@inproceedings{babakov-etal-2021-detecting,
title = "Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company{'}s Reputation",
author = "Babakov, Nikolay and
Logacheva, Varvara and
Kozlova, Olga and
Semenov, Nikita and
Panchenko, Alexander",
editor = "Babych, Bogdan and
Kanishcheva, Olga and
Nakov, Preslav and
Piskorski, Jakub and
Pivovarova, Lidia and
Starko, Vasyl and
Steinberger, Josef and
Yangarber, Roman and
Marci{\'n}czuk, Micha{\l} and
Pollak, Senja and
P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Robnik-{\v{S}}ikonja, Marko",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.bsnlp-1.4",
pages = "26--36",
abstract = "Not all topics are equally {``}flammable{''} in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="babakov-etal-2021-detecting">
<titleInfo>
<title>Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company’s Reputation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolay</namePart>
<namePart type="family">Babakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Kozlova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Semenov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Panchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bogdan</namePart>
<namePart type="family">Babych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Kanishcheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Piskorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidia</namePart>
<namePart type="family">Pivovarova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasyl</namePart>
<namePart type="family">Starko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michał</namePart>
<namePart type="family">Marcińczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Senja</namePart>
<namePart type="family">Pollak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Přibáň</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Robnik-Šikonja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kiyv, Ukraine</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Not all topics are equally “flammable” in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.</abstract>
<identifier type="citekey">babakov-etal-2021-detecting</identifier>
<location>
<url>https://aclanthology.org/2021.bsnlp-1.4</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>26</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company’s Reputation
%A Babakov, Nikolay
%A Logacheva, Varvara
%A Kozlova, Olga
%A Semenov, Nikita
%A Panchenko, Alexander
%Y Babych, Bogdan
%Y Kanishcheva, Olga
%Y Nakov, Preslav
%Y Piskorski, Jakub
%Y Pivovarova, Lidia
%Y Starko, Vasyl
%Y Steinberger, Josef
%Y Yangarber, Roman
%Y Marcińczuk, Michał
%Y Pollak, Senja
%Y Přibáň, Pavel
%Y Robnik-Šikonja, Marko
%S Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kiyv, Ukraine
%F babakov-etal-2021-detecting
%X Not all topics are equally “flammable” in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.
%U https://aclanthology.org/2021.bsnlp-1.4
%P 26-36
Markdown (Informal)
[Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company’s Reputation](https://aclanthology.org/2021.bsnlp-1.4) (Babakov et al., BSNLP 2021)
ACL