@inproceedings{zhu-etal-2021-ji,
title = "基于阅读理解的汉越跨语言新闻事件要素抽取方法(News Events Element Extraction of {C}hinese-{V}ietnamese Cross-language Using Reading Comprehension)",
author = "Zhu, Enchang and
Yu, Zhengtao and
Gao, Chengxiang and
Huang, Yuxin and
Guo, Junjun",
editor = "Li, Sheng and
Sun, Maosong and
Liu, Yang and
Wu, Hua and
Liu, Kang and
Che, Wanxiang and
He, Shizhu and
Rao, Gaoqi",
booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
month = aug,
year = "2021",
address = "Huhhot, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2021.ccl-1.19",
pages = "196--207",
abstract = "新闻事件要素抽取旨在抽取新闻文本中描述主题事件的事件要素,如时间、地点、人物和组织机构名等。传统的事件要素抽取方法在资源稀缺型语言上性能欠佳,且对长文本语义建模困难。对此,本文提出了基于阅读理解的汉越跨语言新闻事件要素抽取方法。该方法首先利用新闻长文本关键句检索模块过滤含噪声的句子。然后利用跨语言阅读理解模型将富资源语言知识迁移到越南语,提高越南语新闻事件要素抽取的性能。在自建的汉越双语新闻事件要素抽取数据集上的实验证明了本文方法的有效性。",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2021-ji">
<titleInfo>
<title>基于阅读理解的汉越跨语言新闻事件要素抽取方法(News Events Element Extraction of Chinese-Vietnamese Cross-language Using Reading Comprehension)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enchang</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhengtao</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengxiang</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxin</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junjun</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Huhhot, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>新闻事件要素抽取旨在抽取新闻文本中描述主题事件的事件要素,如时间、地点、人物和组织机构名等。传统的事件要素抽取方法在资源稀缺型语言上性能欠佳,且对长文本语义建模困难。对此,本文提出了基于阅读理解的汉越跨语言新闻事件要素抽取方法。该方法首先利用新闻长文本关键句检索模块过滤含噪声的句子。然后利用跨语言阅读理解模型将富资源语言知识迁移到越南语,提高越南语新闻事件要素抽取的性能。在自建的汉越双语新闻事件要素抽取数据集上的实验证明了本文方法的有效性。</abstract>
<identifier type="citekey">zhu-etal-2021-ji</identifier>
<location>
<url>https://aclanthology.org/2021.ccl-1.19</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>196</start>
<end>207</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于阅读理解的汉越跨语言新闻事件要素抽取方法(News Events Element Extraction of Chinese-Vietnamese Cross-language Using Reading Comprehension)
%A Zhu, Enchang
%A Yu, Zhengtao
%A Gao, Chengxiang
%A Huang, Yuxin
%A Guo, Junjun
%Y Li, Sheng
%Y Sun, Maosong
%Y Liu, Yang
%Y Wu, Hua
%Y Liu, Kang
%Y Che, Wanxiang
%Y He, Shizhu
%Y Rao, Gaoqi
%S Proceedings of the 20th Chinese National Conference on Computational Linguistics
%D 2021
%8 August
%I Chinese Information Processing Society of China
%C Huhhot, China
%G Chinese
%F zhu-etal-2021-ji
%X 新闻事件要素抽取旨在抽取新闻文本中描述主题事件的事件要素,如时间、地点、人物和组织机构名等。传统的事件要素抽取方法在资源稀缺型语言上性能欠佳,且对长文本语义建模困难。对此,本文提出了基于阅读理解的汉越跨语言新闻事件要素抽取方法。该方法首先利用新闻长文本关键句检索模块过滤含噪声的句子。然后利用跨语言阅读理解模型将富资源语言知识迁移到越南语,提高越南语新闻事件要素抽取的性能。在自建的汉越双语新闻事件要素抽取数据集上的实验证明了本文方法的有效性。
%U https://aclanthology.org/2021.ccl-1.19
%P 196-207
Markdown (Informal)
[基于阅读理解的汉越跨语言新闻事件要素抽取方法(News Events Element Extraction of Chinese-Vietnamese Cross-language Using Reading Comprehension)](https://aclanthology.org/2021.ccl-1.19) (Zhu et al., CCL 2021)
ACL