@inproceedings{kim-etal-2021-pipeline,
title = "The Pipeline Model for Resolution of Anaphoric Reference and Resolution of Entity Reference",
author = "Kim, Hongjin and
Kim, Damrin and
Kim, Harksoo",
editor = "Khosla, Sopan and
Manuvinakurike, Ramesh and
Ng, Vincent and
Poesio, Massimo and
Strube, Michael and
Ros{\'e}, Carolyn",
booktitle = "Proceedings of the CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.codi-sharedtask.4",
doi = "10.18653/v1/2021.codi-sharedtask.4",
pages = "43--47",
abstract = "The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we yield mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via the MRC framework. We construct query for each entity as {``}What is related of ENTITY?{''}. The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for query.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2021-pipeline">
<titleInfo>
<title>The Pipeline Model for Resolution of Anaphoric Reference and Resolution of Entity Reference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongjin</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Damrin</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harksoo</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sopan</namePart>
<namePart type="family">Khosla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramesh</namePart>
<namePart type="family">Manuvinakurike</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rosé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we yield mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via the MRC framework. We construct query for each entity as “What is related of ENTITY?”. The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for query.</abstract>
<identifier type="citekey">kim-etal-2021-pipeline</identifier>
<identifier type="doi">10.18653/v1/2021.codi-sharedtask.4</identifier>
<location>
<url>https://aclanthology.org/2021.codi-sharedtask.4</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>43</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Pipeline Model for Resolution of Anaphoric Reference and Resolution of Entity Reference
%A Kim, Hongjin
%A Kim, Damrin
%A Kim, Harksoo
%Y Khosla, Sopan
%Y Manuvinakurike, Ramesh
%Y Ng, Vincent
%Y Poesio, Massimo
%Y Strube, Michael
%Y Rosé, Carolyn
%S Proceedings of the CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F kim-etal-2021-pipeline
%X The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we yield mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via the MRC framework. We construct query for each entity as “What is related of ENTITY?”. The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for query.
%R 10.18653/v1/2021.codi-sharedtask.4
%U https://aclanthology.org/2021.codi-sharedtask.4
%U https://doi.org/10.18653/v1/2021.codi-sharedtask.4
%P 43-47
Markdown (Informal)
[The Pipeline Model for Resolution of Anaphoric Reference and Resolution of Entity Reference](https://aclanthology.org/2021.codi-sharedtask.4) (Kim et al., CODI 2021)
ACL