for short sequences,
it does not use decoder attention to identify the
target feature (and still performs optimally): for
instance, for sequence length 5, the attention is dis-
tributed uniformly, with attention values of around
0.2 on all the input tokens. Instead, for long se-
quences it does use the attention mechanism: the
attention values spike on the position of the input
that contains the queried feature (e.g., with an aver-
age of 0.85 for sequence length 30). This ability to
switch behaviours could theoretically help also for
other tasks, but it seems that the complexity of the
tasks prevents the model from doing so.

Second, the LSTM with attention surpasses all
Transformer variants for short sequences in Tasks 2
and 4. Recall that the Transformer models reached
a degenerate solution for these tasks (with a maxi-
mum accuracy of 87.5%), in which only one of the
two relevant features was attended to; instead, the
LSTM solves the task correctly, because the infor-
mation about the previous tokens flows through the
recurrent steps in the token representations.

As for the differences between the two model
variants of the LSTM, the model enhanced with

3Instead, the basic LSTM model degrades quickly and
monotonically with sequence length; see dashed orange line.

the decoder attention is consistently better than
the classic, basic model. This suggests that the
decoder attention mechanism (also present in all the
Transformer models) is beneficial independently of
the base architecture.

6 Conclusion

Our tasks shed light on how the main model com-
ponents act and interact regarding the retrieval of
discrete information from sequences, uncovering
behaviours that would be difficult to detect when
the architectures are applied to complex NLP tasks.

A take-home message from our experiments is
that the presence of a component in an architecture
does not imply that the model will learn to use it
as expected in a task. In particular, we found that
only the need to track ordered information led the
architecture to use self-attention in the predicted
way, and that decoder attention can be difficult for
LSTMs to use correctly.

On the other hand, the components can assume
unexpected functions. Self-attention in transform-
ers can simply serve to blindly propagate informa-
tion across time, leading to more robust represen-
tations of features contained in earlier tokens, that
are copied over and over. Also, surprisingly, posi-
tional embeddings provide a small but consistent
benefit in tasks that do not require order tracking.
This suggests that they might have a serendipitous
function, possibly adding helpful noise to the rep-
resentations. Moreover, as both self-attention and
positional embeddings can learn to keep track of
order, the two mechanisms get in the way of each
other, making it harder, when combined, for the
Transformer models to converge on a single strat-
egy to track order.

Regarding LSTM, the sequence length is a very
big factor. The model has a steep loss in perfor-
mance when the sequence gets longer. On the
simplest task, the model enhanced with decoder
attention develops the ability to switch between
strategies, but this doesn’t generalize to longer se-
quences.

To conclude, we hope to have shown that the pro-
posed tasks constitute a useful probing mechanism
for the ability of models to detect discrete infor-
mation in sequences, testing in particular four key
abilities: incremental processing (in the sense that
the query is not known at input processing time),
indirect mappings, context-dependence and order
tracking. We have shown that most of the tasks are

476

difficult for models even for short sequences; and
they can be easily extended to more dimensions
and even longer sequences.

Future work should go in two different direc-
tions: 1) examining how behavior changes when
the probed models are scaled by increasing the
number of layers and attention heads, and 2) mod-
ify the models to solve some of the problems that
we encounter in the current experiments. We hope
that the community will take up the analysis pos-
sibilities that our tasks afford, and that a clearer
understanding of model behavior on the tasks will
lead to better and more transparent models.

Acknowledgments

We gratefully acknowledge Laura Aina, Thomas
Brochhagen and Sebastian Riedel for the feedback,
advice and support. We are also grateful to the
anonymous reviewers for their valuable comments.
This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 715154). We are also
grateful to the NVIDIA Corporation for the dona-
tion of GPUs used for this research. This paper
reflects the authors’ view only, and the EU is not
responsible for any use that may be made of the
information it contains.

References
Samira Abnar and Willem Zuidema. 2020. Quantify-

ing attention flow in transformers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4190–4197, On-
line. Association for Computational Linguistics.

Afra Alishahi, Grzegorz Chrupała, and Tal Linzen.
2019. Analyzing and interpreting neural networks
for nlp: A report on the first blackboxnlp workshop.
Natural Language Engineering, 25(4):543–557.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Grzegorz Chrupała and Afra Alishahi. 2019. Corre-
lating neural and symbolic representations of lan-
guage. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2952–2962, Florence, Italy. Association
for Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2020. Compositionality decomposed:
how do neural networks generalise? Journal of Arti-
ficial Intelligence Research, 67:757–795.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907–926.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/P19-1283
https://doi.org/10.18653/v1/P19-1283
https://doi.org/10.18653/v1/P19-1283
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275

477

Yair Lakretz, Dieuwke Hupkes, Alessandra Vergallito,
Marco Marelli, Marco Baroni, and Stanislas De-
haene. 2021. Mechanisms for handling nested de-
pendencies in neural-network language models and
humans. Cognition, page 104699.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in Neural Information Processing Systems, 32:8026–
8037.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2021. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842–866.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional
hypothesis: Order word matters pre-training for lit-
tle. arXiv preprint arXiv:2104.06644.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory
networks. In Proceedings of the 28th Interna-
tional Conference on Neural Information Processing
Systems-Volume 2, pages 2440–2448.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Jennifer C White and Ryan Cotterell. 2021. Examining
the inductive bias of neural language models with ar-
tificial languages. arXiv preprint arXiv:2106.01044.

Appendix

Transformer implementation
Each datapoint has n 36-dimension binary vectors
as input in and a 36-dimension binary vector as

query q. All these vectors are embedded to 100
dimensions using the matrices Win and Wq. Then
we apply a sinusoidal positional encoding on the
input embeddings and the ReLU function on top of
the query embedding:

embini = PosEnc(ini ∗Win)

embq = ReLU(q ∗Wq)

with PosEnc defined for each input position pos
and for each token dimension i similarly to the
method used in the main Transformer architecture
(Vaswani et al., 2017):

PosEnc(pos, 2i) = sin(pos/100002i/dmodel)

PosEnc(pos, 2i+1) = cos(pos/100002i/dmodel)

Then, each input embedding goes through the
TransformerEncoder cell which has 1 attention
head and 1 layer:

hi = TransfEnc(embini)

as defined in Vaswani et al. (2017), TransfEnc is a
scaled dot product attention where d is the dimen-
sionality of the input vectors. The dot product is
scaled in order to not have regions with very slow
gradients.

TransfEnc(X) = softmax(
X ∗XT

√
d

) ∗X

In order to decode relevant information based on
the query we use a dot product attention. αi rep-
resents the attention value that we put on token
embedding hi relative to the query embedding. We
then calculate the vector c which is the sum of the
token embeddings weighted by α.

αi =
exp(hi ∗ embq)∑n

k=1 exp(hk ∗ embq)

c =

n∑
i=1

αihi

We then use a multi-layer perceptron to generate
the answer. Firstly, we apply a dimensionality re-
duction using Wo1 from 200 to 100 dimensions
with ReLU as nonlinearity on top of it. Then the
hidden state hido is mapped from 100 to 1 dimen-
sion. Using the Sigmoid function, we get our result
as a number in the range of [0,1]. At test time, if
o ≥ 0.5, then we consider the answer to be posi-
tive.

hido = ReLU((c||embq) ∗Wo1)

o = Sigmoid(hido ∗Wo2)

The loss is calculated using binary cross entropy.

https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580

478

LSTM implementation
In order to have a fair comparison with the Trans-
former model, we do minimal changes to the ar-
chitecture, only substituting the transformer self
attention block and the positional encoding with an
LSTM cell.

Learning procedure
All the experiments are optimized with Adam and
learning rate 0.0001. We apply 0.2 dropout and
gradient clipping at 0.5. We run 100 epochs with
batch size 10 and save the model at the epoch with
the highest validation accuracy. We experimented
with different hyperparameters, but we found the
ones we just reported to give the most stable results.

