@inproceedings{kutuzov-etal-2021-grammatical,
title = "Grammatical Profiling for Semantic Change Detection",
author = "Kutuzov, Andrey and
Pivovarova, Lidia and
Giulianelli, Mario",
editor = "Bisazza, Arianna and
Abend, Omri",
booktitle = "Proceedings of the 25th Conference on Computational Natural Language Learning",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.conll-1.33",
doi = "10.18653/v1/2021.conll-1.33",
pages = "423--434",
abstract = "Semantics, morphology and syntax are strongly interdependent. However, the majority of computational methods for semantic change detection use distributional word representations which encode mostly semantics. We investigate an alternative method, grammatical profiling, based entirely on changes in the morphosyntactic behaviour of words. We demonstrate that it can be used for semantic change detection and even outperforms some distributional semantic methods. We present an in-depth qualitative and quantitative analysis of the predictions made by our grammatical profiling system, showing that they are plausible and interpretable.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kutuzov-etal-2021-grammatical">
<titleInfo>
<title>Grammatical Profiling for Semantic Change Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrey</namePart>
<namePart type="family">Kutuzov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidia</namePart>
<namePart type="family">Pivovarova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 25th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arianna</namePart>
<namePart type="family">Bisazza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omri</namePart>
<namePart type="family">Abend</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantics, morphology and syntax are strongly interdependent. However, the majority of computational methods for semantic change detection use distributional word representations which encode mostly semantics. We investigate an alternative method, grammatical profiling, based entirely on changes in the morphosyntactic behaviour of words. We demonstrate that it can be used for semantic change detection and even outperforms some distributional semantic methods. We present an in-depth qualitative and quantitative analysis of the predictions made by our grammatical profiling system, showing that they are plausible and interpretable.</abstract>
<identifier type="citekey">kutuzov-etal-2021-grammatical</identifier>
<identifier type="doi">10.18653/v1/2021.conll-1.33</identifier>
<location>
<url>https://aclanthology.org/2021.conll-1.33</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>423</start>
<end>434</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Grammatical Profiling for Semantic Change Detection
%A Kutuzov, Andrey
%A Pivovarova, Lidia
%A Giulianelli, Mario
%Y Bisazza, Arianna
%Y Abend, Omri
%S Proceedings of the 25th Conference on Computational Natural Language Learning
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F kutuzov-etal-2021-grammatical
%X Semantics, morphology and syntax are strongly interdependent. However, the majority of computational methods for semantic change detection use distributional word representations which encode mostly semantics. We investigate an alternative method, grammatical profiling, based entirely on changes in the morphosyntactic behaviour of words. We demonstrate that it can be used for semantic change detection and even outperforms some distributional semantic methods. We present an in-depth qualitative and quantitative analysis of the predictions made by our grammatical profiling system, showing that they are plausible and interpretable.
%R 10.18653/v1/2021.conll-1.33
%U https://aclanthology.org/2021.conll-1.33
%U https://doi.org/10.18653/v1/2021.conll-1.33
%P 423-434
Markdown (Informal)
[Grammatical Profiling for Semantic Change Detection](https://aclanthology.org/2021.conll-1.33) (Kutuzov et al., CoNLL 2021)
ACL
- Andrey Kutuzov, Lidia Pivovarova, and Mario Giulianelli. 2021. Grammatical Profiling for Semantic Change Detection. In Proceedings of the 25th Conference on Computational Natural Language Learning, pages 423–434, Online. Association for Computational Linguistics.