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concrete visual scenes. We use an integrated model
to characterize the child’s learning both during
the perception phase and during the production
phase. In the perception phase, the model opti-
mizes the generative probability of the tutor’s ut-
terances given the visual scenes. This probability
is refined thanks to exposure to several situations
(i.e., XSL).

In the production phase, the same language
model is now used to generate utterances given
a scene. The adequacy of the utterance is evalu-
ated against the gold standard descriptions of the
scene (representing the tutor’s superior knowledge).
The adequacy value is a continuous number we
use to characterize the valence of the Communica-
tive Feedback: The higher the adequacy, the more
likely the child receives signals of communication
success from the tutor (e.g., a positive, contingent
reaction). Vice versa, the lower the value, the more
likely the child receives signals of communication
breakdown (e.g. a puzzled face or a non-contingent
reaction). The model gets updated via Reinforce-
ment Learning (RL) using the adequacy value as a
reward.

Using this computational framework, we study
the role of CF in early semantics acquisition. In
addition, we investigate how CF interacts with XSL.
We evaluate and compare these two mechanisms in
terms of how they fare on a wide range of semantic
tasks including both word-level (nouns, adjectives,
and verbs) and sentence-level meaning acquisition
(e.g. semantic roles).

Combining some kind of (weakly) supervised
learning model with reinforcement learning is not a
new technique. Such a setup has been used in previ-
ous NLP work (Ranzato et al., 2016; Rennie et al.,
2017). The novelty of our work is to use these tools
to instantiate new hypotheses about early language
acquisition and to test these hypotheses using a
benchmark of language acquisition tasks, similar
to the tasks used to study children’s semantic learn-
ing in laboratory experiment.

The paper is organized as follows. First we
present the cross-modal dataset we use in this work
and introduce the modeling framework. We explain
how we instantiate both the perception-based mech-
anism (XSL) and the production-based mechanism
(CF) using tools from NLP and computer vision.
Next, we present the experiments we run: each rep-
resenting a learning scenario, including scenarios
combining both perception and production-based

mechanisms. Next, we test the extent to which
these models learn various aspects of semantics.
Finally, we discuss the results in the light of the
literature on early language learning.

To ensure reproducibility, we make the source
code for the model and all experiments publicly
available.2

2 Methods

2.1 Data
We used the Abstract Scenes dataset 1.1 (Zitnick
and Parikh, 2013; Zitnick et al., 2013), which con-
tains 10K crowd-sourced images each with 6 cor-
responding short descriptive captions in English.
The images are clip-art scenes involving one or two
children engaged in different actions involving a set
of different objects and animals.3 The correspond-
ing captions were crowd-sourced from a different
set of annotators.4 Two example scenes along with
descriptions can be found in Figure 1.

We use this dataset as it allows us to evaluate
the learning of visually-grounded semantics on
the word-level and sentence-level, using recently
proposed evaluation tasks by (Nikolaus and Four-
tassi, 2021) (see also Section 2.4). Other studies
on XSL have used larger dataset with naturalis-
tic images (e.g. Lin et al., 2014; Plummer et al.,
2015). However, there is currently no similar evalu-
ation method available for these datasets that allows
for detailed examination of the learned visually
grounded semantics. We divide the data into train-
ing (80%), validation (10%) and test splits (10%)
as proposed in Nikolaus and Fourtassi (2021).

2.2 Modeling framework
We develop an integrated modeling framework that
can both learn from pairs of images and sentences
in the context of XSL and and to produce its own
sentences given an image to learn using rewards
(CF). This framework will allow to assess various
learning scenario, including ones that combine both
XSL and CF.

Some previous work in NLP has used image-
sentence ranking models (Hodosh et al., 2013) to

2https://github.com/mitjanikolaus/
perception-and-production-based-learning

3Annotators were asked to “create an illustration for a
children’s story book by creating a realistic scene” given a set
of clip art objects (Zitnick and Parikh, 2013).

4Annotators were asked to write “simple sentences describ-
ing different parts of the scene”. They were asked to refer to
the children by the names “Jenny” and “Mike” (Zitnick et al.,
2013).

https://github.com/mitjanikolaus/perception-and-production-based-learning
https://github.com/mitjanikolaus/perception-and-production-based-learning
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learn the alignment of visual and language repre-
sentations, and thus to model cross-modal XSL
(Chrupała et al., 2017; Vong et al., 2021; Nikolaus
and Fourtassi, 2021). However, these models are
not designed to produce new utterances given an
image.

As we are here interested in both perception and
production, we use a different computational frame-
work borrowed from studies on image captioning
(Vinyals et al., 2015; Xu et al., 2015; Anderson
et al., 2018). This framework is based on a lan-
guage model conditioned on the image. Just like
the image-sentence ranking models, here the model
is trained using pairs of images and captions, in-
stantiating learning in a XSL fashion. In addition,
the same language model can be used to generate
sentences given an image, which we used to instan-
tiate the production-based mechanism CF. Since
the goal is not to produce a state-of-art image cap-
tioning model, we consider a basic implementation
close to that used in Vinyals et al. (2015).

To process the images, we use ResNet 50 (He
et al., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015), assuming that the visual system of the
child has already been developed to some degree al-
lowing her to process visual scene.5 We discard the
final classification layer and fine-tune the remain-
ing layers of this CNN during the training progress
to encode the images in our dataset.

Conditioned on this image encoding, an autore-
gressive language model learns to produce utter-
ances word by word: The words of a sentence are
passed through a linear word embedding layer and
then fed, together with the encoded image features6,
into a one-layer LSTM (Hochreiter and Schmidhu-
ber, 1997).

2.3 Model Training

Perception-based learning is realized by train-
ing the model using a cross-entropy loss. The
model is given pairs of images with correspond-
ing sentences and uses these to learn a mapping
from the visual to the language domain. Given an

5As commonly applied in other multimodal XSL work
(Chrupała et al., 2015; Khorrami and Räsänen, 2021).

6While Vinyals et al. (2015) fed the image features only
at the first timestep into the LSTM, here we feed it at every
timestep as this showed to improve performance on our evalu-
ation substantially. An explanation could be that when feeding
the image features only at the first timestep the model gradu-
ally forgets about the input, and relies more on the language
modeling task of next-word prediction, which does not aid the
learning of visually-grounded semantics.

image i and a target ground-truth sentence s con-
sisting of the words w1, . . . , wT , the loss is defined
as:

LXSL(θ) = −
T∑
t=1

log pθ(wt|w<t; i) (1)

Production-based learning is instantiated by
training the model using REINFORCE (Williams,
1992). To operationalize the Communicative Feed-
back (i.e., the reward), we calculate the BLEU
score (Papineni et al., 2002) between the produced
sentence and all 6 reference descriptions/captions
from the dataset, taking into account both the qual-
ity of semantics as well as word order (n-gram se-
quences).7 Crucially, the BLEU score takes into ac-
count the fact that there is not only one correct sen-
tence for each image, but rather a range of equally
adequate ways to describe the same scene. In par-
ticular, if the model produces an exact imitation
of one of the reference sentences, it obtains the
highest BLEU score, even if the other 5 reference
sentences are very different.

Given an image i, the sampled sentence from
the model sm = w1, . . . , wT and the 6 reference
sentences Sref = s1, . . . , s6, the loss is defined as
follows:

LCF (θ) = −
T∑
t=1

r(sm, Sref ) · log pθ(wt) (2)

where r(sm, Sref ) = BLEU(sm, Sref ).
More details on model hyperparameters can be

found in Appendix B.

2.4 Model Evaluation
In order to evaluate the model’s acquisition of
visually-grounded semantics, we use an evaluation
method proposed by Nikolaus and Fourtassi (2021).
It is based on a two-alternative forced choice de-
sign, similar to what is typically done to evaluate
children’s knowledge in laboratory experiments
(Bergelson and Swingley, 2012; Noble et al., 2011;
Gertner and Fisher, 2012). Note that the models

7While the BLEU score only measures the adequacy of
the children’s produced sentence, we used it here as a proxy
for adults’ Communicative Feedback. The assumption being
that the degree to which adults provide positive, contingent
responses (i.e., cues of coordination success) depends closely
on children’s production adequacy as was shown previously,
though in a different context, by Warlaumont et al. (2014). We
return to this assumption in the Discussion.
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Accuracy

Evaluation task XSL Alt XSL+CF XSL+Alt

Word-
level
Semantics

Nouns: Persons 0.87± 0.03 0.51± 0.01 0.79± 0.03 0.87± 0.04
Nouns: Animals 0.99± 0.01 0.53± 0.05 0.98± 0.01 0.99± 0.00
Nouns: Objects 0.94± 0.01 0.51± 0.01 0.94± 0.00 0.95± 0.00
Verbs 0.55± 0.05 0.50± 0.00 0.77± 0.04 0.73± 0.05
Adjectives 0.75± 0.02 0.50± 0.01 0.81± 0.03 0.82± 0.02

Sentence-
level
Semantics

Adj-noun dependencies 0.61± 0.03 0.50± 0.00 0.62± 0.02 0.63± 0.03
Verb-noun dependencies 0.55± 0.03 0.50± 0.00 0.72± 0.05 0.68± 0.02
Semantic roles 0.65± 0.07 0.50± 0.01 0.61± 0.05 0.61± 0.07

Average 0.74± 0.01 0.51± 0.01 0.78± 0.01 0.79 ± 0.01

Table 1: Accuracy (mean and standard deviation over 5 runs with different random initializations) for all semantic
evaluation tasks for different learning scenarios.

are not trained to optimize these tasks. The tasks
are only used during the evaluation phase and they
test if the models learn various aspects of semantics
as a “side product” of XSL and CF. Indeed, when
we evaluate children’s knowledge in the lab, we do
not suppose they have acquired their knowledge by
being trained on lab tasks.

Figure 1: Counter-balanced evaluation of visually-
grounded learning of semantics: Each test trial has a
corresponding counter-example, where target and dis-
tractor sentence are flipped. Figure reproduced from
Nikolaus and Fourtassi (2021).

These tasks test the model’s learning of
grounded semantics on the word level (nouns, ad-
jectives, verbs) and sentence level (adjective-noun
dependencies, verb-noun dependencies, semantic
roles). A task involves multiple test trials, each
consists of an image, a target sentence and a dis-
tractor sentence: (i, st, sd). Critically, each test
trial is counter-balanced to control for linguistic
biases (e.g., that Jenny occurs most frequently as
semantic agent and Mike more as a semantic pa-

tient), in a way that a language model that does not
have access to the image data performs at chance
(see also Figure 1, more examples are shown in
Appendix A).8

The model’s accuracy at choosing the correct
sentence st given the image i indicates how well
it has learned visually grounded semantics for the
phenomenon under study. We operationalize the
model’s choice for a trial by calculating both the
perplexity of the target sentence st given the image
i and the perplexity of the distractor sentence sd
given i. If the perplexity of the target sentence st
is lower, the trial has been successfully completed.

3 Analyses

3.1 Comparing learning scenarios
We study and compare four different learning sce-
narios:

XSL: Pure perception-based learning In this
scenario, the model learns only using XSL. It rep-
resents our baseline against which we compare
configurations including CF.

Alt: Alternating between perception and
production-based learning Here, the model
switches between the XSL and CF objectives
throughout the entire learning process.

XSL+CF: First pure perception-based learning,
then pure production-based learning We train

8Besides controlling for linguistic biases, the evaluation
sets also control for some potential visual biases, e.g., that
the semantic agent may occur more frequently on the left side
of the image (see Nikolaus and Fourtassi (2021) for more
details).
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the model until convergence using XSL, and after-
wards we fine tune the model using CF.

XSL+Alt: First pure perception-based learn-
ing, then alternation The model is first trained
until convergence using XSL, but afterwards, we
alternate between XSL and CF. This scenario is in-
tuitively the most plausible one: Once the language
learner starts to speak (i.e. produce their own utter-
ances), this does not mean that they stop to engage
in perception-based learning. Rather, they continue
learning using both mechanisms.

Accuracies for the four different learning sce-
narios are reported in Table 1.9 The scenario XSL
learns word-level and sentence-level semantics rel-
atively well compared to the other scenarios. It
only appears to struggle with the verbs and the
verb-noun dependencies. This fact highlights the
role of XSL as a major learning mechanism. When
looking at the results of Alt, we can conclude that
combining XSL and CF from the start deteriorates
the performance (compared to XSL alone) of all
metrics. This deterioration was observed regardless
of the frequency of alternation between XSL and
CF (for direct comparison with XSL+Alt we only
report results using one XSL update every 10 CF
updates in Table 1, but see Appendix C for results
with other alternation frequencies).

Moving to the more plausible scenarios (where
production comes into play only after a phase of
pure perception-based learning), we found that
for XSL+CF, we have, on the one hand, an in-
crease in performance (compared to the baseline
XSL) in some categories like “verbs,” “adjectives,”,
and “verb-noun dependencies.” On the other hand,
we observe a decrease in other categories, espe-
cially the category “persons.” Finally, the scenario
XSL+Alt leads to the best overall results except
for verbs and semantic roles, but the difference is
within the margin of error. Here we only show
results of XSL+Alt using one XSL update every
10 CF updates (which seems to optimize perfor-
mance), but other – both lower and higher – ratios
only marginally change the model’s behavior and
the conclusions remain the same (see Appendix C).

Appendix D contains a comparison of the BLEU
scores (our measure of utterance adequacy) for the
different learning scenarios. Consistent with our
semantic evaluation results, XSL+Alt leads to the

9Note that the results are not directly comparable to the re-
sults for the cross-situational learner in Nikolaus and Fourtassi
(2021), see Appendix E for more detail.

highest BLEU score.

3.2 Developmental Trajectories

Results in Table 1 show evaluation scores after the
model has converged on the entire dataset. Here we
test the developmental trajectories in each seman-
tic category using different data sizes as a proxy
for progression in time. Figure 2 shows the accu-
racy for different tasks when the best-performing
model XSL+Alt is trained on different training
data sizes. Already with very small training data
(10% of the original training set, 800 examples),
nouns and adjectives are learned to a high degree.
Verbs and sentence-level semantics are learned only
with larger training set sizes.

3.3 Effect of the data size used for XSL
pre-training

In the best performing configuration, XSL+Alt,
the model was first pre-trained on the entire dataset
using XSL, and then trained further using XSL and
CF, using again the entire dataset. However, in
real life, children spend only a fraction of their
learning time (generally the first year of their life)
doing pure perception-based learning. Thus, here
we test how different fractions of pre-training data
influence performance.

Figure 3 shows the average task accuracy (cf.
last row in Table 1) for XSL+Alt models that are
pre-trained until convergence on training datasets
of different size, and then trained in alternation
between XSL and CF on the full training dataset
until convergence. While the results indicate that
more pre-training data is better, we observe a steep
gain in average task accuracy starting from pre-
training only 5% of the data (up from chance level
with 0% pre-training, a limit case that corresponds
to the scenario of Alt alone), indicating that even a
small amount of perception-based training is useful
to initiate a successful learning trajectory.

4 Discussion

How do children learn the meanings of words and
sentences in their native language? Previous model-
ing effort has largely focused on perception-based
learning mechanisms such as XSL. However, chil-
dren do not learn only by mere exposure to the
perceptual cross-modal input, they also practice
their early – albeit rudimentary– knowledge and
receive feedback from caregivers, which allows
them to correct/refine this knowledge (Clark, 2018,
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Figure 2: Accuracy as a function of training set size for best performing learning setup (XSL+Alt). Vertical bars
indicate the standard deviation over 5 runs. Accuracies for all noun categories were averaged.

Figure 3: Average accuracy as a function of amount of
perception-based pre-training for the best performing
learning setup (XSL+Alt). Vertical bars indicate the
standard deviation over 5 runs.

2020). Here we investigated one possible feed-
back mechanism on children’s early production
(CF), that relies on general coordination and mis-
coordination cues, and does not necessarily require
the caregiver providing an explicit correction.

We proposed a computational model that inte-
grates both XSL and CF, allowing us to study how
these two mechanisms could interact in early se-
mantic learning. The same model learns both from
perceptual input and from feedback on production

through reinforcement. We tested various learning
scenarios that varied in their plausibility given our
understanding of how children’s learn language.
Crucially, we found that the most plausible learn-
ing scenario (i.e., XSL+Alt) – where the model
first learns through perception, and second through
alternating perception and production – is also the
one that leads to the best overall performance on
most semantic tasks.

The fact that XSL+Alt performed better than
XSL alone confirms the main hypothesis of this
work: CF plays a role in semantic learning above
and beyond XSL. In addition, the fact that Alt –
which alternates perception and production from
the start – hurts performance compared to XSL,
suggests that for CF to be effective, it requires a
first phase of learning through perception, which is
an intuitive finding since the model has first to be
exposed to enough linguistic/semantic input to be
able to start producing – at least partially – mean-
ingful utterances (for which RL is more useful).
This finding also corresponds to children’s learning
trajectory where they only start producing words
(and receiving feedback on them) after a period of
pure perception-based learning.10

10Children do not generally utter their first words until
they are about 10 months old (Frank et al., 2021) while they
already understand certain words well before that age (Bergel-
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Interactions between perception-based and
production-based learning Another interesting
finding of this work is that XSL+Alt (e.g., alter-
nating XSL and CF after a period of pure XSL)
performs better than XSL+CF (i.e., using CF alone
after a period of pure XSL). This finding means
that when CF is combined with XSL, it leads to
improvement in performance compared to when
either XSL or CF operates alone or in a sequential
fashion. In other words, we found that XSL and
CF interact synergistically to improve performance.
In what follows, we examine this observed synergy
in more details.

Results in Table 3 show that while XSL+CF im-
proved performance on “verbs” compared to XSL,
it also led to a significant drop in the category “per-
sons.”11 We speculate that by using reinforcement
learning alone, XSL+CF explores the hypothesis
space and picks short utterances that lead to a high
reward signal and continues (re)producing them.
While this behavior could lead to improvement for
the parts of the language that are well covered by
this local space (e.g., verbs), it can also lead to a
drop in performance for the other aspects. In partic-
ular, here the difference between Jenny and Mike
in the category “persons” may become forgotten.

Qualitative and quantitative investigation of the
model’s behavior supports our speculation. For
example, when we sample sentences randomly
from the productions of XSL+CF and XSL+Alt
given images in the validation set, we observed
that while XSL+CF produces a variety of verbs
(similar to XSL+Alt), it tends to produce system-
atically shorter utterances involving disproportion-
ately only one person (see Table 6 in Appendix F).

Figure 4 confirms this observation quantitatively:
XSL+CF increasingly produces sentences involv-
ing Jenny, but decreasingly sentences involving
Mike. This fact leads to the situation where the
model gets less feedback on the difference between
Jenny and Mike and, therefore, unlearns this dis-
tinction to some degree.

For XSL+Alt, the fraction of sentences involv-
ing Jenny and Mike remains largely constant, thus
avoiding the problem faced by XSL+CF. At the

son and Swingley, 2012), indicating that they engage in a
perception-based learning well before starting to produce their
own utterances.

11The drop in “persons” could explain the slight drop in
“semantic roles,” (as distinguishing the persons is a prereq-
uisite to understand semantic roles) however this slight drop
is within the margin of error, so we could not draw strong
conclusions about the difference with XSL for this category.

Figure 4: Comparison of the fraction of occurrences
of persons ("jenny" and "mike") in sentences pro-
duced during training of the XSL+CF (left) and
XSL+Alt (right) training setups. The graphs only dis-
play the second training step, not the pre-training using
XSL.

same time, XSL+Alt keeps a balanced coverage
of verbs allowing it to maintain the good scores
achieved by XSL+CF on this category (see Ap-
pendix F for a quantitative analysis comparing the
production of verbs in both models).

The conclusion we draw from comparing
XSL+CF and XSL+Alt is that, even after a pe-
riod of pure XSL, continuing to learn through XSL
from time to time while doing reinforcement on
production helps the model not to get biased to-
wards a subset of the language it is supposed to
learn. Similar phenomena of “language drift” – due
to reinforcement learning operating alone – have
been observed in another line of work studying
emergent communication systems (Lewis et al.,
2017; Lowe et al., 2019; Lazaridou et al., 2020).

Learning Trajectories The best performing
model, i.e. XSL+Alt, not only instantiates – in-
tuitively – the most plausible learning scenario in
early childhood, it also recapitulates some specific
findings in the language development literature
about the timeline of semantic learning. For ex-
ample, it learns nouns before predicates (adjectives
and verbs), resonating with previous findings about
the “noun bias” (Gentner, 1982; Bates et al., 1994;
Frank et al., 2021). That said, the models’ perfor-
mance on verbs (relative to other parts of speech)
should be interpreted with caution given the fact
that we only used static images in both training
and testing. In real life, children learn verbs from
dynamic actions and some experimental studies
also evaluate verb learning use videos instead of
static images (Golinkoff et al., 1987; Gertner et al.,
2006).
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The model shows a rather late onset of under-
standing sentence-level semantics such as semantic
roles, only after a sizable lexicon has been acquired.
This fact mirrors, e.g., the finding that children
show evidence of recognize semantic roles in a sen-
tence during their second year of life (Golinkoff
et al., 2013), that is, at an age when they have
already acquired a substantial vocabulary (Frank
et al., 2021). Note that the model’s performance
on sentence-level semantics remains relatively low
compared to word-level semantics even when learn-
ing from the entire dataset. It is difficult, based only
on the current results, to conclude whether more
data will lead to improvement in sentence-level se-
mantics or whether the model has already reached
its ceiling performance due to structural limitations
(e.g., the lack of higher-level conceptual knowledge
about semantic agency).

Limitations and future research directions
While our modeling work has allowed us to test cru-
cial hypotheses about semantic learning, it used –
like any modeling work – simplifying assumptions
about the phenomenon under study. For example,
here we used an integrated model for both percep-
tion and production. This choice was primarily
motivated by parsimony. While it allowed us to
provide a direct comparison of XSL and CF, it ab-
stracted away limitations in children’s production
abilities compared to perception (e.g., due to imma-
ture motor/articulatory skills) and from difficulties
that children face when trying to coordinate produc-
tion with perception (e.g. Clark and Hecht, 1983).
In addition, we did not account for constraints on
children’s information processing abilities during
the learning process (e.g., limited attention span
and working memory), and how these constraints
may, for example, translate in the learner focus-
ing on specific parts of the input (Gelderloos et al.,
2020).

More generally, the current work focused on in-
vestigating the input-output mapping problem for
semantic learning and how Communicative Feed-
back can help such learning. It did not intend to
account for the exact cognitive processes that oper-
ate in children’s mind nor did it take into account
specific cognitive limitations and constraints when
trying to achieve this mapping. Thus, this work
is best situated at the computational level of anal-
ysis (Marr, 1982), which is a necessary first step
towards a deeper understanding of the cognitive
implementation.

Another simplifying assumption of this work
was the use of the BLEU score as a reward to the
model when learning through reinforcement. In
other words, we used a measure that only evaluates
the extent to which the learner’s utterance is correct
as a proxy for how the teacher would react. While
this assumption is grounded in previous experimen-
tal work showing that adults’ responses are con-
tingent on children’s type of vocalization (Warlau-
mont et al., 2014), here we went beyond the broad
distinction studied in this previous work (speech vs.
non-speech) and assumed that adults’ responses are
also contingent on the adequacy of speech itself.
That is, immediate, positive reaction from adults is
more likely to follow correct/adequate speech from
the child, which would encourage the re-use of ad-
equate (but not inadequate) speech in subsequent
conversations.

Note that the BLEU score feeds the model with
ideal information whereas the feedback that chil-
dren receive in real life is highly dynamic, mul-
timodal and noisy. While, as we said above, the
current paper took a computational level of analysis
approach that only studied learning under optimal
conditions, future work is required to (1) estimate
the quality and frequency of Communicative Feed-
back in child-caregiver conversations (CHILDES
(MacWhinney, 2000)) and (2) use these findings
to assess the scalability of the current proposal to
account for child’s language use and development
in the real world.

In conclusion, this paper provides a quantitative
proof of concept about the role production-based
learning can play in semantic knowledge acquisi-
tion together with perception-based learning. An
important finding was that combining both mech-
anisms leads to synergistic learning. One ques-
tion for future experimental work is whether such
synergy can be observed in controlled behavioral
experiments.
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A Semantic evaluation examples

For reference, Figure 5 shows an example for each different semantic evaluation set as proposed in
Nikolaus and Fourtassi (2021).

Figure 5: Examples for the evaluation of word and sentence-level semantics. Each test trial consists of an image, a
target and a distractor sentence. Reproduced from Nikolaus and Fourtassi (2021).

B Hyperparameters

Model hyperparameters as indicated in Table 2 were chosen based on general best-practices and not any
further tuned (except for the frequency of CF updates, see Appendix C). During training, we evaluate
the model every 100 batches, and stop training if the BLEU score on the held out validation set does not
improve for 50 consecutive validations. All models converged within 8 hours when running on a single
GPU.

Parameter Value

Minimum word frequency for inclusion vocab 5
Word Embeddings Size 100
LSTM Hidden Layer Size 512
Optimizer Adam
Optimizer Initial Learning Rate 1 · 10−4

Optimizer Initial Learning Rate (Model fine-tuning) 1 · 10−5

Dropout 0.2
Batch size 32

Table 2: Model hyperparameters.
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C Varying frequency of CF updates

As the loss terms of the cross-entropy loss used in XSL and the policy gradient loss used in CF can take
very different margins, we experiment with different update frequencies of XSL updates with respect one
XSL update. An update frequency of 2 indicates that we perform an XSL update every 2 CF updates.

The results as shown in Table 3 show that we obtain the best results (average over all tasks) when
performing 1 XSL update every CF update for the model in the Alt setup, that is when alternating
production-based and perception-based learning from the start. However, the performance is still worse
than for a model trained using XSL alone (mainly regarding persons and semantic roles).

For our best performing setup, XSL+Alt, we observe a different pattern, displayed in Table 4. In this
case it is best to perform an XSL update every 10 CF updates. We hypothesize that this can be explained
by the fact that the CF updates are more useful in this setup, as the model has already learned a language
model in the first perception-based learning phase before starting to produce sentences. In the main text,
we report results for both Alt and XSL+Alt with a frequency of 10 CF updates per XSL update for
direct comparison.

Frequency of CF updates

Evaluation task 1 2 5 10 20

Word-
level
Semantics

Nouns: Persons 0.740 0.660 0.520 0.500 0.480
Nouns: Animals 0.997 0.978 0.703 0.667 0.500
Nouns: Objects 0.930 0.858 0.720 0.567 0.497
Verbs 0.597 0.556 0.542 0.486 0.500
Adjectives 0.786 0.714 0.643 0.554 0.500

Sentence-
level
Semantics

Adj-noun dependencies 0.786 0.714 0.643 0.554 0.500
Verb-noun dependencies 0.565 0.573 0.542 0.510 0.500
Semantic roles 0.540 0.500 0.480 0.500 0.440

Average 0.715 0.674 0.588 0.537 0.490

Table 3: Accuracy for all semantic evaluation tasks for varying frequency of CF updates in the Alt setup. Note
that we only performed one run for each setting, and thus some numbers do not match exactly those in the Table 1.

Frequency of CF updates

Evaluation task 1 2 5 10 20

Word-
level
Semantics

Nouns: Persons 0.900 0.880 0.880 0.860 0.900
Nouns: Animals 0.997 0.994 0.997 0.997 0.997
Nouns: Objects 0.952 0.957 0.954 0.954 0.949
Verbs 0.722 0.708 0.764 0.778 0.764
Adjectives 0.750 0.857 0.786 0.839 0.839

Sentence-
level
Semantics

Adj-noun dependencies 0.646 0.667 0.630 0.594 0.635
Verb-noun dependencies 0.598 0.593 0.630 0.720 0.708
Semantic roles 0.620 0.620 0.680 0.660 0.480

Average 0.773 0.785 0.790 0.800 0.784

Table 4: Accuracy for all semantic evaluation tasks for varying frequency of CF updates in the XSL+Alt setup.
Note that we only performed one run for each setting, and thus some numbers do not match exactly those in the
Table 1.
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D BLEU Scores

Table 5 shows the BLEU scores for all different learning scenarios. The score was calculated by sampling
images from the validation set and comparing generated sentences with the gold sentences. These
results are compatible with our observations using the grounded semantics evaluation tasks. Here again
XSL+Alt performs best.

XSL Alt XSL+CF XSL+Alt

66.5± 0.8 53.9± 0.6 70.8± 0.2 72.7± 0.5

Table 5: BLEU score on the test set (mean and standard deviation over 5 runs) for different learning setups.

E Comparison with Nikolaus and Fourtassi (2021)

Our baseline (XSL) results differ from the results in Nikolaus and Fourtassi (2021) for several reasons.
Firstly, their models are trained with a max-margin loss, instead of a cross-entropy objective as we

did here. We cannot evaluate our model by directly calculating similarity between images and sentences
because it does not learn a multimodal semantic embedding space. Thus, we evaluate it by calculating
conditional perplexity for both target and distractor sentences. These factors might explain the drop in
performance for some metrics, especially for sentence-level semantics. Future work should investigate
how to combine both training objectives (max-margin loss and cross-entropy loss), in order to combine
their respective benefits (e.g. Nikolaus et al., 2019).

Secondly, we do fine-tune the ResNet of our models, as we observed substantial performance im-
provements with this change. This might explain the gain in performance for adjectives (the children’s
emotions), which the model of Nikolaus and Fourtassi (2021) struggled with (probably due to the in-
appropriateness of the pre-trained image features, they are largely optimized for recognizing objects in
naturalistic scenes, but not clip-art objects).

F Analysis of produced sentences

Examples of models’ produced sentences (at the end of training) are shown in Table 6.

XSL+CF XSL+Alt

jenny is wearing glasses jenny is crying
an owl is sitting mike is holding balloons
jenny is holding mike is kicking the soccer ball
jenny is holding balloons jenny is holding a ketchup
jenny is flying jenny is playing in the sandbox
jenny is holding the jenny has glasses on
jenny is holding mike is making a pirate
jenny is wearing jenny is running away from the snake
mike is wearing the bear is wearing a wizards hat
jenny is angrily the rain is cooking lightning in the sky

Table 6: 10 sentences produced by the models for randomly sampled images from the validation set. The model
checkpoints used were from the end of training (epoch 19).

We further quantitatively compare the produced utterances during the training using XSL+CF and
XSL+Alt. Every 100 batches, we sample sentences from the model for all images in the validation set
and analyze these produced sentences for sentence length (Figure 6) as well as occurrences of persons
(Figure 4) and verbs (Figure 7). There are only 2 persons in the dataset, "jenny" and "mike". We
measure occurrence of persons by counting sentences that contain "jenny", but not "mike" (and vice versa).
Regarding the verbs, we count occurrences for all verbs that are used in the semantic evaluation tasks.

The examples show that the model produces increasingly short sentences when trained using XSL+CF.
We also observe a drop in mean sentence length for XSL+Alt, but to a substantially smaller degree.
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Figure 4 shows that the model trained using XSL+CF increasingly produces sentences involving "jenny",
but decreasingly sentences involving "mike". Thus it might get less feedback on the difference between
Jenny and Mike and unlearn this distinction to some degree. Consequently, it also struggles more to
understand semantics roles (distinguishing the persons is necessary to correctly map the semantic roles).
For XSL+Alt, the fraction of sentences involving "jenny" and "mike" remains largely constant.

Regarding the presence of verbs, Figure 7 shows a different pattern. While for XSL+Alt the fractions
do not vary much, in XSL+CF some verbs are produced increasingly. This might explain the large gain in
performance for verbs: The model produces more sentences involving verbs, and thus also receives more
valuable feedback to learn meaningful semantic representations.

Figure 6: Comparison of the mean sentence length during training of the XSL+CF and XSL+Alt training setups.
The graphs only display the second training step, not the pre-training using XSL.
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Figure 7: Comparison of the fraction of occurrences of verbs during training of the XSL+CF and XSL+Alt
training setups. The graphs only display the second training step, not the pre-training using XSL.


