Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

Dimitra Gkatzia, Djamé Seddah (Editors)


Anthology ID:
2021.eacl-demos
Month:
April
Year:
2021
Address:
Online
Venue:
EACL
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2021.eacl-demos/
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/2021.eacl-demos.pdf

pdf bib
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
Dimitra Gkatzia | Djamé Seddah

pdf bib
Using and comparing Rhetorical Structure Theory parsers with rst-workbench
Arne Neumann

I present rst-workbench, a software package that simplifies the installation and usage of numerous end-to-end Rhetorical Structure Theory (RST) parsers. The tool offers a web-based interface that allows users to enter text and let multiple RST parsers generate analyses concurrently. The resulting RST trees can be compared visually, manually post-edited (in the browser) and stored for later usage.

pdf bib
SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
Xiaopeng Lu | Kyusong Lee | Tiancheng Zhao

Although open-domain question answering (QA) draws great attention in recent years, it requires large amounts of resources for building the full system and it is often difficult to reproduce previous results due to complex configurations. In this paper, we introduce SF-QA: simple and fair evaluation framework for open-domain QA. SF-QA framework modularizes the pipeline open-domain QA system, which makes the task itself easily accessible and reproducible to research groups without enough computing resources. The proposed evaluation framework is publicly available and anyone can contribute to the code and evaluations.

pdf bib
Finite-state script normalization and processing utilities: The Nisaba Brahmic library
Cibu Johny | Lawrence Wolf-Sonkin | Alexander Gutkin | Brian Roark

This paper presents an open-source library for efficient low-level processing of ten major South Asian Brahmic scripts. The library provides a flexible and extensible framework for supporting crucial operations on Brahmic scripts, such as NFC, visual normalization, reversible transliteration, and validity checks, implemented in Python within a finite-state transducer formalism. We survey some common Brahmic script issues that may adversely affect the performance of downstream NLP tasks, and provide the rationale for finite-state design and system implementation details.

pdf bib
CovRelex: A COVID-19 Retrieval System with Relation Extraction
Vu Tran | Van-Hien Tran | Phuong Nguyen | Chau Nguyen | Ken Satoh | Yuji Matsumoto | Minh Nguyen

This paper presents CovRelex, a scientific paper retrieval system targeting entities and relations via relation extraction on COVID-19 scientific papers. This work aims at building a system supporting users efficiently in acquiring knowledge across a huge number of COVID-19 scientific papers published rapidly. Our system can be accessed via https://www.jaist.ac.jp/is/labs/nguyen-lab/systems/covrelex/.

pdf bib
MATILDA - Multi-AnnoTator multi-language InteractiveLight-weight Dialogue Annotator
Davide Cucurnia | Nikolai Rozanov | Irene Sucameli | Augusto Ciuffoletti | Maria Simi

Dialogue Systems are becoming ubiquitous in various forms and shapes - virtual assistants(Siri, Alexa, etc.), chat-bots, customer sup-port, chit-chat systems just to name a few. The advances in language models and their publication have democratised advanced NLP.However, data remains a crucial bottleneck. Our contribution to this essential pillar isMATILDA, to the best of our knowledge the first multi-annotator, multi-language dialogue annotation tool. MATILDA allows the creation of corpora, the management of users, the annotation of dialogues, the quick adaptation of the user interface to any language and the resolution of inter-annotator disagreement. We evaluate the tool on ease of use, annotation speed and interannotation resolution for both experts and novices and conclude that this tool not only supports the full pipeline for dialogue annotation, but also allows non-technical people to easily use it. We are completely open-sourcing the tool at https://github.com/wluper/matilda and provide a tutorial video1.

pdf bib
AnswerQuest: A System for Generating Question-Answer Items from Multi-Paragraph Documents
Melissa Roemmele | Deep Sidhpura | Steve DeNeefe | Ling Tsou

One strategy for facilitating reading comprehension is to present information in a question-and-answer format. We demo a system that integrates the tasks of question answering (QA) and question generation (QG) in order to produce Q&A items that convey the content of multi-paragraph documents. We report some experiments for QA and QG that yield improvements on both tasks, and assess how they interact to produce a list of Q&A items for a text. The demo is accessible at qna.sdl.com.

pdf bib
T-NER: An All-Round Python Library for Transformer-based Named Entity Recognition
Asahi Ushio | Jose Camacho-Collados

Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.

pdf bib
Forum 4.0: An Open-Source User Comment Analysis Framework
Marlo Haering | Jakob Smedegaard Andersen | Chris Biemann | Wiebke Loosen | Benjamin Milde | Tim Pietz | Christian Stöcker | Gregor Wiedemann | Olaf Zukunft | Walid Maalej

With the increasing number of user comments in diverse domains, including comments on online journalism and e-commerce websites, the manual content analysis of these comments becomes time-consuming and challenging. However, research showed that user comments contain useful information for different domain experts, which is thus worth finding and utilizing. This paper introduces Forum 4.0, an open-source framework to semi-automatically analyze, aggregate, and visualize user comments based on labels defined by domain experts. We demonstrate the applicability of Forum 4.0 with comments analytics scenarios within the domains of online journalism and app stores. We outline the underlying container architecture, including the web-based user interface, the machine learning component, and the task manager for time-consuming tasks. We finally conduct machine learning experiments with simulated annotations and different sampling strategies on existing datasets from both domains to evaluate Forum 4.0’s performance. Forum 4.0 achieves promising classification results (ROC-AUC ≥ 0.9 with 100 annotated samples), utilizing transformer-based embeddings with a lightweight logistic regression model. We explain how Forum 4.0’s architecture is applicable for millions of user comments in real-time, yet at feasible training and classification costs.

pdf bib
SLTEV: Comprehensive Evaluation of Spoken Language Translation
Ebrahim Ansari | Ondřej Bojar | Barry Haddow | Mohammad Mahmoudi

Automatic evaluation of Machine Translation (MT) quality has been investigated over several decades. Spoken Language Translation (SLT), esp. when simultaneous, needs to consider additional criteria and does not have a standard evaluation procedure and a widely used toolkit. To fill the gap, we develop SLTev, an open-source tool for assessing SLT in a comprehensive way. SLTev reports the quality, latency, and stability of an SLT candidate output based on the time-stamped transcript and reference translation into a target language. For quality, we rely on sacreBLEU which provides MT evaluation measures such as chrF or BLEU. For latency, we propose two new scoring techniques. For stability, we extend the previously defined measures with a normalized Flicker in our work. We also propose a new averaging of older measures. A preliminary version of SLTev was used in the IWSLT 2020 shared task. Moreover, a growing collection of test datasets directly accessible by SLTev are provided for system evaluation comparable across papers.

pdf bib
Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing
Minh Van Nguyen | Viet Dac Lai | Amir Pouran Ben Veyseh | Thien Huu Nguyen

We introduce Trankit, a light-weight Transformer-based Toolkit for multilingual Natural Language Processing (NLP). It provides a trainable pipeline for fundamental NLP tasks over 100 languages, and 90 pretrained pipelines for 56 languages. Built on a state-of-the-art pretrained language model, Trankit significantly outperforms prior multilingual NLP pipelines over sentence segmentation, part-of-speech tagging, morphological feature tagging, and dependency parsing while maintaining competitive performance for tokenization, multi-word token expansion, and lemmatization over 90 Universal Dependencies treebanks. Despite the use of a large pretrained transformer, our toolkit is still efficient in memory usage and speed. This is achieved by our novel plug-and-play mechanism with Adapters where a multilingual pretrained transformer is shared across pipelines for different languages. Our toolkit along with pretrained models and code are publicly available at: https://github.com/nlp-uoregon/trankit. A demo website for our toolkit is also available at: http://nlp.uoregon.edu/trankit. Finally, we create a demo video for Trankit at: https://youtu.be/q0KGP3zGjGc.

pdf bib
DebIE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces
Niklas Friedrich | Anne Lauscher | Simone Paolo Ponzetto | Goran Glavaš

Recent research efforts in NLP have demonstrated that distributional word vector spaces often encode stereotypical human biases, such as racism and sexism. With word representations ubiquitously used in NLP models and pipelines, this raises ethical issues and jeopardizes the fairness of language technologies. While there exists a large body of work on bias measures and debiasing methods, to date, there is no platform that would unify these research efforts and make bias measuring and debiasing of representation spaces widely accessible. In this work, we present DebIE, the first integrated platform for (1) measuring and (2) mitigating bias in word embeddings. Given an (i) embedding space (users can choose between the predefined spaces or upload their own) and (ii) a bias specification (users can choose between existing bias specifications or create their own), DebIE can (1) compute several measures of implicit and explicit bias and modify the embedding space by executing two (mutually composable) debiasing models. DebIE’s functionality can be accessed through four different interfaces: (a) a web application, (b) a desktop application, (c) a REST-ful API, and (d) as a command-line application. DebIE is available at: debie.informatik.uni-mannheim.de.

pdf bib
A Dashboard for Mitigating the COVID-19 Misinfodemic
Zhengyuan Zhu | Kevin Meng | Josue Caraballo | Israa Jaradat | Xiao Shi | Zeyu Zhang | Farahnaz Akrami | Haojin Liao | Fatma Arslan | Damian Jimenez | Mohanmmed Samiul Saeef | Paras Pathak | Chengkai Li

This paper describes the current milestones achieved in our ongoing project that aims to understand the surveillance of, impact of and intervention on COVID-19 misinfodemic on Twitter. Specifically, it introduces a public dashboard which, in addition to displaying case counts in an interactive map and a navigational panel, also provides some unique features not found in other places. Particularly, the dashboard uses a curated catalog of COVID-19 related facts and debunks of misinformation, and it displays the most prevalent information from the catalog among Twitter users in user-selected U.S. geographic regions. The paper explains how to use BERT models to match tweets with the facts and misinformation and to detect their stance towards such information. The paper also discusses the results of preliminary experiments on analyzing the spatio-temporal spread of misinformation.

pdf bib
EasyTurk: A User-Friendly Interface for High-Quality Linguistic Annotation with Amazon Mechanical Turk
Lorenzo Bocchi | Valentino Frasnelli | Alessio Palmero Aprosio

Amazon Mechanical Turk (AMT) has recently become one of the most popular crowd-sourcing platforms, allowing researchers from all over the world to create linguistic datasets quickly and at a relatively low cost. Amazon provides both a web interface and an API for AMT, but they are not very user-friendly and miss some features that can be useful for NLP researchers. In this paper, we present EasyTurk, a free tool that improves the potential of Amazon Mechanical Turk by adding to it some new features. The tool is free and released under an open source license.

pdf bib
ASAD: Arabic Social media Analytics and unDerstanding
Sabit Hassan | Hamdy Mubarak | Ahmed Abdelali | Kareem Darwish

This system demonstration paper describes ASAD: Arabic Social media Analysis and unDerstanding, a suite of seven individual modules that allows users to determine dialects, sentiment, news category, offensiveness, hate speech, adult content, and spam in Arabic tweets. The suite is made available through a web API and a web interface where users can enter text or upload files.

pdf bib
COCO-EX: A Tool for Linking Concepts from Texts to ConceptNet
Maria Becker | Katharina Korfhage | Anette Frank

In this paper we present COCO-EX, a tool for Extracting Concepts from texts and linking them to the ConceptNet knowledge graph. COCO-EX extracts meaningful concepts from natural language texts and maps them to conjunct concept nodes in ConceptNet, utilizing the maximum of relational information stored in the ConceptNet knowledge graph. COCOEX takes into account the challenging characteristics of ConceptNet, namely that – unlike conventional knowledge graphs – nodes are represented as non-canonicalized, free-form text. This means that i) concepts are not normalized; ii) they often consist of several different, nested phrase types; and iii) many of them are uninformative, over-specific, or misspelled. A commonly used shortcut to circumvent these problems is to apply string matching. We compare COCO-EX to this method and show that COCO-EX enables the extraction of meaningful, important rather than overspecific or uninformative concepts, and allows to assess more relational information stored in the knowledge graph.

pdf bib
A description and demonstration of SAFAR framework
Karim Bouzoubaa | Younes Jaafar | Driss Namly | Ridouane Tachicart | Rachida Tajmout | Hakima Khamar | Hamid Jaafar | Lhoussain Aouragh | Abdellah Yousfi

Several tools and resources have been developed to deal with Arabic NLP. However, a homogenous and flexible Arabic environment that gathers these components is rarely available. In this perspective, we introduce SAFAR which is a monolingual framework developed in accordance with software engineering requirements and dedicated to Arabic language, especially, the modern standard Arabic and Moroccan dialect. After one decade of integration and development, SAFAR possesses today more than 50 tools and resources that can be exploited either using its API or using its web interface.

pdf bib
InterpreT: An Interactive Visualization Tool for Interpreting Transformers
Vasudev Lal | Arden Ma | Estelle Aflalo | Phillip Howard | Ana Simoes | Daniel Korat | Oren Pereg | Gadi Singer | Moshe Wasserblat

With the increasingly widespread use of Transformer-based models for NLU/NLP tasks, there is growing interest in understanding the inner workings of these models, why they are so effective at a wide range of tasks, and how they can be further tuned and improved. To contribute towards this goal of enhanced explainability and comprehension, we present InterpreT, an interactive visualization tool for interpreting Transformer-based models. In addition to providing various mechanisms for investigating general model behaviours, novel contributions made in InterpreT include the ability to track and visualize token embeddings through each layer of a Transformer, highlight distances between certain token embeddings through illustrative plots, and identify task-related functions of attention heads by using new metrics. InterpreT is a task agnostic tool, and its functionalities are demonstrated through the analysis of model behaviours for two disparate tasks: Aspect Based Sentiment Analysis (ABSA) and the Winograd Schema Challenge (WSC).

pdf bib
Representing ELMo embeddings as two-dimensional text online
Andrey Kutuzov | Elizaveta Kuzmenko

We describe a new addition to the WebVectors toolkit which is used to serve word embedding models over the Web. The new ELMoViz module adds support for contextualized embedding architectures, in particular for ELMo models. The provided visualizations follow the metaphor of ‘two-dimensional text’ by showing lexical substitutes: words which are most semantically similar in context to the words of the input sentence. The system allows the user to change the ELMo layers from which token embeddings are inferred. It also conveys corpus information about the query words and their lexical substitutes (namely their frequency tiers and parts of speech). The module is well integrated into the rest of the WebVectors toolkit, providing lexical hyperlinks to word representations in static embedding models. Two web services have already implemented the new functionality with pre-trained ELMo models for Russian, Norwegian and English.

pdf bib
LOME: Large Ontology Multilingual Extraction
Patrick Xia | Guanghui Qin | Siddharth Vashishtha | Yunmo Chen | Tongfei Chen | Chandler May | Craig Harman | Kyle Rawlins | Aaron Steven White | Benjamin Van Durme

We present LOME, a system for performing multilingual information extraction. Given a text document as input, our core system identifies spans of textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It subsequently performs coreference resolution, fine-grained entity typing, and temporal relation prediction between events. By doing so, the system constructs an event and entity focused knowledge graph. We can further apply third-party modules for other types of annotation, like relation extraction. Our (multilingual) first-party modules either outperform or are competitive with the (monolingual) state-of-the-art. We achieve this through the use of multilingual encoders like XLM-R (Conneau et al., 2020) and leveraging multilingual training data. LOME is available as a Docker container on Docker Hub. In addition, a lightweight version of the system is accessible as a web demo.

pdf bib
MadDog: A Web-based System for Acronym Identification and Disambiguation
Amir Pouran Ben Veyseh | Franck Dernoncourt | Walter Chang | Thien Huu Nguyen

Acronyms and abbreviations are the short-form of longer phrases and they are ubiquitously employed in various types of writing. Despite their usefulness to save space in writing and reader’s time in reading, they also provide challenges for understanding the text especially if the acronym is not defined in the text or if it is used far from its definition in long texts. To alleviate this issue, there are considerable efforts both from the research community and software developers to build systems for identifying acronyms and finding their correct meanings in the text. However, none of the existing works provide a unified solution capable of processing acronyms in various domains and to be publicly available. Thus, we provide the first web-based acronym identification and disambiguation system which can process acronyms from various domains including scientific, biomedical, and general domains. The web-based system is publicly available at http://iq.cs.uoregon.edu:5000 and a demo video is available at https://youtu.be/IkSh7LqI42M. The system source code is also available at https://github.com/amirveyseh/MadDog.

pdf bib
Graph Matching and Graph Rewriting: GREW tools for corpus exploration, maintenance and conversion
Bruno Guillaume

This article presents a set of tools built around the Graph Rewriting computational framework which can be used to compute complex rule-based transformations on linguistic structures. Application of the graph matching mechanism for corpus exploration, error mining or quantitative typology are also given.

pdf bib
Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in NLP
Rob van der Goot | Ahmet Üstün | Alan Ramponi | Ibrahim Sharaf | Barbara Plank

Transfer learning, particularly approaches that combine multi-task learning with pre-trained contextualized embeddings and fine-tuning, have advanced the field of Natural Language Processing tremendously in recent years. In this paper we present MaChAmp, a toolkit for easy fine-tuning of contextualized embeddings in multi-task settings. The benefits of MaChAmp are its flexible configuration options, and the support of a variety of natural language processing tasks in a uniform toolkit, from text classification and sequence labeling to dependency parsing, masked language modeling, and text generation.

pdf bib
SCoT: Sense Clustering over Time: a tool for the analysis of lexical change
Christian Haase | Saba Anwar | Seid Muhie Yimam | Alexander Friedrich | Chris Biemann

We present Sense Clustering over Time (SCoT), a novel network-based tool for analysing lexical change. SCoT represents the meanings of a word as clusters of similar words. It visualises their formation, change, and demise. There are two main approaches to the exploration of dynamic networks: the discrete one compares a series of clustered graphs from separate points in time. The continuous one analyses the changes of one dynamic network over a time-span. SCoT offers a new hybrid solution. First, it aggregates time-stamped documents into intervals and calculates one sense graph per discrete interval. Then, it merges the static graphs to a new type of dynamic semantic neighbourhood graph over time. The resulting sense clusters offer uniquely detailed insights into lexical change over continuous intervals with model transparency and provenance. SCoT has been successfully used in a European study on the changing meaning of ‘crisis’.

pdf bib
GCM: A Toolkit for Generating Synthetic Code-mixed Text
Mohd Sanad Zaki Rizvi | Anirudh Srinivasan | Tanuja Ganu | Monojit Choudhury | Sunayana Sitaram

Code-mixing is common in multilingual communities around the world, and processing it is challenging due to the lack of labeled and unlabeled data. We describe a tool that can automatically generate code-mixed data given parallel data in two languages. We implement two linguistic theories of code-mixing, the Equivalence Constraint theory and the Matrix Language theory to generate all possible code-mixed sentences in the language-pair, followed by sampling of the generated data to generate natural code-mixed sentences. The toolkit provides three modes: a batch mode, an interactive library mode and a web-interface to address the needs of researchers, linguists and language experts. The toolkit can be used to generate unlabeled text data for pre-trained models, as well as visualize linguistic theories of code-mixing. We plan to release the toolkit as open source and extend it by adding more implementations of linguistic theories, visualization techniques and better sampling techniques. We expect that the release of this toolkit will help facilitate more research in code-mixing in diverse language pairs.

pdf bib
T2NER: Transformers based Transfer Learning Framework for Named Entity Recognition
Saadullah Amin | Guenter Neumann

Recent advances in deep transformer models have achieved state-of-the-art in several natural language processing (NLP) tasks, whereas named entity recognition (NER) has traditionally benefited from long-short term memory (LSTM) networks. In this work, we present a Transformers based Transfer Learning framework for Named Entity Recognition (T2NER) created in PyTorch for the task of NER with deep transformer models. The framework is built upon the Transformers library as the core modeling engine and supports several transfer learning scenarios from sequential transfer to domain adaptation, multi-task learning, and semi-supervised learning. It aims to bridge the gap between the algorithmic advances in these areas by combining them with the state-of-the-art in transformer models to provide a unified platform that is readily extensible and can be used for both the transfer learning research in NER, and for real-world applications. The framework is available at: https://github.com/suamin/t2ner.

pdf bib
European Language Grid: A Joint Platform for the European Language Technology Community
Georg Rehm | Stelios Piperidis | Kalina Bontcheva | Jan Hajic | Victoria Arranz | Andrejs Vasiļjevs | Gerhard Backfried | Jose Manuel Gomez-Perez | Ulrich Germann | Rémi Calizzano | Nils Feldhus | Stefanie Hegele | Florian Kintzel | Katrin Marheinecke | Julian Moreno-Schneider | Dimitris Galanis | Penny Labropoulou | Miltos Deligiannis | Katerina Gkirtzou | Athanasia Kolovou | Dimitris Gkoumas | Leon Voukoutis | Ian Roberts | Jana Hamrlova | Dusan Varis | Lukas Kacena | Khalid Choukri | Valérie Mapelli | Mickaël Rigault | Julija Melnika | Miro Janosik | Katja Prinz | Andres Garcia-Silva | Cristian Berrio | Ondrej Klejch | Steve Renals

Europe is a multilingual society, in which dozens of languages are spoken. The only option to enable and to benefit from multilingualism is through Language Technologies (LT), i.e., Natural Language Processing and Speech Technologies. We describe the European Language Grid (ELG), which is targeted to evolve into the primary platform and marketplace for LT in Europe by providing one umbrella platform for the European LT landscape, including research and industry, enabling all stakeholders to upload, share and distribute their services, products and resources. At the end of our EU project, which will establish a legal entity in 2022, the ELG will provide access to approx. 1300 services for all European languages as well as thousands of data sets.

pdf bib
A New Surprise Measure for Extracting Interesting Relationships between Persons
Hidetaka Kamigaito | Jingun Kwon | Young-In Song | Manabu Okumura

One way to enhance user engagement in search engines is to suggest interesting facts to the user. Although relationships between persons are important as a target for text mining, there are few effective approaches for extracting the interesting relationships between persons. We therefore propose a method for extracting interesting relationships between persons from natural language texts by focusing on their surprisingness. Our method first extracts all personal relationships from dependency trees for the texts and then calculates surprise scores for distributed representations of the extracted relationships in an unsupervised manner. The unique point of our method is that it does not require any labeled dataset with annotation for the surprising personal relationships. The results of the human evaluation show that the proposed method could extract more interesting relationships between persons from Japanese Wikipedia articles than a popularity-based baseline method. We demonstrate our proposed method as a chrome plugin on google search.

pdf bib
Paladin: an annotation tool based on active and proactive learning
Minh-Quoc Nghiem | Paul Baylis | Sophia Ananiadou

In this paper, we present Paladin, an open-source web-based annotation tool for creating high-quality multi-label document-level datasets. By integrating active learning and proactive learning to the annotation task, Paladin makes the task less time-consuming and requiring less human effort. Although Paladin is designed for multi-label settings, the system is flexible and can be adapted to other tasks in single-label settings.

pdf bib
Story Centaur: Large Language Model Few Shot Learning as a Creative Writing Tool
Ben Swanson | Kory Mathewson | Ben Pietrzak | Sherol Chen | Monica Dinalescu

Few shot learning with large language models has the potential to give individuals without formal machine learning training the access to a wide range of text to text models. We consider how this applies to creative writers and present Story Centaur, a user interface for prototyping few shot models and a set of recombinable web components that deploy them. Story Centaur’s goal is to expose creative writers to few shot learning with a simple but powerful interface that lets them compose their own co-creation tools that further their own unique artistic directions. We build out several examples of such tools, and in the process probe the boundaries and issues surrounding generation with large language models.

pdf bib
FrameForm: An Open-source Annotation Interface for FrameNet
Büşra Marşan | Olcay Taner Yıldız

In this paper, we introduce FrameForm, an open-source annotation tool designed to accommodate predicate annotations based on Frame Semantics. FrameForm is a user-friendly tool for creating, annotating and maintaining computational lexicography projects like FrameNet and has been used while building the Turkish FrameNet. Responsive and open-source, FrameForm can be easily modified to answer the annotation needs of a wide range of different languages.

pdf bib
OCTIS: Comparing and Optimizing Topic models is Simple!
Silvia Terragni | Elisabetta Fersini | Bruno Giovanni Galuzzi | Pietro Tropeano | Antonio Candelieri

In this paper, we present OCTIS, a framework for training, analyzing, and comparing Topic Models, whose optimal hyper-parameters are estimated using a Bayesian Optimization approach. The proposed solution integrates several state-of-the-art topic models and evaluation metrics. These metrics can be targeted as objective by the underlying optimization procedure to determine the best hyper-parameter configuration. OCTIS allows researchers and practitioners to have a fair comparison between topic models of interest, using several benchmark datasets and well-known evaluation metrics, to integrate novel algorithms, and to have an interactive visualization of the results for understanding the behavior of each model. The code is available at the following link: https://github.com/MIND-Lab/OCTIS.

pdf bib
ELITR Multilingual Live Subtitling: Demo and Strategy
Ondřej Bojar | Dominik Macháček | Sangeet Sagar | Otakar Smrž | Jonáš Kratochvíl | Peter Polák | Ebrahim Ansari | Mohammad Mahmoudi | Rishu Kumar | Dario Franceschini | Chiara Canton | Ivan Simonini | Thai-Son Nguyen | Felix Schneider | Sebastian Stüker | Alex Waibel | Barry Haddow | Rico Sennrich | Philip Williams

This paper presents an automatic speech translation system aimed at live subtitling of conference presentations. We describe the overall architecture and key processing components. More importantly, we explain our strategy for building a complex system for end-users from numerous individual components, each of which has been tested only in laboratory conditions. The system is a working prototype that is routinely tested in recognizing English, Czech, and German speech and presenting it translated simultaneously into 42 target languages.

pdf bib
Breaking Writer’s Block: Low-cost Fine-tuning of Natural Language Generation Models
Alexandre Duval | Thomas Lamson | Gaël de Léséleuc de Kérouara | Matthias Gallé

It is standard procedure these days to solve Information Extraction task by fine-tuning large pre-trained language models. This is not the case for generation task, which relies on a variety of techniques for controlled language generation. In this paper, we describe a system that fine-tunes a natural language generation model for the problem of solving writer’s block. The fine-tuning changes the conditioning to also include the right context in addition to the left context, as well as an optional list of entities, the size, the genre and a summary of the paragraph that the human author wishes to generate. Our proposed fine-tuning obtains excellent results, even with a small number of epochs and a total cost of USD 150. The system can be accessed as a web-service and all the code is released. A video showcasing the interface and the model is also available.

pdf bib
OPUS-CAT: Desktop NMT with CAT integration and local fine-tuning
Tommi Nieminen

OPUS-CAT is a collection of software which enables translators to use neural machine translation in computer-assisted translation tools without exposing themselves to security and confidentiality risks inherent in online machine translation. OPUS-CAT uses the public OPUS-MT machine translation models, which are available for over a thousand language pairs. The generic OPUS-MT models can be fine-tuned with OPUS-CAT on the desktop using data for a specific client or domain.

pdf bib
Domain Expert Platform for Goal-Oriented Dialog Collection
Didzis Goško | Arturs Znotins | Inguna Skadina | Normunds Gruzitis | Gunta Nešpore-Bērzkalne

Today, most dialogue systems are fully or partly built using neural network architectures. A crucial prerequisite for the creation of a goal-oriented neural network dialogue system is a dataset that represents typical dialogue scenarios and includes various semantic annotations, e.g. intents, slots and dialogue actions, that are necessary for training a particular neural network architecture. In this demonstration paper, we present an easy to use interface and its back-end which is oriented to domain experts for the collection of goal-oriented dialogue samples. The platform not only allows to collect or write sample dialogues in a structured way, but also provides a means for simple annotation and interpretation of the dialogues. The platform itself is language-independent; it depends only on the availability of particular language processing components for a specific language. It is currently being used to collect dialogue samples in Latvian (a highly inflected language) which represent typical communication between students and the student service.

pdf bib
Which is Better for Deep Learning: Python or MATLAB? Answering Comparative Questions in Natural Language
Viktoriia Chekalina | Alexander Bondarenko | Chris Biemann | Meriem Beloucif | Varvara Logacheva | Alexander Panchenko

We present a system for answering comparative questions (Is X better than Y with respect to Z?) in natural language. Answering such questions is important for assisting humans in making informed decisions. The key component of our system is a natural language interface for comparative QA that can be used in personal assistants, chatbots, and similar NLP devices. Comparative QA is a challenging NLP task, since it requires collecting support evidence from many different sources, and direct comparisons of rare objects may be not available even on the entire Web. We take the first step towards a solution for such a task offering a testbed for comparative QA in natural language by probing several methods, making the three best ones available as an online demo.

pdf bib
PunKtuator: A Multilingual Punctuation Restoration System for Spoken and Written Text
Varnith Chordia

Text transcripts without punctuation or sentence boundaries are hard to comprehend for both humans and machines. Punctuation marks play a vital role by providing meaning to the sentence and incorrect use or placement of punctuation marks can often alter it. This can impact downstream tasks such as language translation and understanding, pronoun resolution, text summarization, etc. for humans and machines. An automated punctuation restoration (APR) system with minimal human intervention can improve comprehension of text and help users write better. In this paper we describe a multitask modeling approach as a system to restore punctuation in multiple high resource – Germanic (English and German), Romanic (French)– and low resource languages – Indo-Aryan (Hindi) Dravidian (Tamil) – that does not require extensive knowledge of grammar or syntax of a given language for both spoken and written form of text. For German language and the given Indic based languages this is the first towards restoring punctuation and can serve as a baseline for future work.

pdf bib
Conversational Agent for Daily Living Assessment Coaching Demo
Raymond Finzel | Aditya Gaydhani | Sheena Dufresne | Maria Gini | Serguei Pakhomov

Conversational Agent for Daily Living Assessment Coaching (CADLAC) is a multi-modal conversational agent system designed to impersonate “individuals” with various levels of ability in activities of daily living (ADLs: e.g., dressing, bathing, mobility, etc.) for use in training professional assessors how to conduct interviews to determine one’s level of functioning. The system is implemented on the MindMeld platform for conversational AI and features a Bidirectional Long Short-Term Memory topic tracker that allows the agent to navigate conversations spanning 18 different ADL domains, a dialogue manager that interfaces with a database of over 10,000 historical ADL assessments, a rule-based Natural Language Generation (NLG) module, and a pre-trained open-domain conversational sub-agent (based on GPT-2) for handling conversation turns outside of the 18 ADL domains. CADLAC is delivered via state-of-the-art web frameworks to handle multiple conversations and users simultaneously and is enabled with voice interface. The paper includes a description of the system design and evaluation of individual components followed by a brief discussion of current limitations and next steps.

pdf bib
HULK: An Energy Efficiency Benchmark Platform for Responsible Natural Language Processing
Xiyou Zhou | Zhiyu Chen | Xiaoyong Jin | William Yang Wang

Computation-intensive pretrained models have been taking the lead of many natural language processing benchmarks such as GLUE. However, energy efficiency in the process of model training and inference becomes a critical bottleneck. We introduce HULK, a multi-task energy efficiency benchmarking platform for responsible natural language processing. With HULK, we compare pretrained models’ energy efficiency from the perspectives of time and cost. Baseline benchmarking results are provided for further analysis. The fine-tuning efficiency of different pretrained models can differ significantly among different tasks, and fewer parameter number does not necessarily imply better efficiency. We analyzed such a phenomenon and demonstrated the method for comparing the multi-task efficiency of pretrained models. Our platform is available at https://hulkbenchmark.github.io/ .