@inproceedings{sherman-etal-2021-towards,
title = "Towards Understanding the Role of Gender in Deploying Social Media-Based Mental Health Surveillance Models",
author = "Sherman, Eli and
Harrigian, Keith and
Aguirre, Carlos and
Dredze, Mark",
editor = "Goharian, Nazli and
Resnik, Philip and
Yates, Andrew and
Ireland, Molly and
Niederhoffer, Kate and
Resnik, Rebecca",
booktitle = "Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.clpsych-1.23",
doi = "10.18653/v1/2021.clpsych-1.23",
pages = "217--223",
abstract = "Spurred by advances in machine learning and natural language processing, developing social media-based mental health surveillance models has received substantial recent attention. For these models to be maximally useful, it is necessary to understand how they perform on various subgroups, especially those defined in terms of protected characteristics. In this paper we study the relationship between user demographics {--} focusing on gender {--} and depression. Considering a population of Reddit users with known genders and depression statuses, we analyze the degree to which depression predictions are subject to biases along gender lines using domain-informed classifiers. We then study our models{'} parameters to gain qualitative insight into the differences in posting behavior across genders.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sherman-etal-2021-towards">
<titleInfo>
<title>Towards Understanding the Role of Gender in Deploying Social Media-Based Mental Health Surveillance Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eli</namePart>
<namePart type="family">Sherman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keith</namePart>
<namePart type="family">Harrigian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Aguirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nazli</namePart>
<namePart type="family">Goharian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Niederhoffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Spurred by advances in machine learning and natural language processing, developing social media-based mental health surveillance models has received substantial recent attention. For these models to be maximally useful, it is necessary to understand how they perform on various subgroups, especially those defined in terms of protected characteristics. In this paper we study the relationship between user demographics – focusing on gender – and depression. Considering a population of Reddit users with known genders and depression statuses, we analyze the degree to which depression predictions are subject to biases along gender lines using domain-informed classifiers. We then study our models’ parameters to gain qualitative insight into the differences in posting behavior across genders.</abstract>
<identifier type="citekey">sherman-etal-2021-towards</identifier>
<identifier type="doi">10.18653/v1/2021.clpsych-1.23</identifier>
<location>
<url>https://aclanthology.org/2021.clpsych-1.23</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>217</start>
<end>223</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Understanding the Role of Gender in Deploying Social Media-Based Mental Health Surveillance Models
%A Sherman, Eli
%A Harrigian, Keith
%A Aguirre, Carlos
%A Dredze, Mark
%Y Goharian, Nazli
%Y Resnik, Philip
%Y Yates, Andrew
%Y Ireland, Molly
%Y Niederhoffer, Kate
%Y Resnik, Rebecca
%S Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F sherman-etal-2021-towards
%X Spurred by advances in machine learning and natural language processing, developing social media-based mental health surveillance models has received substantial recent attention. For these models to be maximally useful, it is necessary to understand how they perform on various subgroups, especially those defined in terms of protected characteristics. In this paper we study the relationship between user demographics – focusing on gender – and depression. Considering a population of Reddit users with known genders and depression statuses, we analyze the degree to which depression predictions are subject to biases along gender lines using domain-informed classifiers. We then study our models’ parameters to gain qualitative insight into the differences in posting behavior across genders.
%R 10.18653/v1/2021.clpsych-1.23
%U https://aclanthology.org/2021.clpsych-1.23
%U https://doi.org/10.18653/v1/2021.clpsych-1.23
%P 217-223
Markdown (Informal)
[Towards Understanding the Role of Gender in Deploying Social Media-Based Mental Health Surveillance Models](https://aclanthology.org/2021.clpsych-1.23) (Sherman et al., CLPsych 2021)
ACL