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Abstract

We present VQA-MHUG – a novel 49-
participant dataset of multimodal human gaze
on both images and questions during visual
question answering (VQA) collected using a
high-speed eye tracker. We use our dataset to
analyze the similarity between human and neu-
ral attentive strategies learned by five state-of-
the-art VQA models: Modular Co-Attention
Network (MCAN) with either grid or region
features, Pythia, Bilinear Attention Network
(BAN), and the Multimodal Factorized Bilin-
ear Pooling Network (MFB). While prior work
has focused on studying the image modality,
our analyses show – for the first time – that
for all models, higher correlation with human
attention on text is a significant predictor of
VQA performance. This finding points at a po-
tential for improving VQA performance and,
at the same time, calls for further research on
neural text attention mechanisms and their in-
tegration into architectures for vision and lan-
guage tasks, including but potentially also be-
yond VQA.

1 Introduction

Visual question answering (VQA) has gained pop-
ularity as a practically-useful and challenging task
at the intersection of natural language processing
(NLP) and computer vision (CV) (Antol et al.,
2015). The key challenge in VQA is to develop
computational models that are able to reason over
questions and images in order to generate answers
that are well-grounded in both modalities (P. Zhang
et al., 2015; Agrawal et al., 2016; Goyal et al.,
2017a; Kafle et al., 2019). Attention mechanisms
originally introduced in NLP for monomodal lan-
guage tasks have been successfully applied to mul-
timodal tasks (like VQA) and established a new
state of the art (Correia and Colombini, 2021; Kim
et al., 2018; Yu et al., 2019b).

These advances have, in turn, triggered research
into understanding the reasons for these improve-

ments. A body of work has studied similarities
between neural and human attention (Qiuxia et al.,
2020; Yun et al., 2013; Das et al., 2016). Models
seem to learn very different attention strategies and
similarity to human attention might only improve
performance for specific model types (Sood et al.,
2020a). However, although VQA is an inherently
multimodal task, all of these analyses have only
focused on image attention. The most likely reason
for this is that existing datasets only offer mono-
modal attention on the image (Das et al., 2016;
Fosco et al., 2020; Chen et al., 2020). In addition,
due to the challenges involved in recording human
gaze data at scale, prior works have instead used
mouse data as a proxy to attention (Jiang et al.,
2015). However, mouse data was shown to over-
estimate some image areas (Tavakoli et al., 2017b;
Das et al., 2016) or to miss relevant background
information altogether (Sugano and Bulling, 2016;
Tavakoli et al., 2017a). As of now, there is no pub-
licly available dataset that offers human gaze data
on both the images and questions. This severely
impedes further progress in this emerging area of
research.

Our work fills this gap by introducing VQA-
MHUG – the first dataset of multimodal human
gaze on both images and questions in VQA. To
collect our dataset, we conducted a 49-participant
eye tracking study. We used a commercial, high-
speed eye tracker to record gaze data on images and
corresponding questions of the VQAv2 validation
set. VQA-MHUG contains 11,970 gaze samples
for 3,990 question-image pairs, tagged and bal-
anced by reasoning type and difficulty. We ensured
a large overlap in question-image pairs with nine
other VQA datasets to maximize the usefulness of
VQA-MHUG for future multimodal studies on hu-
man and neural attention mechanisms. Using our
dataset, we conduct detailed analyses of the sim-
ilarity between human and neural attentive strate-
gies, the latter of which we obtained from five top-
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performing models in the VQA challenges 2017-
2020: Modulated Co-Attention Network (MCAN)
with grid or region features, Pythia, Bilinear At-
tention Network (BAN), and the Multimodal Fac-
torized Bilinear Pooling Network (MFB). These
analyses show, for the first time, that correlation
with human attention on text is a significant predic-
tor of accuracy for all the studied state-of-the-art
VQA models. This suggests a potential for signifi-
cant performance improvements in VQA by guid-
ing models to "read the questions" more similarly
to humans. In summary, our work contributes:
1. VQA-MHUG, a novel 49-participant dataset of

multimodal human gaze on both images and
questions during visual question answering col-
lected using a high-speed eye tracker.

2. Detailed analysis of the similarity between hu-
man and neural attentive strategies indicating
that human-like attention to text could yield sig-
nificant performance improvements.

2 Related Work

Our work is related to previous work on 1) neural
machine attention, 2) attention in VQA, and 3)
comparison of neural and human attention.

Neural Machine Attention. Inspired by the hu-
man visual system, neural machine attention allows
neural networks to selectively focus on particular
parts of the input, resulting in significant improve-
ments in performance and interpretability (Cor-
reia and Colombini, 2021). Single-modal attention
(Bahdanau et al., 2014) as well as approaches that
build on it, such as self attention (Xu et al., 2015;
Vaswani et al., 2017) or stacked attention (Yang
et al., 2016a,b; Zhang et al., 2018; Anderson et al.,
2018), have been shown to be particularly helpful
for sequence learning tasks in NLP and CV. Ini-
tially, attention mechanisms were often combined
with recurrent and convolutional architectures to
encode the input features (Bahdanau et al., 2014;
Yu et al., 2017; Tavakoli et al., 2017b; Kim et al.,
2016; Lu et al., 2016; Jabri et al., 2016; Agrawal
et al., 2016). More recently, Transformer-based
architectures have been introduced that solely rely
on attention (Vaswani et al., 2017; Yu et al., 2019b;
Khan et al., 2020). Large-scale, pre-trained lan-
guage models are a key application of Transformers
that enabled their current performance lead in both
NLP and multimodal vision-language tasks (Devlin
et al., 2018; Yang et al., 2019b; Yu et al., 2019b;
Lu et al., 2019).

Attention in VQA. Increased interest into cap-
turing multimodal relationships with attention
mechanisms have put focus on VQA as a bench-
mark task (Malinowski and Fritz, 2014; Mali-
nowski et al., 2015; Lu et al., 2016; Yu et al., 2017;
Nguyen and Okatani, 2018; Yang et al., 2019a;
Li et al., 2019). In fact, attention mechanisms
have been extensively explored in VQA and have
repeatedly dominated the important VQAv2 chal-
lenge (Anderson et al., 2018; Yu et al., 2019b; Jiang
et al., 2020). Alhough attention-based models have
achieved remarkable success, it often remains un-
clear how and why different attention mechanisms
actually work (Jain and Wallace, 2019; Serrano and
Smith, 2019).

Comparing Neural and Human Attention.
Several prior works have proposed datasets of hu-
man attention on images to study the differences
between neural and human attention in VQA (Das
et al., 2016; Fosco et al., 2020; Chen et al., 2020).
In particular, free-viewing and task-specific mouse
tracking from SALICON (Jiang et al., 2015) and
VQA-HAT (Das et al., 2016), as well as free-
viewing and task-specific gaze data from SBU
Gaze (Yun et al., 2015) and AiR-D (Chen et al.,
2020) have been compared to neural attention. All
of these works were limited to images only and
found mouse tracking to overestimate relevant ar-
eas and miss scene context (Sugano and Bulling,
2016; Tavakoli et al., 2017b,a; He et al., 2019). Fur-
thermore, while integrating human attention over
the image showed performance improvements in
VQA (Park et al., 2018; Qiao et al., 2018; Chen
et al., 2020), the influence of integrating human
text attention remains unclear.

There is currently no multimodal dataset includ-
ing real human gaze on VQA questions and images.
This represents a major limitation for two different
aspects of research, i.e. research aiming to better
understand and improve neural attention mecha-
nisms and research focusing on integrating human
attention to improve VQA performance.

3 The VQA-MHUG Dataset

We present Visual Question Answering with Multi-
Modal Human Gaze (VQA-MHUG)1. To the best
of our knowledge, this is the first resource con-
taining multimodal human gaze data over a textual

1The dataset is publicly available at https:

//perceptualui.org/publications/sood21_conll/

https://perceptualui.org/publications/sood21_conll/
https://perceptualui.org/publications/sood21_conll/
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question and the corresponding image. Our cor-
pus encompasses task-specific gaze on a subset of
the benchmark dataset VQAv2 val2 (Goyal et al.,
2017b). We specifically focused on question-image
pairs that machines struggle with, but humans an-
swer easily (determined by high inter-agreement
and confidence in the VQAv2 annotations). We
then balanced the selection by evenly picking ques-
tions based on a machine difficulty score and from
different reasoning types. Thus, VQA-MHUG cov-
ers a wide range of challenging reasoning capa-
bilities and overlaps with many VQAv2-related
datasets (see Table 4 in Appendix A).

Reasoning Types. VQAv2 groups question-
image pairs based on question words: what, who,
how, when and where. Instead, we binned our pairs
into the reasoning capabilities required to answer
them. We incorporated the categories proposed
by Kafle and Kanan (2017) for their task directed
image understanding challenge (TDIUC) and ex-
tended them with an additional category, reading,
for questions that are answered by reading text on
the images. This resulted in 12 reasoning types that
align better with commonly-diagnosed error cases3.
We binned VQAv2 val pairs accordingly by train-
ing a LSTM-based classifier on 1.6 M TDIUC and
145 K VQAv2 train+val samples which we labelled
using regular expressions. The classifier predicted
the reasoning type for a given question-answer pair.
The final model achieved 99.67% accuracy on a
20% held-out test set.

Machine Difficulty Score. To assess the diffi-
culty for a machine to answer a question-image pair,
we ran two popular VQA models – MFB (Yu et al.,
2017) for multimodal fusion and MCAN (Yu et al.,
2019b) for transformer attention – inspired by Sood
et al. (2020a). A difficult question results in low an-
swer accuracy, particularly after rephrasing or ask-
ing further control questions. To test this, we evalu-
ated on four datasets and averaged their correspond-
ing normalized metrics: (1) VQAv2 accuracy, (2)
VQA-CP accuracy on reduced bias (Agrawal et al.,
2018a), (3) VQA-Introspect’s consistency with re-
spect to visual perception (Selvaraju et al., 2020a)
and (4) VQA-Rephrasings’ robustness against lin-
guistic variations (Shah et al., 2019a) (see Ap-
pendix C).

2https://visualqa.org/download.html
3See Appendix B for details on the reasoning type tagging.

Participants and Experimental Setup. We re-
cruited 49 participants at the local university (18
identified female and 31 male) with normal or
corrected-to-normal vision, aged between 19 and
35 years (µ = 25.8, σ = 2.8) and compensated
them for their participation4. All participants had
an English Level of C1 or above (8 were native
speakers).5

Questions and images were presented one af-
ter each other on a 24.5" monitor with resolution
1920x1080 px. They were centered on a white back-
ground, and scaled/line-wrapped to fit 26.2x11.5°
of visual angle in the center. For the questions, we
used a monospace font of size 0.6° and line spac-
ing such that the bounding boxes around each word
covered 1.8° vertically. Binocular gaze data was
collected with an EyeLink 1000 Plus remote eye
tracker at 2 kHz with an average measured tracking
error of 0.62° (see Appendix E).

Participants had unlimited viewing time but were
instructed to move on as soon as they understood
the question, gave an answer, or decided to skip.
They completed a set of practice recordings to fa-
miliarize themselves with the study procedure. As
such, the task was known to the participant, so
both the question reading and the subsequent im-
age viewing were conditioned on VQA. They then
completed three blocks of 110 recordings in ran-
domized order with 5 minute breaks in-between.

Dataset Statistics. VQA-MHUG contains gaze
on 3,990 stimuli from VQAv2 val.For each stimu-
lus, we provide three recordings from different par-
ticipants over text and image, their corresponding
answer, and whether they answered the question
correctly (as compared to the VQAv2 annotations).
For 3,177 stimuli (79.6%), the majority of partici-
pant answers appear in the VQAv2 annotations.

Human Attention Maps. To generate human at-
tention maps, we used the fixation detection algo-
rithm of the EyeLink software with default param-
eters. We always picked the eye with the lower
validation error to prioritize accuracy (Hooge et al.,
2019) and represented fixations by Gaussian ker-
nels with σ = 1°. For our experiments, we as-
sumed that the majority of gaze is valid and aver-
aged the three recordings per stimulus, yielding a
single attention map.

4The university ethics committee approved our study.
5After providing their consent, we collected basic demo-

graphic information for each participant. The anonymized
data is available with the dataset.

https://visualqa.org/download.html
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(a) collection study (b) validation study

Figure 1: Example images for the question "How
ripe are the bananas?". Validation images (b) were
masked using the attention maps from our VQA-
MHUG dataset.

Dataset Validation. To validate that the atten-
tion maps indeed contain relevant image regions,
we masked 300 stimuli with our recorded VQA-
MHUG maps (see Figure 1b). Then, we showed
two additional participants these masked stimuli.
Comparing their answer accuracy with the partic-
ipants who saw the full images, validation partic-
ipants achieved comparable accuracy (62.43% vs.
63.87% in the main study). Therefore our VQA-
MHUG maps contain sufficient image areas to an-
swer the questions and mask distracting objects as
illustrated in Figure 1.

Comparison to Related Datasets. We further
measured the center bias and compared VQA-
MHUG to related human attention datasets (Jiang
et al., 2015; Das et al., 2016; Chen et al., 2020) on
their overlapping samples. All datasets use mouse
tracking as a proxy to collect human attention, ex-
cept for the eye-tracking dataset AiR-D (Chen et al.,
2020) which is similar to our recording paradigm,
yet has no overlap with VQAv2. Therefore, we
showed participants 195 additional stimuli from
the AiR-D dataset for comparison. Table 1 shows
the mean rank correlation of VQA-MHUG with
a synthetic center fixation, inter-participant, and
the other datasets. The high correlation between
VQA-MHUG and AiR-D indicates that our data is
of comparable quality. Our center bias is smaller
compared to AiR-D but, as expected from human
eye behaviour (Tatler, 2007), larger than in the
mouse tracking proxies SALICON and VQA-HAT.
We observe that both mouse tracking datasets have
significantly lower correlation with VQA-MHUG
than the eye-tracking AiR-D corpus.

4 Comparison of Human and Machine
Attention

The collected data enabled us to analyze whether
models achieve a higher accuracy on VQAv2 val

the more their attentive behavior over the text and
image correlates with human ground-truth atten-
tion. Hence, we investigated the attention weights
over text and image features of different SOTA
VQA models.

4.1 VQA Models

We selected five top performing VQA models of
the VQA challenges 2017 to 2020:
• MFB (Yu et al., 2017) (Runner-up 2017);
• BAN (Kim et al., 2018) (Runner-up 2018);
• Pythia v0.1 (Jiang et al., 2018) (Winner 2018);
• MCANR with region image features (Yu et al.,

2019b) (Winner 2019);
• MCANG with grid image features (Jiang et al.,

2020) (Winner 2020).
Instead of using the text and image features di-
rectly for classification, these models re-weight
the features using linear, bilinear and Trans-
former (Vaswani et al., 2017) (co-)attention mecha-
nisms, whose attention maps we extracted and com-
pared to human ground-truths from VQA-MHUG.

Pythia and MFB use co-attention: they first use
a projected attention map to re-weight text features,
then fuse them with the image features using lin-
ear (Pythia) and bilinear (MFB) fusion and subse-
quently re-weight the image features using an atten-
tion map projected from the fused features. In this
way, the text attention influences the image atten-
tion. BAN avoids separating the attention into text
and image streams and reduces both input streams
simultaneously with a bilinear attention map pro-
jected from the fused features. Finally, MCAN as
a Transformer model stacks co-attention modules
with multi-headed scaled dot-product attention for
each modality. After the last Transformer layer in
both the text and image stream, another attention
map is used to project the feature matrix into a
single feature vector.

4.2 Extracting Model Attention

We used an official implementation6 of the Pythia
v0.1 architecture and the OpenVQA7 implementa-
tions (Yu et al., 2019a) for MFB, BAN and MCAN.
We re-implemented the grid image feature loader
for MCANG, since it is not available in OpenVQA.

Following previous work (Sood et al., 2020a),
we trained each network architecture twelve times
with random seeds on the VQAv2 training set and

6https://github.com/zwxalgorithm/pythia
7https://github.com/MILVLG/openvqa

https://github.com/zwxalgorithm/pythia
https://github.com/MILVLG/openvqa
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VQA-MHUG Center Fixation

Dataset Method ρ ↑ ρ ↑

VQA-MHUG G 0.769± 0.079 0.473± 0.049
AiR-D G 0.710± 0.060 0.523
VQA-HAT M 0.612± 0.145 0.339± 0.107
SALICON M 0.634± 0.063 0.479

G: Gaze, M: Mouse-Tracking

Table 1: Spearman’s rank correlation (ρ) of VQA-MHUG with itself (inter-participant), related datasets, and a syn-
thetic center fixation – Mean over all samples in the intersection of the datasets and three VQA-MHUG participants.
The standard deviation is the mean error over participants. Only VQA-HAT and VQA-MHUG provide multiple
attention maps per sample, allowing us to calculate the standard deviation when comparing to the synthetic center
fixation.

then chose the top nine models based on the valida-
tion accuracy.

For models based on region image features, we
used the extracted features provided by Ander-
son et al. 2018, while we trained MCANG with
ResNeXt (Xie et al., 2017) grid features as pro-
vided by the authors (Jiang et al., 2020)8.

For MFB and Pythia we extracted the two pro-
jected attention maps that re-weight text and im-
age features, while we extracted the single bilinear
attention map for BAN. To obtain separate atten-
tion maps for text and image from BAN’s bilinear
attention map, we marginalized over each dimen-
sion as suggested by the authors (Kim et al., 2018).
MFB, BAN and Pythia generate multiple such at-
tention maps called “glimpses” by using multiple
projections. We averaged the glimpses after ex-
traction, yielding a single attention map for each
modality. Since it is unclear how the Transformer
layer weights relate to the original input features,
we instead extracted the attention weights of the
final projection layer in text and image streams for
MCANR and MCANG.

The extracted image attention maps contain one
weight per feature. To compare them with the
human spatial attention maps collected in VQA-
MHUG, we mapped the features back to their
source region in the image. For region-based fea-
tures we assigned the attention weights to the corre-
sponding bounding box normalized by region size.
Analogously, for grid-based features, we mapped
the attention weights to their corresponding grid
cells. The text attention vector was directly mapped
back to the question token sequence. We excluded

8https://github.com/facebookresearch/

grid-feats-vqa

74 samples due to varied tokenization between
models.

4.3 Performance Metrics

We compared the multimodal attention extracted
from five models to our human data in VQA-
MHUG using three approaches. We used Spear-
man’s rank correlation to compare importance rank-
ing of image regions and words, Jensen-Shannon
divergence to compare the distance between the
human, and neural attention distributions and a re-
gression model to study the suitability of text and
image correlation as predictors of per document
model accuracy.

Spearman’s rank correlation and Jensen-
Shannon divergence. Similar to prior work, we
downsampled all attention maps to 14x14 matrices
and calculated the mean Spearman’s rank correla-
tion ρ (Das et al., 2016) and Jensen-Shannon di-
vergence (JSD) (Sood et al., 2020a,b) between the
neural attention and the corresponding human at-
tention. We computed both metrics for both image
and text modalities. We also evaluated the corre-
sponding accuracy scores on the VQAv2 validation
set (Agrawal, 2015).

Ordinal Logistic Regression. Averaging corre-
lation over the whole dataset is too coarse and ob-
scures the impact that similarity to human attention
has on accuracy. Additionally, rank correlation
does not allow to analyze the effect of two inde-
pendent variables on a dependent variable (Bewick
et al., 2003), e.g. image and text attention correla-
tion on accuracy. To account for this and to study
on a per document basis which modality factors
influence the likelihood of a model to predict the

https://github.com/facebookresearch/grid-feats-vqa
https://github.com/facebookresearch/grid-feats-vqa
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(a) comparison to other attention datasets (b) model attention - text, image, and inter-modal comparison

Figure 2: Attention maps visualized across question types. Image attention seems mostly plausible throughout
models. Previous datasets lack attention on the questions, but we reveal now that text attention is not always
human-like, nor plausible. Mouse tracking datasets, SALICON and VQA-HAT, seem to over-estimate the relevant
areas.

answer correctly, we performed an Ordinal Linear
Regression (OLR).

The official VQAv2 evaluation (Agrawal, 2015)
score per document is based on agreement with
ten human annotator answers, where each match
increases the score by 0.3 (capped at 1.0 or 4 agreed
answers). Since our response variable (accuracy
score) is not necessarily ordered equidistant, we
binned accuracy scores for each document into a
likelihood scale (accuracy correctness).

The model predicts the likelihood of accuracy
correctness for each document with three different
predictors — the text correlation (x), the image
correlation (y), and the interaction between the text
and image correlation (z). The latter we deem inter-
modal correlation predictor, as it allows us to test if
the interaction between the correlation of text and
image impacts accuracy. Given that the dependant
variables are ranked we opted for using ordered
logistic regression to predict for each accuracy bin.

5 Results

5.1 Human and Neural Attention
Relationship – Averaged Over Documents

Table 2 shows the overall accuracy scores of the
five models on the VQAv2 validation set when
trained only on the training partition. The models
improved over the challenge years – MCAN grid
is the current SOTA (Jiang et al., 2020). For each
model and modality, we report the Spearman’s rank
correlation and JSD scores averaged over the entire
VQA-MHUG corpus (cf. Section 4.3). All figures
were averaged over nine model runs and the stan-
dard deviation is given over those instances. Given
that one cannot average p-values we used a paired
t-test to check if the differences in correlation and
JSD per document and between models were sta-
tistically significant at p < 0.05 (see Appendix
D).
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Image attention. Models using region features,
i.e. excluding MCANG, are more correlated
with human visual attention on images. MCANR
achieves the highest correlation, MFB the lowest,
and the general trend shows that models with higher
correlation had higher overall validation accuracy.
Although MCANG achieves the highest accuracy, it
had the lowest correlation with human image atten-
tion. For all model types, the difference between
image correlation scores is significant, except be-
tween Pythia and BAN (see Appendix D). With
respect to the JSD, we observed similar patterns
except for the Pythia model, which was more dis-
similar to human attention (had a higher overall
JSD) compared to BAN. For all model types, the
difference between image JSD scores was statisti-
cally significant (see Appendix D).

Text attention. Both the correlation and JSD
scores indicate that Pythia is the most similar to hu-
man text attention, followed by MFB.Models with
higher overall accuracy do not have high similarity
to human visual attention over text on the JSD and
correlation metrics. For both metrics, the differ-
ence in text attention between every model pairing
is statistically significant, except for the JSD scores
between pairings of BAN, MCANG, and MCANR
(see Appendix D).

5.2 Ordinal Logistic Regression

By averaging evaluation metrics (correlation and
JSD) across documents, we obscure the impact that
similarity has on each document with respect to ac-
curacy. The Ordinal Logistic Regression model re-
sults uncover the importance of the text and image
correlation scores as predictors on per document
accuracy.

Text Correlation. We show (cf. Table 3) for all
five different VQA models, that as the correlation
to human text attention decreases, the likelihood
that the models will be able to correctly predict the
answer significantly decreases/ Our findings show
that correlation to human text attention is a signifi-
cant predictor on accuracy. The MCANG, MCANR,
and MFB model have the strongest relationship (p
< 0.001) to text correlation being a significant pre-
dictor on accuracy. This indicates that for these
models in particular, the less the model is corre-
lated with human text attention, the less likely the
model will predict the answer correctly.

Image Correlation. Interestingly, we observe
the same trend as text correlation, in which image
attention correlation is also a significant predictor
on accuracy, but not consistently across all mod-
els.It is a significant predictor for three (MCANG,
Pythia, and BAN) out of the five total models.
Notably, the MCANG model has a significantly
strong relationship to image correlation. This indi-
cates that when the Pythia, BAN, and in particular
MCANG learn attention which is less correlated to
human image attention, then the model is more less
likely to be able to predict the answer correctly.

Inter-Modal Correlation. We paired the text
correlation x and the image correlation y together
as an inter-modal predictor z. Inter-modal corre-
lation tests whether the interaction between the
two correlation scores, as the predictor z, has an
effect on accuracy. Interestingly, inter-modal corre-
lation z is a significant predictor on accuracy for the
MCANG and Pythia models but not for the other 3
model types.

Attention Maps – Qualitative Analysis. Figure
2 visualizes the human as well as neural attention
distributions of five VQA models for a selection
of examples from the benchmark VQAv2 dataset.9

As can be seen, all previous datasets only uncover
the differences between human and neural image
attention, while VQA-MHUG (ours) allows for
studying multimodal neural VQA models attention.
We also find our attention maps to be highly rele-
vant and confirm that the mouse tracking datasets
SALICON and VQA-HAT seem to over-estimate
relevant areas. As the AiR-D dataset does not over-
lap with VQAv2, we separately visualize a selec-
tion of examples (see Section 3 overlapping with
our VQA-MHUG data (see Appendix F).

5.3 Discussion

When averaging metrics across all documents in
VQA-MHUG, our results regarding similarity be-
tween machine and human image attention and
performance follow insights derived from previous
work (Das et al., 2016), where they observed that as
the models improved with respect to accuracy they
were also more correlated to human attention on
the images. However, notably we only observe this
trend with the models which use region features.
That is, though the MCAN grid is the highest per-
forming model with respect to accuracy, it is also

9See Appendix G for additional examples.



34

Image Text

Model Accuracy ρ ↑ JSD ↓ ρ ↑ JSD ↓

MCANG 70.24% 0.509 ± 0.026 0.537 ± 0.003 −0.059 ± 0.012 0.402 ± 0.007
MCANR 67.24% 0.602 ± 0.003 0.467 ± 0.002 −0.042 ± 0.018 0.398 ± 0.017
Pythia 66.00% 0.584 ± 0.003 0.479 ± 0.001 0.251 ± 0.016 0.337 ± 0.015
BAN 65.91% 0.582 ± 0.004 0.469 ± 0.002 −0.132 ± 0.030 0.398 ± 0.021
MFB 65.06% 0.530 ± 0.003 0.523 ± 0.004 0.225 ± 0.055 0.352 ± 0.011

Table 2: Accuracy of the five models as well as the Spearman’s rank correlation (ρ) and the Jensen–Shannon
divergence (JSD) between neural and human attention over images (left) and text (right). Standard deviation was
calculated over nine model runs and indicates the attention variability between different instances of the same
architecture. All correlation and JSD scores between models differ significantly (p<0.05), except for the image
correlation between Pythia and BAN as well as the JSD text scores between BAN, MCANG and MCANR

the model which is least similar to human image
attention. Such an observation was also reported in
previous work which compared the XLNet trans-
former to human attention (Sood et al., 2020a).

Analysis from the Ordinal Logistic Regression
model shows, for the first time, that correlation
to human text attention is a significant predictor
across all VQA model types, where dissimilarity
between human and neural text attention decreases
the likelihood of the models ability to predict the
answer correctly. We conclude that striving to en-
hance neural attention to more similarly emulate
human attention on text will improve performance
in the five VQA models. As can be observed in
Figure 2, text attention is not always human-like, es-
pecially for the otherwise high performing MCAN
models, suggesting that increased similarity to hu-
man text attention might lead to further improve-
ments with respect to accuracy.

Due to the lack of human attention data over
text, researchers were not able to uncover the limi-
tations or relevance of high correlation to human
text attention on VQA model accuracy. In addi-
tion, our analysis on the role of image attention and
inter-modal attention as a predictor on accuracy
indicates that for certain model types it would be
beneficial to improve image and inter-modal corre-
lation. These findings are consistent with Sood et al.
(2020b) which found that different model types
learn different attention strategies and similarity
of machine to human attention does not guarantee
best performance. This may be due to factors such
as features used (grid versus region), the different
learned attention strategies across model types and
how the architectures model the interactions be-
tween the multimodal input features. For example,

Model Text Image Inter-Modal

MCANG -4.60*** -8.32*** -8.33***
MCANR -5.50*** 0.21 0.05
Pythia -2.83** -1.83* -1.81*
BAN -2.20* -3.62*** 0.53
MFB -3.32*** -0.05 -0.208

Table 3: Ordinal Logistic regression model t-values
such that for every one unit decrease in correlation,
each respective model is less likely to predict the an-
swer correctly. Significance is denoted as *p < 0.05,
**p < 0.01, ***p < 0.001. Correlation to human text
attention is a significant predictor of accuracy for all
five models. Correlation to human image attention is
an important for the accuracy of MCANG, Pythia, and
BAN while inter-modal correlationis a significant pre-
dictor of accuracy for both MCANG and Pythia.

the MCAN grid model applies self- and guided at-
tention to model the interplay between grid-based
image and text feature representations. On the other
hand, the Pythia model uses both bottom up atten-
tion (image features extracted on the region level)
and top down attention (text attention applied over
the images), where the text attention weights are
not learned by the image feature representations.

6 Conclusion and Future Work

In this work we have presented VQA-MHUG – a
new, fully annotated 49-participant dataset for vi-
sual question answering that includes nearly 4,000
question-answer pairs. Our dataset is unique in
that it is the first to provide real human gaze data
on both images and corresponding questions and,
as such, allows researchers to jointly study human
and machine attention. Revealed through a detailed
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comparison of multiple leading VQA models, we
showed that higher correlation between neural and
human text attention is a significant predictor of
high VQA performance. This novel finding high-
lights the potential to improve VQA performance
with human-like attention biases and simultane-
ously calls for further investigation of neural text
attention mechanisms, as we find these are an in-
dicator for success on language and vision tasks,
including VQA.

Ethical Statement

We identified a number of potential benefits and
risks of our approach.

Potential benefits By leveraging human behav-
ioral data, our method could be used to guide intelli-
gent user interfaces using human attentive abilities
within the context of reading behaviors. We see
significant potential of approach to interpret text
attention to enable a new generation of attentive
text interfaces, particularly when jointly modelling
with user task specific eye movement behaviors
during comprehension tasks. We see potential for
e-learning multimodal applications approach could
be used to qualify reader actions and provide feed-
back to encourage improvement in comprehension.
By bridging the gap between human and neural
attention, we see a potential positive impact in im-
proving attention strategies in users.

Potential risks Though we see the aforemen-
tioned potential benefits, we also identified a some
risks and ethical concerns. By aiming to interpret
the gap between human and machine attention, we
open the door for potentially exploiting user biases.
In addition, one can conceive that there is poten-
tial for using the findings of our work to develop
tool which discriminate against specific users given
their eye movement behaviors. This leads to the
discussionabout the behavioral data collection, it
is conceivable that one could generate a system
which might predicts cognitive impairments in or-
der to filter out individuals from some program or
opportunity.

Dataset Curation To protect the privacy of our
participants we saved all data anonymized and col-
lected only directly relevant data and demographic
information in compliance with our university’s
code of ethics and the General Data Protection
Regulation (GDPR) of the European Union (EU).
Our study was approved by the ethics committee

(institutional review board) of the university. Ad-
ditional measures for safety during the COVID-19
pandemic were taken with disinfection of the mate-
rial, obligatory masks and breaks between sched-
uled recording sessions. All participants signed a
consent form that included details about the pur-
pose, goal, procedure, risks, benefits and privacy
measures of our research. For the 45-60 minute
study an above average compensation of 20C was
paid. At any point the participant could abort the
study without penalty. The study took place in a
standard university lab and the participant’s head
was not fixed. Every 15 minutes a 5 minute break
was scheduled.
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Appendix

A VQA-MHUG Overlap to Related
Datasets

During the selection of stimuli for VQA-MHUG,
we maintained large overlaps with other bench-
mark and attention datasets that also used subsets
of VQAv2 questions/images to allow for easy inte-
gration and comparison of our data with existing
approaches (see Table 4).

Dataset ∩

VQAv2 val (Goyal et al., 2017a) 3,990
VG (Krishna et al., 2017) 2,238
VQA-CP2 (Agrawal et al., 2018b) 1,904
VQA-Rephrasings (Shah et al., 2019b) 1,373
VQA-Introspect (Selvaraju et al., 2020b) 1,213
SALICON (Jiang et al., 2015) 1,134
TDIUC (Kafle and Kanan, 2017) 1,125
VQS (Gan et al., 2017) 695
VQA-X (Park et al., 2018) 491
VQA-HAT (Das et al., 2016) 410

Table 4: Overlap of VQA-MHUG question-image pairs
with different established VQA related datasets.

B Reasoning Types

We binned question-image pairs by 12 reasoning
types, as they align better with potential error
classes than the VQAv2 question types. Figure
4 shows the relationship of reasoning types to ques-
tion types. The reasoning types incorporate the
categories proposed by Kafle and Kanan (2017),
except the absurd category and adding a new read-
ing category for questions that ask about text on
the images.

• Scene Recognition
• Object Presence
• Colour
• Positional Reasoning
• Counting
• Utility Affordance
• Object Recognition
• Activity Recognition
• Attribute
• Reading
• Sentiment Understanding
• Sport Recognition

B.1 Tagger

To label VQA-MHUG with our reasoning types we
used a LSTM-based classifier to predict the reason-
ing type given the question-answer pair. The input
text is encoded using 300D glove embeddings (Pen-
nington et al., 2014), which are passed though a
single LSTM layer with hidden size 256 and a fi-
nal softmax classification layer. We labeled 145 K
VQAv2 train-val questions and extended the 1.6 M
TDIUC questions by the reading category using
regular expressions and manual work. We trained
the network using this data by optimizing cross-
entropy loss with the Adam optimizer and a batch
size of 128. The final model achieves an accuracy
of 99.67% on a held-out set of 20% of the training
data. The trained tagger was then used to label
the question-image pairs in VQA-MHUG. Figure
3 shows the label distribution.

Figure 3: Final distribution of tagged reasoning types
in VQA-MHUG. When no other type fit, the tagger as-
signed utility affordance, which had the least training
data. This indicates that there could be clusters that do
not fit any current type.

C Machine Difficulty Score

For our machine difficulty score we evaluated the
Multimodal Factorized Bilinear Pooling Model
(MFB) (Yu et al., 2017) for multimodal fusion and
the Multimodal Co-Attention Network (MCAN)
(Yu et al., 2019b) for transformer attention on four
datasets (VQAv2, VQA-CPv2, VQA-Introspect
and VQA-Rephrasings). The standard VQAv2 and
VQA-CPv2 use simple accuracy, but VQA-CPv2
has intentionally dissimilar answer distributions
in the train and validation splits to not allow ex-
ploitation of priors. In general, low accuracy on
both model architectures indicates a harder ques-
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Figure 4: Relationship of our VQA-MHUG reasoning types (left) and VQAv2 question types (right). Question
types are no good categories for error case analysis since they mix many reasoning capabilities.

tion (Equation 1).

scoreVQA(ans) =

scoreVQA-CP(ans) =

1− (min(
# of annotators that said ans

3
, 1))

(1)

VQA-Introspect asks additional perceptual sub-
questions to VQAv2 and tests consistency w.r.t.
visual grounding. If a model is correct on the main
question "Can birds fly?", but fails the perceptual
sub-question "Are the birds in the air?", it is incon-
sistent and the question is potentially too easy, as
it can be answered from the question alone. We
assign the (binary encoded) four combinations of
"main correct/incorrect" and "all sub-questions cor-
rect/incorrect" numerical values to combine it with
the other metrics. In Equation 2, we purposefully
assign a high difficulty to a question where the per-
ceptual sub-question is correctly answered, but the
main reasoning question is not (01) and a low diffi-
culty for a question that seems to exploit question

bias (10).

scoreIntro =


1.0 00 or 01
0.25 10
0.0 11

(2)

Finally VQA-Rephrasings tests robustness
against 3 linguistic variations per question and mea-
sures this with a "consensus score" – the share of
fully correctly answered subsets of size k of a ques-
tion and its rephrasings. It is unclear how to inter-
pret different settings of k, so we set k = 1, which
simplifies to simple accuracy over the rephrasings
(Equation 3).

scoreRep =

1− (
# of correct k-sized subsets

# of k-sized subset

(3)

We combined the four resulting scores of each
MFB and MCAN in equal parts (Equation 4). Since
not all our candidate stimuli are present in all four
datasets used in the difficulty score, there is a set S
of |S| ∈ [1, 4] scores per question-image pair. We
penalize the cases where only one score is avail-
able by normalizing over avg(|S|) instead of |S| to
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counterweight the uncertainty it brings.

difficulty =

1

max(|S|, avg(|S|))
·
∑
s∈S

(
scoreMFB

s + scoreMCAN
s

2
)

(4)

Figure 5 shows the resulting distribution of diffi-
culty scores.

Figure 5: Final distribution of difficulty per tagged rea-
soning type in VQA-MHUG. Clearly some types like
reading and counting are harder than others.

D Significance between models

Table 5 shows the significance of the differences in
Rank Correlation and JSD for pairs of models.

E Experimental Setup

Binocular gaze data was collected with an EyeLink
1000 plus remote eye tracker at 2kHz. To ensure
gaze estimation accuracy, participants were asked
to use a mounted chin rest (see Figure 6). The stim-
uli was shown on a 24.5” screen with resolution of
1920× 1080 pixels. The monitor was placed 90cm
in front of the participants.

F MHUG vs. AiR-D Examples

The AiR-D dataset does not overlap with VQAv2,
as such we separately visualize a selection of ex-
amples (see Figures 7 and 8) from the overlapping
195 additional stimuli presented to humans during
the VQA-MHUG data collection.

G More Model Examples

Figures 9 and 10 show additional visualization ex-
amples of VQA-MHUG data in comparison with
the extracted model data. We randomly sampled

Figure 6: Setup of the eye tracker in our lab

question-image pairs with high image attention cor-
relation (Figure 9) and high text attention correla-
tion (Figure 10).
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Between Model Comparison Image Correlation Image JSD Text Correlation Text JSD

MCAN_G vs MCAN_R *** *** *** ***
MCAN_G vs PYTHIA *** *** *** ***
MCAN_G vs BAN *** *** *** p>0.05
MCAN_G vs MFB *** *** *** ***
MCAN_R vs PYTHIA *** *** *** ***
MCAN_R vs BAN *** *** *** p>0.05

PYTHIA vs BAN p>0.05 *** *** ***
PYTHIA vs MFB *** *** *** ***
BAN vs MFB *** *** *** ***

Table 5: We performed a paired t-test to indicate if the differences between correlation and JSD scores is statisti-
cally significant where p<0.05 (*), p<0.01 (**), p<0.001 (***). We show that for all models, the image correlation
scores are statistically differ except when comparing the Pythia and BAN models. The image JSD scores and text
correlation scores are significantly different for all models. The difference between models text JSD scores are
significant, except for between BAN and both MCAN networks.

Figure 7: Examples of MHUG gaze vs. AiR-D gaze Figure 8: Examples of MHUG gaze vs. AiR-D gaze
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Figure 9: Comparison of VQA-MHUG attention maps and the model extracted attention maps on text and images,
where image attention correlation is high.

Figure 10: Comparison of VQA-MHUG attention maps and the model extracted attention maps on text and images,
where text attention correlation is high.


