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Abstract

We present LOME, a system for performing
multilingual information extraction. Given a
text document as input, our core system iden-
tifies spans of textual entity and event men-
tions with a FrameNet (Baker et al., 1998)
parser. It subsequently performs coreference
resolution, fine-grained entity typing, and tem-
poral relation prediction between events. By
doing so, the system constructs an event and
entity focused knowledge graph. We can fur-
ther apply third-party modules for other types
of annotation, like relation extraction. Our
(multilingual) first-party modules either out-
perform or are competitive with the (monolin-
gual) state-of-the-art. We achieve this through
the use of multilingual encoders like XLM-R
(Conneau et al., 2020) and leveraging multi-
lingual training data. LOME is available as a
Docker container on Docker Hub. In addition,
a lightweight version of the system is accessi-
ble as a web demo.

1 Introduction

As information extraction capabilities continue to
improve due to advances in modeling, encoders,
and data collection, we can now look (back) to-
ward making richer predictions at the document-
level, with a large ontology, and across multiple
languages. Recently, Li et al. (2020) noted that
despite a growth of open-source NLP software in
general, there is still a lack of available software for
knowledge extraction. We wish to provide a start-
ing point that allows others to build increasingly
comprehensive document-level knowledge graphs
of events and entities from text in many languages.1

Therefore, we demonstrate LOME, a system for
multilingual information extraction with large on-
tologies. Figure 1 shows the high-level pipeline

∗Equal Contribution
1Information on using the Docker container, web demo,

and demo video at https://nlp.jhu.edu/demos.

by following a multilingual input example. A
sentence-level parser identifies both INGESTION

events and their arguments. To connect these events
cross-sententially, the system clusters coreferent
mentions and predicts the temporal relations be-
tween the events. LOME, which supports fine-
grained entity types, additionally labels entities
like the rabbit with LIVING THING/ANIMAL.

Several prior packages have also used advances
in state-of-the-art models to build comprehensive
information extraction systems. Li et al. (2019)
present an event, relation, and entity extraction and
coreference system for three languages: English,
Russian, and Ukrainian. Li et al. (2020, GAIA) ex-
tend that work to support cross-media documents.
However, both of these systems consist of language-
specific models that operate on monolingual docu-
ments after first identifying the language. On the
other hand, work prioritizing coverage across tens
or hundreds of languages is limited in their scope
in extraction (Akbik and Li, 2016; Pan et al., 2017).

Like prior work, LOME is focused on extracting
entities and events from raw text documents. How-
ever, LOME is language-agnostic; all components
prioritize multilinguality. Using XLM-R (Conneau
et al., 2020) as the underlying encoder paves the
way for both training on multilingual data (where
it exists) and inference in many languages.2 Our
pipeline includes a full FrameNet parser for events
and their arguments, neural coreference resolution,
an entity typing model over large ontologies, and
temporal resolution between events.

Our system is designed to be modular: each
component is trained independently and tuned on
task-specific data. To communicate between mod-
ules, we use CONCRETE (Ferraro et al., 2014), a
data schema used in other text processing systems
(Peng et al., 2015). One advantage of using a stan-

2XLM-R itself is trained on CommonCrawl data spanning
one hundred languages.

https://nlp.jhu.edu/demos
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Figure 1: Architecture of LOME. The system processes text documents as input and first uses a FrameNet parser
to detect entities and events. Then, a suite of models enrich the entities and events with additional predictions.
Each individual model can be trained and tuned independently, ensuring modularity of the pipeline. Annotations
between models are transferred using CONCRETE, a data schema for NLP.

dardized data schema is that it enables modular-
ization and extension. Unless there are annotation
dependencies, individual modules can be inserted,
replaced, merged, or bypassed depending on the
application. We discuss two example applications
of our CONCRETE-based modules, one of which
further extracts relations and the other performs
cross-sentence argument linking for events.

2 Tasks

The overarching application of LOME is to ex-
tract an entity- and event-centric knowledge graph
from a textual document. In particular, we are inter-
ested in using these graphs to support a multilingual
schema learning task (KAIROS3) for which data
has been annotated by the LDC (Cieri et al., 2020).
As a result, some parts of LOME are designed for
compatibility with the KAIROS event and entity
ontology. Nonetheless, there is significant overlap
with publicly available datasets, which we describe
for those tasks.

Figure 1 presents the architecture of our pipeline.
Besides the FrameNet parser, which is run first, the
remaining modules can be run in any order, if at all.
In addition, our use of a standardized data schema
for communication allows for the integration of
third-party systems. In this section, we will go into

3This goal is to develop a system that identifies, links, and
temporally sequences complex events. More information at
https://www.darpa.mil/program/knowledge-
directed-artificial-intelligence-
reasoning-over-schemas.

further detail for each task.

2.1 FrameNet Parsing
FrameNet parsing is a semantic role labeling style
task. The goal is to find all the frames and their
roles, as well as the trigger spans associated with
them in a sentence. Frames are concepts, such as
events or entities, in a sentences. Every frame is
associated with some roles, and both of them are
triggered by spans in the sentence.

Unlike most previous work (Yang and Mitchell,
2017; Peng et al., 2018; Swayamdipta et al., 2018),
our system is not conditioned on the trigger spans
or frames. We perform “full parsing” (Das et al.,
2014), where the input is a raw sentence, and the
output is the complete structure predictions.

As the first model in the whole pipeline system,
the trigger spans found by the FrameNet parser will
be used as candidate spans for all other tasks.

2.2 Entity Coreference Resolution
In coreference resolution, the goal is to cluster
spans in the text that refer to the same entity. Neural
models for doing so typically encode the text first
before identifying possible mentions (Lee et al.,
2017; Joshi et al., 2019, 2020). These spans are
scored pairwise to determine whether two spans
refer to each other. These scores then determine
coreference clusters by decoding under a variety of
strategies (Lee et al., 2018; Xu and Choi, 2020).

In this work, we choose a constant-memory vari-
ant of that model which also achieves high per-

https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
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Figure 2: A portion of the AIDA entity type ontology.

formance (Xia et al., 2020). The motivation here
is robustness: we prioritize the ability to soundly
run on all document lengths over slightly better
performing but fragile systems. In addition, be-
cause this coreference resolution model is part of
a broader entity-centric system, the module used
in this system does not perform the mention de-
tection step (which is left to the FrameNet parser).
Instead, both training and inference assumes given
mentions, and the task we are concerned about in
this paper is mention linking.

2.3 Entity Typing

Entity typing assigns a fine-grained semantic la-
bel to a span of text, where the span is a men-
tion of some entity found by the FrameNet parser.
Traditionally, labels include PER, GPE, ORG, etc.,
but recent work in fine-grained entity typing seek
to classify spans into types defined by hierar-
chical type ontologies (e.g. BBN (Weischedel
and Brunstein, 2005), FIGER (Ling and Weld,
2012), UltraFine4 (Choi et al., 2018), COLLIE
(Allen et al., 2020)). Such ontologies refine
coarse types like PER to fine-grained types such
as /person/artist/singer that sits on a
type hierarchy. A portion of the AIDA ontology
(LDC2019E07) is illustrated in Figure 2.

To support fine-grained ontologies, we employ a
recent coarse-to-fine-decoding entity typing model
(Chen et al., 2020a) that is specifically designed
to assign types that are defined by hierarchical on-
tologies. The use of a coarse-to-fine model also
allows users to select between coarse- and fine-
grained types. We swap the underlying encoder
from ELMo (Peters et al., 2018) to XLM-R to be
able to assign types over mentions in different lan-

4UltraFine is slightly different in that the types are buck-
eted into 3 categories of different granularity, but without
explicit subtyping relations.

guages using a single multilingual model, and to
enable transfer between languages.

The base typing model in Chen et al. (2020a)
supports entity typing on entity mentions. We ex-
tend this model to gain the ability to perform entity
typing on entities, i.e. clusters of entity mentions.
Since our decoder is coarse-to-fine and predicts a
type at each level of the type hierarchy, we employ
Borda voting on each level. Specifically, given
a coreference chain comprising mentions m1,··· ,n,
and the score for mention mi being typed as type
t as si,t, we perform Borda counting to select the
most confident type t∗ = argmaxt

∑
i r(i, t) over

all t’s in a specific type level, where r(i, t) =
1/rankt(si,t) is the ranking relevance score used
in Borda counting.

2.4 Temporal Relation Extraction

The task of temporal relation extraction focuses
on finding the chronology of events (e.g., Before,
After, Overlaps) in text. Extracting temporal rela-
tion is useful for various downstream tasks – cu-
rating structured clinical data (Savova et al., 2010;
Soysal et al., 2018), text summarization (Glavaš
and Šnajder, 2014; Kedzie et al., 2015), question-
answering (Llorens et al., 2015; Zhou et al., 2019),
etc. The task is most commonly viewed as a clas-
sification task where given a pair of events and its
textual context, the temporal relation between them
needs to be identified.

The construction of the TimeBank corpus (Puste-
jovsky et al., 2003) largely spurred the research in
temporal relation extraction. It included 14 tem-
poral relation labels. Other corpora (Verhagen
et al., 2007, 2010; Sun et al., 2013; Cassidy et al.,
2014) reduced the number of labels to a smaller
number owing to lower inter-annotator agreements
and sparse annotations. Various types of models
(Chambers et al., 2014; Cheng and Miyao, 2017;
Leeuwenberg and Moens, 2017; Ning et al., 2017;
Vashishtha et al., 2019; Zhou et al., 2021) have
been used in the recent years to extract temporal
relations from text.

In this work, we use Vashishtha et al. (2019)’s
best model and retrain it using XLM-R. We evaluate
their model using the transfer learning approach
described in their work and retrain it on TimeBank-
Dense (TBD) (Cassidy et al., 2014). TBD uses a
reduced set of 5 temporal relation labels – before,
after, includes, is included, and vague.
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3 System Design

3.1 Modularization

Our system is modularized into separate models
and libraries that communicate with each other
using CONCRETE, a data format for richly anno-
tating natural language documents (Ferraro et al.,
2014). Each component is independent of each
other, which allows for both inserting additional
modules or deleting those provided in the default
pipeline. We choose this loosely-affiliated design
to enable both faster and independent prototyping
of individual components, as well as better com-
partmentalization of our models.

We emphasize that the system is a pipeline:
while individual modules can be further improved,
the system is not designed to be trained end-to-
end and benchmarking the richly-annotated output
depends on the application and priorities. In this
paper, we only benchmark individual components
and describe a couple of applications.

3.2 System Inputs and Outputs

The system can consume, as input, either tokenized
or untokenized text, which is first tokenized ei-
ther by whitespace or with a multilingual tokenizer,
PolyGlot.5 However, this tokenization is not nec-
essarily used by all modules, which may choose to
either operate on the raw text itself or on a Sentence-
Piece (Kudo and Richardson, 2018) retokenization.

The system outputs a CONCRETE communica-
tion file for each input document. This output
file contains annotations including entities, events,
coreference, entity types, and temporal relations.
This schema used is entirely self-contained and the
well-documented library also contains tools for vi-
sualizing and inspecting CONCRETE files.6 For the
web demo, the output is displayed in the browser.

4 Evaluation Benchmarks

4.1 FrameNet Span Finding

The FrameNet parser is comprised of an XLM-R
encoder, a BIO tagger, and a typing module. It en-
codes the input sentences into a list of vectors, used
by both the BIO tagger and the typing module. The
goal of BIO tagger is to find trigger spans, which
are then labeled by the typing module. To parse a
sentence, we run the model to find all frames, and
then find their roles conditioned on the frames.

5https://github.com/aboSamoor/polyglot
6http://hltcoe.github.io/concrete/

We train the FrameNet parser on the FrameNet
v1.7 corpus following Das et al. (2014), with statis-
tics in Table 1. We evaluate the results with exact
matching as our metric,7 and get 56.34 labeled F1
or 66.41 unlabeled F1. Since we are not aware of
previous work on both full parsing and a metric for
its evaluation, we do not have a baseline. However,
we can force the model to perform frame identifica-
tion given the trigger span, like prior work. These
results are shown in Table 2.

# Sentences # Frames # Roles

train 3120 18604 32419
dev 311 2209 3853
test 1333 6687 11277

Table 1: Statistics of FrameNet v1.7

Model Accuracy

Yang and Mitchell (2017) 88.2
Hermann et al. (2014) 88.4
Peng et al. (2018) 90.0
This work 91.3

Table 2: Result on frame identification

4.2 Coreference Resolution
We retrain the model by Xia et al. (2020) with XLM-
R (large) as the underlying encoder and with addi-
tional multilingual data. The model is a constant-
memory variant of neural coreference resolution
models. We refer the reader to Xia et al. (2020) for
model and training details.

Unlike that work, we operate under the assump-
tion that we are provided gold spans. This is moti-
vated by the location of coreference in LOME. In
addition, while they use a frozen encoder, we found
that finetuning improves performance.8 Finally, we
train on the full OntoNotes 5.0 (Weischedel et al.,
2013; Pradhan et al., 2013), a subset of SemEval
2010 Task 1 (Recasens et al., 2010), and two ad-
ditional sources of Russian data, RuCor (Toldova
et al., 2014) and AnCor (Budnikov et al., 2019).

We benchmark the performance of our model on
each language. We report the average F1 of MUC
(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),
and CEAFφ4 (Luo, 2005) by language in Table 3.
We can compare the model’s performance to mono-
lingual gold-only baselines, where they exist. For

7A role is considered to be correctly predicted only when
its frame is precisely predicted.

8We use AdamW and a learning rate of 5× 10−6.

https://github.com/aboSamoor/polyglot
http://hltcoe.github.io/concrete/
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English, we trained an identical model but instead
use SpanBERT (Joshi et al., 2020), an English-only
encoder finetuned for English OntoNotes corefer-
ence. That model achieves 92.2 average (dev.) F1,
compared to our 92.7. There is also a comparable
system for Russian AnCor from Le et al. (2019),
which achieves 79.9 F1 using the model from Lee
et al. (2018) and RuBERT (Kuratov and Arkhipov,
2019). This shows that our single, multilingual
model, can perform similarly to monolingual mod-
els, with the advantage that our model does not
need to perform language ID. This finding mirrors
prior findings showing multilingual encoders are
strong cross-lingually (Wu and Dredze, 2019).

Language # Training # Eval Docs Avg. F1

ArabicO 359 44 71.3
CatalanS 829 142 58.7

ChineseO 1810 252 90.8
DutchS 145 23 63.5

EnglishO 2802 343 92.7
ItalianS 80 17 47.2

RussianA 573 127 77.3
SpanishS 875 140 63.5

Table 3: Average F1 scores by language with gold
mentions. The superscripts O indicates data from
OntoNotes 5.0 (dev), S indicates data from SemEval
2010 Task 1 (dev), and A is the AnCor data (test).

4.3 Entity Typing

We retrain the coarse-to-fine entity typer by Chen
et al. (2020a) with XLM-R as the underlying en-
coder, and using the AIDA ontology as the type
label inventory. The dataset annotated from AIDA
is relatively small. To make the model more ro-
bust, we pre-train the model using extra training
data from GAIA (Li et al., 2020), where they ob-
tained YAGO fine-grained types (Suchanek et al.,
2008) from the results of Freebase entity linking,
and mapped these types to the AIDA ontology.
After pre-training, we fine-tune the model using
the AIDA M18 and M36 data with 3-fold cross-
validation, where each fold is distinct in the topics
of these documents. The sizes of these datasets are
shown in Table 4.

Our models perform well in these datasets. Us-
ing one third of the AIDA M36 data as dev, our
method obtained 60.1% micro-F1 score;9 with pre-
training using GAIA extra data, we get 76.5%.

Our system can also be extended to support other
9Please refer to Chen et al. (2020a) for the exact definitions

of the evaluation metric.

Data source Language # of entities

AIDA M18 English 4,433
Russian 4,826

LDC2019E07 Ukrainian 4,261

AIDA M36 English 703
Spanish 557

LDC2020E29 Russian 729

GAIA
English 42.8M
Spanish 11.1M
Russian 2.4M

Table 4: Statistics of the datasets used for training our
entity typing model.

commonly used fine-grained entity type ontologies.
We report the results in micro-F1 in Table 5.

Ontology Prior state-of-the-art Ours

BBN 78.1 (Lin and Ji, 2019) 80.5
FIGER 79.8 (Lin and Ji, 2019) 80.8

UltraFine 40.1 (Onoe and Durrett, 2019) 41.5

Table 5: Performance of our hierarchical entity typing
model across several typing ontologies.

4.4 Temporal Relation Extraction

We retrain Vashishtha et al. (2019)’s best fine-
grained temporal relation model on UDS-T
(Vashishtha et al., 2019) using XLM-R (large).
We then use their transfer learning approach and
train an SVM model on event-event relations in
TimeBank-Dense (TBD) to predict categorical tem-
poral relation labels. With this approach, we see a
micro-F1 score of 56 on the test set of TBD.10

For better performance, we train the same model
on additional TempEval3 (TE3) dataset (UzZaman
et al., 2013). Since TE3 and TBD use a different
set of temporal relations, we consider only those
instances that are labeled with 4 temporal relations
from both TE3 and TBD for joint training – be-
fore, after, includes (container), and is included
(contained). We retrain Vashishtha et al. (2019)’s
transfer learning model on the combined TE3 and
TBD dataset considering only these 4 relations and
evaluate on their combined test set.11 Results on
the combined test set are reported in Table 6. We
use this model as the default temporal relation ex-
traction model in LOME.

10The train and dev set of TBD has a total of 4,590 instances
and the test set has 1,405 instances of event-event relations.

11We consider only event-event relations and the combined
dataset has 5,987 (1,249) instances in the train (test) set.
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We also test our default model on a Chinese tem-
poral relation extraction dataset (Li et al., 2016).12

In the zero-shot setting, we get a micro F1 score
of 52.6 on the provided dataset, as compared to a
majority baseline of 37.5.13 Similar to the default
temporal system in LOME, we use the XLM-R ver-
sion of Vashishtha et al. (2019)’s model obtaining
relation embeddings for the Chinese dataset and
train an SVM model using the transfer learning
approach to get a micro F1 score of 64.4.14

Relation Precision Recall F1

before 68 89 77
after 74 69 71

includes 83 5 10
is included 44 15 22

Table 6: Result on the combined test set of TempEval3
and TimeBank-Dense when trained with just 4 tempo-
ral relation labels

5 Extensions

5.1 Incorporating third-party systems
Besides the core components described above,
we also discuss the viability of including addi-
tional modules that may not fit directly in the
core pipeline but can be included depending on
the downstream application. For example, the sys-
tem described above does not predict any relation
information, which is needed for the motivating
application of downstream schema inference. To
do so, we wrote a CONCRETE and Docker wrapper
around OneIE (Lin et al., 2020) and attached it at
the end of the pipeline. With our CONCRETE based
design, the integration of any third-party module
can be done via implementing the AnnotateCommu-
nicationService service interface, which can ensure
compatibility between LOME and external mod-
ules. The OneIE wrapper is one example of an
external module.

5.2 Mix and Match Modules: SM-KBP
As another example application, we reconfigured
our pipeline for the NIST SM-KBP 2020 Task 1

12We remove the instances with unknown relation from
the dataset and convert the predictions with includes and
is included relations to the overlaps relation to match the
label set of their dataset with our system.

13The authors were able to provide only half of the dataset
with 10,476 event-event pairs, from which we ignore instances
with unknown relation, resulting into 9,362 instances.

14The results are the average of the 5-fold cross validation
splits provided by Li et al. (2016).

evaluation, which aims to produce document-level
knowledge graphs.15 Each given document may be
in English, Russian, or Spanish. On a development
set consisting solely of text-only documents,16 we
started with initial predictions made by GAIA (Li
et al., 2020), for entity clusters, entity types, events
and relations. Our goal was to recluster and relabel
the a dataset for knowledge extraction.

Our pipeline consisted of the multilingual coref-
erence resolution (using the predetermined men-
tion from GAIA) and hierarchical entity typing
models discussed in this paper, followed by a sepa-
rate state-of-the-art argument linking model (Chen
et al., 2020b). We found improved performance17

with entity coreference (from 29.1 F1 to 33.3 F1),
especially in Russian (from 26.2 F1 to 33.3 F1),
likely due to our use of multilingual data and con-
textualized encoders. The improved entity clusters
also led to downstream improvements in entity typ-
ing and argument linking. This example highlights
the ability to pick out subcomponents of LOME
and customize according to the downstream task.

6 Usage

We present two methods to interact with the
pipeline. The first is a Docker container which
contains the libraries, code, and trained models of
our pipeline. This is intended to run on batches of
documents. As a lighter demo of some of the sys-
tem capabilities, we also have a web demo intended
to interactively run on shorter documents.

Docker Our Docker image18 consists of the four
core modules: FrameNet parser, coreference reso-
lution, entity typing, and temporal resolution. Fur-
thermore, there are two options for entity typing:
a fine-grained hierarchical model (with the AIDA
typing ontology) and a coarse-grained model (with
the KAIROS typing ontology). The container and
documentation is available on Docker Hub.

As some modules depend on GPU libraries,
the image also requires NVIDIA-Docker support.
Since there is a high start-up (time) cost for using
Docker and loading models, we recommend using
this container for batch processing of documents.
Further instructions for running can be found on
the LOME Docker Hub page.

15https://tac.nist.gov/2020/KBP/SM-
KBP/index.html

16AIDA M36, LDC2020E29.
17This evaluation metric is specific to the NIST SM-KBP

2020 task. It takes entity types into account.
18https://hub.docker.com/r/hltcoe/lome

https://tac.nist.gov/2020/KBP/SM-KBP/index.html
https://tac.nist.gov/2020/KBP/SM-KBP/index.html
https://hub.docker.com/r/hltcoe/lome
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Web Demo We make a few changes for the web
demo.19 To reduce latency, we preload the models
into memory and we do not write the CONCRETE

communications to disk. At the cost of modular-
ity, this makes the demo lightweight and fast, al-
lowing us to run it on a single 16GB CPU-only
server. To present the predictions, our front-end
uses AllenNLP-demo.20

In addition, the web demo is currently limited
to FrameNet parsing and coreference resolution, as
other models will increase latency and may impede
usability. The web demo is intended to highlight
only some of the system’s capabilities, like its abil-
ity to process multilingual documents.

7 Conclusions

To facilitate increased interest in multilingual
document-level knowledge extraction with large
ontologies, we create and demonstrate LOME, a
system for event and entity knowledge graph cre-
ation. Given input text documents, LOME runs a
full FrameNet parser, coreference resolution, fine-
grained entity typing, and temporal relation predic-
tion. Furthermore, each component uses XLM-R,
allowing our system to support a broader set of lan-
guages than previous systems. The pipeline uses a
standardized data schema, which invites extending
the pipeline with additional modules. By releasing
both a Docker image and presenting a lightweight
web demo, we hope to enable the community to
build on top of LOME for even more comprehen-
sive information extraction.
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Goran Glavaš and Jan Šnajder. 2014. Event graphs
for information retrieval and multi-document sum-
marization. Expert Systems with Applications,
41(15):6904–6916.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1448–1458, Baltimore, Mary-
land. Association for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Chris Kedzie, Kathleen McKeown, and Fernando Diaz.
2015. Predicting salient updates for disaster summa-
rization. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1608–1617, Beijing, China. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation
of deep bidirectional multilingual transformers for
russian language. In Computational Linguistics and
Intellectual Technologies, pages 333–339.

T. A. Le, M. A. Petrov, Y. M. Kuratov, and M. S. Burt-
sev. 2019. Sentence level representation and lan-
guage models in the task of coreference resolution
for russian. In Computational Linguistics and Intel-
lectual Technologies, pages 364–373.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Artuur Leeuwenberg and Marie-Francine Moens. 2017.
Structured learning for temporal relation extraction
from clinical records. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 1150–1158, Valencia, Spain. Associa-
tion for Computational Linguistics.

Manling Li, Ying Lin, Joseph Hoover, Spencer White-
head, Clare Voss, Morteza Dehghani, and Heng Ji.
2019. Multilingual entity, relation, event and hu-
man value extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 110–115, Minneapolis, Minnesota.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/P18-1009
https://www.aclweb.org/anthology/2020.lrec-1.423
https://www.aclweb.org/anthology/2020.lrec-1.423
https://www.aclweb.org/anthology/2020.lrec-1.423
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.1162/COLI_a_00163
http://www.akbc.ws/2014/submissions/akbc2014_submission_18.pdf
https://doi.org/https://doi.org/10.1016/j.eswa.2014.04.004
https://doi.org/https://doi.org/10.1016/j.eswa.2014.04.004
https://doi.org/https://doi.org/10.1016/j.eswa.2014.04.004
https://doi.org/10.3115/v1/P14-1136
https://doi.org/10.3115/v1/P14-1136
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.3115/v1/P15-1155
https://doi.org/10.3115/v1/P15-1155
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://www.dialog-21.ru/media/4606/kuratovyplusarkhipovm-025.pdf
http://www.dialog-21.ru/media/4606/kuratovyplusarkhipovm-025.pdf
http://www.dialog-21.ru/media/4606/kuratovyplusarkhipovm-025.pdf
http://www.dialog-21.ru/media/4609/letaplusetal-160.pdf
http://www.dialog-21.ru/media/4609/letaplusetal-160.pdf
http://www.dialog-21.ru/media/4609/letaplusetal-160.pdf
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://www.aclweb.org/anthology/E17-1108
https://www.aclweb.org/anthology/E17-1108
https://doi.org/10.18653/v1/N19-4019
https://doi.org/10.18653/v1/N19-4019


157

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 77–86, Online. Association
for Computational Linguistics.

Peifeng Li, Qiaoming Zhu, Guodong Zhou, and
Hongling Wang. 2016. Global inference to Chi-
nese temporal relation extraction. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 1451–1460, Osaka, Japan. The COLING
2016 Organizing Committee.

Ying Lin and Heng Ji. 2019. An attentive fine-grained
entity typing model with latent type representation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6197–
6202, Hong Kong, China. Association for Computa-
tional Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada., pages 94–100.

Hector Llorens, Nathanael Chambers, Naushad UzZa-
man, Nasrin Mostafazadeh, James Allen, and James
Pustejovsky. 2015. SemEval-2015 task 5: QA Tem-
pEval - evaluating temporal information understand-
ing with question answering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 792–800, Denver, Colorado.
Association for Computational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1027–1037, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North

American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
2407–2417, Minneapolis, Minnesota. Association
for Computational Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1492–1502, New Orleans, Louisiana.
Association for Computational Linguistics.

Nanyun Peng, Francis Ferraro, Mo Yu, Nicholas An-
drews, Jay DeYoung, Max Thomas, Matthew R.
Gormley, Travis Wolfe, Craig Harman, Benjamin
Van Durme, and Mark Dredze. 2015. A concrete
Chinese NLP pipeline. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 86–90, Denver, Colorado. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, et al. 2003. The Timebank corpus. In Corpus
linguistics, volume 2003, page 40. Lancaster, UK.

Marta Recasens, Lluı́s Màrquez, Emili Sapena,
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