@inproceedings{wu-etal-2021-towards,
title = "Towards Low-Resource Real-Time Assessment of Empathy in Counselling",
author = "Wu, Zixiu and
Helaoui, Rim and
Reforgiato Recupero, Diego and
Riboni, Daniele",
editor = "Goharian, Nazli and
Resnik, Philip and
Yates, Andrew and
Ireland, Molly and
Niederhoffer, Kate and
Resnik, Rebecca",
booktitle = "Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.clpsych-1.22",
doi = "10.18653/v1/2021.clpsych-1.22",
pages = "204--216",
abstract = "Gauging therapist empathy in counselling is an important component of understanding counselling quality. While session-level empathy assessment based on machine learning has been investigated extensively, it relies on relatively large amounts of well-annotated dialogue data, and real-time evaluation has been overlooked in the past. In this paper, we focus on the task of low-resource utterance-level binary empathy assessment. We train deep learning models on heuristically constructed empathy vs. non-empathy contrast in general conversations, and apply the models directly to therapeutic dialogues, assuming correlation between empathy manifested in those two domains. We show that such training yields poor performance in general, probe its causes, and examine the actual effect of learning from empathy contrast in general conversation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2021-towards">
<titleInfo>
<title>Towards Low-Resource Real-Time Assessment of Empathy in Counselling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zixiu</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rim</namePart>
<namePart type="family">Helaoui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Reforgiato Recupero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">Riboni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nazli</namePart>
<namePart type="family">Goharian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Niederhoffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gauging therapist empathy in counselling is an important component of understanding counselling quality. While session-level empathy assessment based on machine learning has been investigated extensively, it relies on relatively large amounts of well-annotated dialogue data, and real-time evaluation has been overlooked in the past. In this paper, we focus on the task of low-resource utterance-level binary empathy assessment. We train deep learning models on heuristically constructed empathy vs. non-empathy contrast in general conversations, and apply the models directly to therapeutic dialogues, assuming correlation between empathy manifested in those two domains. We show that such training yields poor performance in general, probe its causes, and examine the actual effect of learning from empathy contrast in general conversation.</abstract>
<identifier type="citekey">wu-etal-2021-towards</identifier>
<identifier type="doi">10.18653/v1/2021.clpsych-1.22</identifier>
<location>
<url>https://aclanthology.org/2021.clpsych-1.22</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>204</start>
<end>216</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Low-Resource Real-Time Assessment of Empathy in Counselling
%A Wu, Zixiu
%A Helaoui, Rim
%A Reforgiato Recupero, Diego
%A Riboni, Daniele
%Y Goharian, Nazli
%Y Resnik, Philip
%Y Yates, Andrew
%Y Ireland, Molly
%Y Niederhoffer, Kate
%Y Resnik, Rebecca
%S Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F wu-etal-2021-towards
%X Gauging therapist empathy in counselling is an important component of understanding counselling quality. While session-level empathy assessment based on machine learning has been investigated extensively, it relies on relatively large amounts of well-annotated dialogue data, and real-time evaluation has been overlooked in the past. In this paper, we focus on the task of low-resource utterance-level binary empathy assessment. We train deep learning models on heuristically constructed empathy vs. non-empathy contrast in general conversations, and apply the models directly to therapeutic dialogues, assuming correlation between empathy manifested in those two domains. We show that such training yields poor performance in general, probe its causes, and examine the actual effect of learning from empathy contrast in general conversation.
%R 10.18653/v1/2021.clpsych-1.22
%U https://aclanthology.org/2021.clpsych-1.22
%U https://doi.org/10.18653/v1/2021.clpsych-1.22
%P 204-216
Markdown (Informal)
[Towards Low-Resource Real-Time Assessment of Empathy in Counselling](https://aclanthology.org/2021.clpsych-1.22) (Wu et al., CLPsych 2021)
ACL