@inproceedings{zhao-tao-2021-zyj123,
title = "{ZYJ}123@{D}ravidian{L}ang{T}ech-{EACL}2021: Offensive Language Identification based on {XLM}-{R}o{BERT}a with {DPCNN}",
author = "Zhao, Yingjia and
Tao, Xin",
editor = "Chakravarthi, Bharathi Raja and
Priyadharshini, Ruba and
Kumar M, Anand and
Krishnamurthy, Parameswari and
Sherly, Elizabeth",
booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages",
month = apr,
year = "2021",
address = "Kyiv",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.dravidianlangtech-1.29",
pages = "216--221",
abstract = "The development of online media platforms has given users more opportunities to post and comment freely, but the negative impact of offensive language has become increasingly apparent. It is very necessary for the automatic identification system of offensive language. This paper describes our work on the task of Offensive Language Identification in Dravidian language-EACL 2021. To complete this task, we propose a system based on the multilingual model XLM-Roberta and DPCNN. The test results on the official test data set confirm the effectiveness of our system. The weighted average F1-score of Kannada, Malayalam, and Tami language are 0.69, 0.92, and 0.76 respectively, ranked 6th, 6th, and 3rd",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-tao-2021-zyj123">
<titleInfo>
<title>ZYJ123@DravidianLangTech-EACL2021: Offensive Language Identification based on XLM-RoBERTa with DPCNN</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yingjia</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruba</namePart>
<namePart type="family">Priyadharshini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="family">Kumar M</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parameswari</namePart>
<namePart type="family">Krishnamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Sherly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kyiv</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The development of online media platforms has given users more opportunities to post and comment freely, but the negative impact of offensive language has become increasingly apparent. It is very necessary for the automatic identification system of offensive language. This paper describes our work on the task of Offensive Language Identification in Dravidian language-EACL 2021. To complete this task, we propose a system based on the multilingual model XLM-Roberta and DPCNN. The test results on the official test data set confirm the effectiveness of our system. The weighted average F1-score of Kannada, Malayalam, and Tami language are 0.69, 0.92, and 0.76 respectively, ranked 6th, 6th, and 3rd</abstract>
<identifier type="citekey">zhao-tao-2021-zyj123</identifier>
<location>
<url>https://aclanthology.org/2021.dravidianlangtech-1.29</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>216</start>
<end>221</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ZYJ123@DravidianLangTech-EACL2021: Offensive Language Identification based on XLM-RoBERTa with DPCNN
%A Zhao, Yingjia
%A Tao, Xin
%Y Chakravarthi, Bharathi Raja
%Y Priyadharshini, Ruba
%Y Kumar M, Anand
%Y Krishnamurthy, Parameswari
%Y Sherly, Elizabeth
%S Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kyiv
%F zhao-tao-2021-zyj123
%X The development of online media platforms has given users more opportunities to post and comment freely, but the negative impact of offensive language has become increasingly apparent. It is very necessary for the automatic identification system of offensive language. This paper describes our work on the task of Offensive Language Identification in Dravidian language-EACL 2021. To complete this task, we propose a system based on the multilingual model XLM-Roberta and DPCNN. The test results on the official test data set confirm the effectiveness of our system. The weighted average F1-score of Kannada, Malayalam, and Tami language are 0.69, 0.92, and 0.76 respectively, ranked 6th, 6th, and 3rd
%U https://aclanthology.org/2021.dravidianlangtech-1.29
%P 216-221
Markdown (Informal)
[ZYJ123@DravidianLangTech-EACL2021: Offensive Language Identification based on XLM-RoBERTa with DPCNN](https://aclanthology.org/2021.dravidianlangtech-1.29) (Zhao & Tao, DravidianLangTech 2021)
ACL