@inproceedings{hassan-etal-2021-asad,
title = "{ASAD}: {A}rabic Social media Analytics and un{D}erstanding",
author = "Hassan, Sabit and
Mubarak, Hamdy and
Abdelali, Ahmed and
Darwish, Kareem",
editor = "Gkatzia, Dimitra and
Seddah, Djam{\'e}",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-demos.14",
doi = "10.18653/v1/2021.eacl-demos.14",
pages = "113--118",
abstract = "This system demonstration paper describes ASAD: Arabic Social media Analysis and unDerstanding, a suite of seven individual modules that allows users to determine dialects, sentiment, news category, offensiveness, hate speech, adult content, and spam in Arabic tweets. The suite is made available through a web API and a web interface where users can enter text or upload files.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hassan-etal-2021-asad">
<titleInfo>
<title>ASAD: Arabic Social media Analytics and unDerstanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sabit</namePart>
<namePart type="family">Hassan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamdy</namePart>
<namePart type="family">Mubarak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Gkatzia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This system demonstration paper describes ASAD: Arabic Social media Analysis and unDerstanding, a suite of seven individual modules that allows users to determine dialects, sentiment, news category, offensiveness, hate speech, adult content, and spam in Arabic tweets. The suite is made available through a web API and a web interface where users can enter text or upload files.</abstract>
<identifier type="citekey">hassan-etal-2021-asad</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-demos.14</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-demos.14</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>113</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ASAD: Arabic Social media Analytics and unDerstanding
%A Hassan, Sabit
%A Mubarak, Hamdy
%A Abdelali, Ahmed
%A Darwish, Kareem
%Y Gkatzia, Dimitra
%Y Seddah, Djamé
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F hassan-etal-2021-asad
%X This system demonstration paper describes ASAD: Arabic Social media Analysis and unDerstanding, a suite of seven individual modules that allows users to determine dialects, sentiment, news category, offensiveness, hate speech, adult content, and spam in Arabic tweets. The suite is made available through a web API and a web interface where users can enter text or upload files.
%R 10.18653/v1/2021.eacl-demos.14
%U https://aclanthology.org/2021.eacl-demos.14
%U https://doi.org/10.18653/v1/2021.eacl-demos.14
%P 113-118
Markdown (Informal)
[ASAD: Arabic Social media Analytics and unDerstanding](https://aclanthology.org/2021.eacl-demos.14) (Hassan et al., EACL 2021)
ACL
- Sabit Hassan, Hamdy Mubarak, Ahmed Abdelali, and Kareem Darwish. 2021. ASAD: Arabic Social media Analytics and unDerstanding. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 113–118, Online. Association for Computational Linguistics.