@inproceedings{choudhary-etal-2021-mtl782,
title = "{MTL}782{\_}{IITD} at {CMCL} 2021 Shared Task: Prediction of Eye-Tracking Features Using {BERT} Embeddings and Linguistic Features",
author = "Choudhary, Shivani and
Tandon, Kushagri and
Agarwal, Raksha and
Chatterjee, Niladri",
editor = "Chersoni, Emmanuele and
Hollenstein, Nora and
Jacobs, Cassandra and
Oseki, Yohei and
Pr{\'e}vot, Laurent and
Santus, Enrico",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.cmcl-1.14",
doi = "10.18653/v1/2021.cmcl-1.14",
pages = "114--119",
abstract = "Reading and comprehension are quintessentially cognitive tasks. Eye movement acts as a surrogate to understand which part of a sentence is critical to the process of comprehension. The aim of the shared task is to predict five eye-tracking features for a given word of the input sentence. We experimented with several models based on LGBM (Light Gradient Boosting Machine) Regression, ANN (Artificial Neural Network), and CNN (Convolutional Neural Network), using BERT embeddings and some combination of linguistic features. Our submission using CNN achieved an average MAE of 4.0639 and ranked 7th in the shared task. The average MAE was further lowered to 3.994 in post-task evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="choudhary-etal-2021-mtl782">
<titleInfo>
<title>MTL782_IITD at CMCL 2021 Shared Task: Prediction of Eye-Tracking Features Using BERT Embeddings and Linguistic Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shivani</namePart>
<namePart type="family">Choudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kushagri</namePart>
<namePart type="family">Tandon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raksha</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niladri</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuele</namePart>
<namePart type="family">Chersoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cassandra</namePart>
<namePart type="family">Jacobs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Prévot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reading and comprehension are quintessentially cognitive tasks. Eye movement acts as a surrogate to understand which part of a sentence is critical to the process of comprehension. The aim of the shared task is to predict five eye-tracking features for a given word of the input sentence. We experimented with several models based on LGBM (Light Gradient Boosting Machine) Regression, ANN (Artificial Neural Network), and CNN (Convolutional Neural Network), using BERT embeddings and some combination of linguistic features. Our submission using CNN achieved an average MAE of 4.0639 and ranked 7th in the shared task. The average MAE was further lowered to 3.994 in post-task evaluation.</abstract>
<identifier type="citekey">choudhary-etal-2021-mtl782</identifier>
<identifier type="doi">10.18653/v1/2021.cmcl-1.14</identifier>
<location>
<url>https://aclanthology.org/2021.cmcl-1.14</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>114</start>
<end>119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MTL782_IITD at CMCL 2021 Shared Task: Prediction of Eye-Tracking Features Using BERT Embeddings and Linguistic Features
%A Choudhary, Shivani
%A Tandon, Kushagri
%A Agarwal, Raksha
%A Chatterjee, Niladri
%Y Chersoni, Emmanuele
%Y Hollenstein, Nora
%Y Jacobs, Cassandra
%Y Oseki, Yohei
%Y Prévot, Laurent
%Y Santus, Enrico
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F choudhary-etal-2021-mtl782
%X Reading and comprehension are quintessentially cognitive tasks. Eye movement acts as a surrogate to understand which part of a sentence is critical to the process of comprehension. The aim of the shared task is to predict five eye-tracking features for a given word of the input sentence. We experimented with several models based on LGBM (Light Gradient Boosting Machine) Regression, ANN (Artificial Neural Network), and CNN (Convolutional Neural Network), using BERT embeddings and some combination of linguistic features. Our submission using CNN achieved an average MAE of 4.0639 and ranked 7th in the shared task. The average MAE was further lowered to 3.994 in post-task evaluation.
%R 10.18653/v1/2021.cmcl-1.14
%U https://aclanthology.org/2021.cmcl-1.14
%U https://doi.org/10.18653/v1/2021.cmcl-1.14
%P 114-119
Markdown (Informal)
[MTL782_IITD at CMCL 2021 Shared Task: Prediction of Eye-Tracking Features Using BERT Embeddings and Linguistic Features](https://aclanthology.org/2021.cmcl-1.14) (Choudhary et al., CMCL 2021)
ACL