Figure 3: Model performance on multiple sequence lengths for all tasks



not change either. Also note that for the most diffi-
cult tasks (T5-T7), model T-Pos+Att is consistently
better in longer sequences. Thus, the “getting in
the way” effect observed above holds for the three
tasks.

5.2 LSTM

In general, the performance of LSTM models on
our tasks is markedly worse than that of the Trans-
former, and they are impacted by sequence length
to a much larger extent (see Figure 3). This could
be expected given general results on the two ar-
chitectures (Transformers outperform LSTMs in
most computational linguistics tasks, and LSTMs
have been shown to have issues with long-distance
dependencies). There are two notable exceptions
to these general trends.

First, the accuracy of the LSTM with attention
in Task 1 shows a characteristic V-shape, dropping
at first and recovering for longer sequences (cf.
orange solid line in Figure 3).> The result is that its
performance is on par with that of the Transformer
models in sequences of length 5 and 30.

We find that the LSTM changes its behaviour,
from a simple recurrent LSTM to an actual
attention-based LSTM. Indeed, for short sequences,
it does not use decoder attention to identify the
target feature (and still performs optimally): for
instance, for sequence length 5, the attention is dis-
tributed uniformly, with attention values of around
0.2 on all the input tokens. Instead, for long se-
quences it does use the attention mechanism: the
attention values spike on the position of the input
that contains the queried feature (e.g., with an aver-
age of 0.85 for sequence length 30). This ability to
switch behaviours could theoretically help also for
other tasks, but it seems that the complexity of the
tasks prevents the model from doing so.

Second, the LSTM with attention surpasses all
Transformer variants for short sequences in Tasks 2
and 4. Recall that the Transformer models reached
a degenerate solution for these tasks (with a maxi-
mum accuracy of 87.5%), in which only one of the
two relevant features was attended to; instead, the
LSTM solves the task correctly, because the infor-
mation about the previous tokens flows through the
recurrent steps in the token representations.

As for the differences between the two model
variants of the LSTM, the model enhanced with

*Instead, the basic LSTM model degrades quickly and
monotonically with sequence length; see dashed orange line.

the decoder attention is consistently better than
the classic, basic model. This suggests that the
decoder attention mechanism (also present in all the
Transformer models) is beneficial independently of
the base architecture.

6 Conclusion

Our tasks shed light on how the main model com-
ponents act and interact regarding the retrieval of
discrete information from sequences, uncovering
behaviours that would be difficult to detect when
the architectures are applied to complex NLP tasks.

A take-home message from our experiments is
that the presence of a component in an architecture
does not imply that the model will learn to use it
as expected in a task. In particular, we found that
only the need to track ordered information led the
architecture to use self-attention in the predicted
way, and that decoder attention can be difficult for
LSTMs to use correctly.

On the other hand, the components can assume
unexpected functions. Self-attention in transform-
ers can simply serve to blindly propagate informa-
tion across time, leading to more robust represen-
tations of features contained in earlier tokens, that
are copied over and over. Also, surprisingly, posi-
tional embeddings provide a small but consistent
benefit in tasks that do not require order tracking.
This suggests that they might have a serendipitous
function, possibly adding helpful noise to the rep-
resentations. Moreover, as both self-attention and
positional embeddings can learn to keep track of
order, the two mechanisms get in the way of each
other, making it harder, when combined, for the
Transformer models to converge on a single strat-
egy to track order.

Regarding LSTM, the sequence length is a very
big factor. The model has a steep loss in perfor-
mance when the sequence gets longer. On the
simplest task, the model enhanced with decoder
attention develops the ability to switch between
strategies, but this doesn’t generalize to longer se-
quences.

To conclude, we hope to have shown that the pro-
posed tasks constitute a useful probing mechanism
for the ability of models to detect discrete infor-
mation in sequences, testing in particular four key
abilities: incremental processing (in the sense that
the query is not known at input processing time),
indirect mappings, context-dependence and order
tracking. We have shown that most of the tasks are
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difficult for models even for short sequences; and
they can be easily extended to more dimensions
and even longer sequences.

Future work should go in two different direc-
tions: 1) examining how behavior changes when
the probed models are scaled by increasing the
number of layers and attention heads, and 2) mod-
ify the models to solve some of the problems that
we encounter in the current experiments. We hope
that the community will take up the analysis pos-
sibilities that our tasks afford, and that a clearer
understanding of model behavior on the tasks will
lead to better and more transparent models.
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Appendix

Transformer implementation

Each datapoint has n 36-dimension binary vectors
as input in and a 36-dimension binary vector as

query q. All these vectors are embedded to 100
dimensions using the matrices W;,, and W,. Then
we apply a sinusoidal positional encoding on the
input embeddings and the ReLU function on top of
the query embedding:

embin, = PosEnc(in; x Wi,)
emby = ReLU(q* W)

with PosEnc defined for each input position pos
and for each token dimension i similarly to the
method used in the main Transformer architecture
(Vaswani et al., 2017):

PosEnc(pos, 2i) = Sm(pos/loo()()?i/dmodez )
PosEnc(pos, 2i+1) = cos(pos/10000%/ dmodet)

Then, each input embedding goes through the
TransformerEncoder cell which has 1 attention
head and 1 layer:

hi = Transf Enc(emb;y,)

as defined in Vaswani et al. (2017), TransfEnc is a
scaled dot product attention where d is the dimen-
sionality of the input vectors. The dot product is
scaled in order to not have regions with very slow
gradients.

X« XT
Vd
In order to decode relevant information based on
the query we use a dot product attention. «; rep-
resents the attention value that we put on token
embedding h; relative to the query embedding. We
then calculate the vector ¢ which is the sum of the

token embeddings weighted by «.

TransfEnc(X) = softmax( ) x X

~exp(h; * emby)
> peq exp(hy * emby)

n
Cc = E aihi
=1

We then use a multi-layer perceptron to generate
the answer. Firstly, we apply a dimensionality re-
duction using W,; from 200 to 100 dimensions
with ReLU as nonlinearity on top of it. Then the
hidden state hid, is mapped from 100 to 1 dimen-
sion. Using the Sigmoid function, we get our result
as a number in the range of [0,1]. At test time, if
o > 0.5, then we consider the answer to be posi-
tive.

&7

hid, = ReLU ((c||lembq) * Wo1)
o = Sigmoid(hid, x W2)

The loss is calculated using binary cross entropy.
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LSTM implementation

In order to have a fair comparison with the Trans-
former model, we do minimal changes to the ar-
chitecture, only substituting the transformer self
attention block and the positional encoding with an
LSTM cell.

Learning procedure

All the experiments are optimized with Adam and
learning rate 0.0001. We apply 0.2 dropout and
gradient clipping at 0.5. We run 100 epochs with
batch size 10 and save the model at the epoch with
the highest validation accuracy. We experimented
with different hyperparameters, but we found the
ones we just reported to give the most stable results.
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