
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 2376–2387
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

2376

A Study of Automatic Metrics for the Evaluation of Natural Language
Explanations

Miruna-Adriana Clinciu
Edinburgh Centre for Robotics

Heriot-Watt University
University of Edinburgh
mc191@hw.ac.uk

Arash Eshghi
Heriot-Watt University

Edinburgh, United Kingdom
a.eshghi@hw.ac.uk

Helen Hastie
Heriot-Watt University

Edinburgh, United Kingdom
h.hastie@hw.ac.uk

Abstract
As transparency becomes key for robotics
and AI, it will be necessary to evaluate
the methods through which transparency is
provided, including automatically generated
natural language (NL) explanations. Here, we
explore parallels between the generation of
such explanations and the much-studied field
of evaluation of Natural Language Generation
(NLG). Specifically, we investigate which
of the NLG evaluation measures map well
to explanations. We present the ExBAN
corpus: a crowd-sourced corpus of NL
explanations for Bayesian Networks. We
run correlations comparing human subjective
ratings with NLG automatic measures. We
find that embedding-based automatic NLG
evaluation methods, such as BERTScore and
BLEURT, have a higher correlation with
human ratings, compared to word-overlap
metrics, such as BLEU and ROUGE. This
work has implications for Explainable AI and
transparent robotic and autonomous systems.

1 Introduction

The machine learning models and algorithms
underlying today’s AI and robotic systems are
increasingly complex with their internal operations
and decision-making processes ever more opaque.
This opacity is not just an issue for the end-user, but
also the creators and analysts of these systems. As
we move towards building safer and more ethical
systems, this lack of transparency needs to be
addressed. One key trait of a transparent system
is its ability to be able to explain its deductions
and articulate the reasons for its actions in Natural
Language (NL). As the area of Explainable AI
(XAI) grows and is mandated (cf. the EU General
Data Protection Regulation's “right to explanation”
(Commission, 2018) and standardisation (cf. IEEE
forthcoming standard on Transparency (P7001)),
it has become ever more important to be able

to evaluate the quality of the NL explanations
themselves, as well as the AI algorithms they
explain. Furthermore, the importance of evaluating
explanations has been emphasised by researchers
within the social cognitive sciences (Leake, 2014;
Zemla et al., 2017; Doshi-Velez and Kim, 2017).
To date, explanations have mostly been evaluated
by collecting human judgements, which is both
time-consuming and costly. Here, we view
generating explanations as a special case of Natural
Language Generation (NLG), and so we explore
mapping existing automatic evaluation methods
for NLG onto explanations. We study whether
general, domain-independent evaluation metrics
within NLG are sensitive enough to capture the
peculiarities inherent in NL explanations (Kumar
and Talukdar, 2020), such as causality; or whether
NL explanations constitute a sui-generis category,
thus requiring their own automatic evaluation
methods and criteria.

In this paper, we firstly present the ExBAN
dataset: a corpus of NL explanations generated
by crowd-sourced participants presented with the
task of explaining simple Bayesian Network (BN)
graphical representations. These explanations were
subsequently rated for Clarity and Informativeness,
two subjective ratings previously used for NLG
evaluations (Gatt and Krahmer, 2018; Howcroft
et al., 2020). The motivation behind using BN
is that they are reasonably easy to interpret, are
frequently used for the detection of anomalies in
the data (Tashman et al., 2020; Saqaeeyan et al.,
2020; Metelli and Heard, 2019; Mascaro et al.,
2014), and have been used to approximate deep
learning methods (Riquelme et al., 2018; Gal
and Ghahramani, 2016), which we could, in turn,
explain in Natural Language.

Secondly, we explore a wide range of automatic
measures commonly used for evaluating NLG to
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understand if they capture the human-assessed
quality of the corpus explanations. We then go on
to discuss their strengths and weaknesses through
quantitative and qualitative analysis.

Our contributions are thus as follows: (1) a new
corpus of natural language explanations generated
by humans, who are asked to interpret Bayesian
Network graphical representations, accompanied
by subjective quality ratings of these explanations.
This corpus can be used in various application
areas including Explainable AI, general Artificial
Intelligence, linguistics and NLP; (2) a study
of methods for evaluating explanations through
automatic measures that reflect human judgements;
and (3) qualitative discussion into these metrics’
sensitivity by examining specific explanations
varying on the Informativeness/Clarity scales.

2 Related Work

Explanations are a core component of human
interaction (Scalise et al., 2017; Krening et al.,
2017; Madumal et al., 2019). In the context
of Machine Learning (ML), explanations should
articulate the decision-making process of an ML
model explicitly, in a language familiar to people as
communicators (De Graaf and Malle, 2017; Miller,
2018). According to Plumb et al. (2018), three
of the most common types of explanation are: (1)
global explanations, which describe the overall
behaviour of the entire model (Arya et al., 2019);
(2) local explanations, commonly taking the form
of counterfactuals (Sokol and Flach, 2019) that
describe why particular events happened (known
also as “everyday explanations”); and (3) example-
based explanations that present examples from the
training set to explain algorithmic behaviour (Cai
et al., 2019).

Recently, various explanation systems provide
different types of explanations for AI systems:
the LIME method visually explains how sampling
and local model training works by using local
interpretable model-agnostic explanations (Ribeiro
et al., 2016); MAPLE can provide feedback for
all three types of explanations: example-based,
local and global explanations (Plumb et al., 2018);
CLEAR explains a single prediction by using
local explanations that include statements of key
counterfactual cases (White and d’Avila Garcez,
2019). Whilst these techniques and tools gain some
ground in explaining deep machine learning, the

explanations they provide are not necessarily aimed
at the (non-expert) end-user and so are not always
intuitive.

NLG has traditionally been broken down into
“what” to say (content selection) and “how” to say
it (surface realisation) and can draw parallels with
Natural Language explanations. In particular, it is
important to gauge how much content or how many
reasons to present to the user, to inform them fully
without overloading them. For example, prior work
has shown that people prefer shorter explanations
that offer only sufficient detail to be considered
useful (Harbers et al., 2009; Yuan et al., 2011).

According to Miller et al. (2017), how explainers
generate and select explanations depends on so-
called pragmatic influences of causes, and they
found that people seem to prefer simpler and more
general explanations. Similarly, Lombrozo (2007)
notes that simplicity and generality might be the
key to evaluating explanations. This was partly
the case described in (Chiyah Garcia et al., 2018),
but here the users were experts and preferred to
be given all possible reasons but as precise and
brief as possible. It is clear from these prior
works that explanations have to be evaluated in
the context of the scenario, prior knowledge and
preferences of the explainee, and the intent and
goals of the explainer. These could be, for example,
establishing trust (Miller et al., 2017), agreement,
satisfaction, or acceptance of the explanation and
the system (Gregor and Benbasat, 1999).

Somewhat analogous to auto-generated
explanations are the fields of summarisation
of text (Tourigny and Capus, 1998; Deutch et al.,
2016) and Question-Answering (Dali et al., 2009;
Xu et al., 2017; Lamm et al., 2020). This is
because they provide users (expert and lay users)
with various forms of summaries (visual or textual)
and answers containing explanations to enable
them to have a better understanding of content.

Summarisation methods and sentence compression
techniques can help to build comprehensive
explanations (Winatmoko and Khodra, 2013). With
regards to evaluating these summarisation methods,
Xu et al. (2020) proposed an evaluation metric that
weighted the facts present in the source document
according to the facts selected by a human-written
(natural language) summary, by using contextual
embeddings. This evaluation of text accuracy
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is indeed related to explanations because any
explanation must contain enough statements to
support decision-making and understanding. These
statements should be accurate and true.

The growing interest in the AI community to
investigate the potential of NL explanations for
bridging the gap between AI and HCI has resulted
in an increasing number of NL explanations
datasets. The ELI5 dataset1 (Fan et al., 2019) is
composed of explanations represented as multi-
sentence answers for diverse questions where users
are encouraged to provide answers, which are
comprehensible for a five-year-old. WorldTree
V22 (Jansen et al., 2019) is a corpus of Science-
Domain that contains explanation graphs for
elementary science questions, where explanations
represent interconnected sets of facts. CoS-
E3 is a dataset of human explanations for
commonsense reasoning in the form of natural
language sequences and highlighted annotations
(Rajani et al., 2019). Multimodal Explanations
Datasets (VQA-X and ACT-X) contain textual
and visual explanations from human annotators
(Park et al., 2018). e-SNLI4 is a corpus of
explanations built on the question: “Why is a pair
of sentences in a relation of entailment, neutrality,
or contradiction?” (Camburu et al., 2018). Finally,
the SNLI corpus5 is a large annotated corpus for
learning natural language inference (Bowman et al.,
2015), considered one of the first corpora of NL
explanations.

In this paper, we present a new corpus for NL
explanations. The ExBAN corpus presented here
provides a valuable addition to this set of corpora
as it is aimed at explaining structured graphical
models (in particular Bayesian Networks), that are
closely linked to ML methods.

3 ExBAN Corpus

The ExBAN Corpus (Explanations for BAyesian
Networks)6 consists of NL Explanations collected

1https://facebookresearch.github.io/
ELI5/

2http://www.cognitiveai.org/
explanationbank

3https://github.com/salesforce/cos-e
4https://github.com/OanaMariaCamburu/

e-SNLI
5https://nlp.stanford.edu/projects/

snli/
6The data is openly released at https://github.

com/MirunaClinciu/ExBAN

in a two step process: (1) NL explanations were
produced by human subjects; (2) in a separate
study, these explanations were evaluated in terms
of Informativeness and Clarity.

For Step 1, each subject was shown graphical
representations of three Bayesian Networks (BN),
in random order. They were then asked to produce
text to describe how they interpreted the BN.
The three BN used in the data collection are
presented in Figure 1and represent well-known BN
examples, extracted from Russell (2019). For Step
2 in a separate experiment, approximately 80 of
these generated explanations were presented to a
different set of subjects in random order, along
with a scenario description and the graphical model
image. Subjects were asked to rate them in terms of
Informativeness and Clarity. The worded scenario
descriptions were not given to subjects in the first
stage, so as not to prime them when generating
explanations.

3.1 Step 1: Natural Language Explanations
Corpus

Survey Instrument. A pilot was performed
to test options and ensure the completion time,
leading to the final survey instrument. The
survey was divided into five sections: 1) consent
form; 2) closed-ended questions related to English
proficiency, computing and AI experience: “How
much computing experience do you have?”, “What
is your English Proficiency Level?”, “How much
experience do you have in the field of Artificial
Intelligence?”; 3) attention-check question, where
participants received an image of a graphical model,
and they had to select the correct answer(s) for the
given image; and 4) respondents were asked to
explain the three graphical models, in their own
words. All respondents received the graphical
model survey questions in randomised order. The
appropriate ethical procedures were followed in
accordance with ethical standards, and ethical
approval was obtained.

Participants. 85 participants were recruited via
social media. English proficiency level, computing
experience and AI experience were rated on a
numerical scale, from 1 to 7 (1 = beginner,
7 = advanced). The majority of participants
(n = 83) rated their level of English proficiency
with values higher than 5, with over half of the
participants rating their level as 7. Just 12% (n =

https://facebookresearch.github.io/ELI5/
https://facebookresearch.github.io/ELI5/
http://www.cognitiveai.org/explanationbank
http://www.cognitiveai.org/explanationbank
 https://github.com/salesforce/cos-e
https://github.com/OanaMariaCamburu/e-SNLI
https://github.com/OanaMariaCamburu/e-SNLI
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
 https://github.com/MirunaClinciu/ExBAN
 https://github.com/MirunaClinciu/ExBAN
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Figure 1. Annotated diagrams with assigned explanation references, where Diagram 1 represents a typical
Bayesian Network, Diagram 2 represents a multiply-connected network and Diagram 3 represents a simple

network with both discrete variables (Subsidy and Buys) and continuous variables (Harvest and Cost). Beneath
each diagram, the gold standard references are provided.

10) participants rated their computing experience
scores with a value lower than 5 and 82% (n = 70)
of participants had a high level of computing
experience. Subjects had mixed experience with AI
with over half (54%) having some experience (n =
46), but 46% of them had limited AI experience
(n = 39).

Collected NL explanations. Quality control
of the collected data included a cleaning step
where participants’ responses were hand-checked
and removed if the participants did not attempt
to complete the tasks. Explanations that
contained misspellings and missing punctuation
were corrected manually (both the raw data
and cleaned data are available). The number
of explanations for each diagram, after the
data cleaning step are as follows: Diagram 1:
84 explanations, 1788 words; Diagram 2: 83
explanations, 1987 words; and Diagram 3: 83
explanations, 1400 words.

3.2 Step 2: Human Evaluation for Quality

Survey Instrument. To investigate the quality of
the explanations collected in Step 1, we performed
a human evaluation of the generated explanations.
A pilot survey was performed to test and refine
options, where respondents (n = 45) were
recruited from Amazon Mechanical Turk and were
compensated monetarily.

Each participant was given three tasks, each
corresponding to the BN presented in Figure 1
with the order randomised. Along with the BN
image, a simple description story was provided in
order to give the subject a better understanding

of the context as well as instructions on how to
approach these tasks. Here, we give the scenario
for Diagram 1 to illustrate this: “John and Mary
bought their dream home. To keep their home safe,
they installed a Burglary/Earthquake Alarm. Also,
they received an instruction manual where they
found the following diagram: They are not sure
if they correctly understood the diagram. On the
following pages are some worded explanations. We
need your help to evaluate them!”

For every BN image, the participants were
asked to evaluate 5 explanations in terms
of: Informativeness (Q: “How relevant the
information of an explanation is”; Likert scale,
where 1 = Not Informative and 7 = Very
Informative); and Clarity (Q: “How clear the
meaning of an explanation is”; Likert scale, where
1 = Unclear and 7 = Very Clear).

Participants. The final data collection survey was
advertised on social media as “a 10-minute survey,
where participants were asked to provide feedback
about how understandable the explanations of the
three graphs are”. Demographic information was
collected (age range and gender). A total of 96
participants answered the survey. As screening
criteria, participants had to complete all survey
questions. Post validation, we had a sample of
56 participants consisting of 42 male participants
(75%), 11 female participants (19.6%) and 2
non-binary gender participants (3.6%). Gender
imbalance might be due to “differences in female
and male values operating in an online environment”
(Smith, 2008). Half of the participants (n = 28)
are aged between 23-29 years old, followed by
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30% of participants aged between 18-22 (n = 17),
20% aged 40–49 (n = 11), 18% aged 30–39
(n = 10). Previous studies have identified a high
degree of inconsistency in human judgements of
natural language (Novikova et al., 2018; Dethlefs
et al., 2014); each participant can have a different
perception of the interpretation of these metrics,
even if a definition of these metrics is provided.
Indeed, we found that in our data, explanation
ratings can vary significantly, with an explanation
rated highly by one person for Clarity, but viewed
as very unclear by another annotator. This was the
case for both Clarity and Informativeness.

We aim to create a reliable database of varying
quality of NL explanations, i.e. where the quality
of explanations is generally uncontested by the
majority. Therefore, subjective ratings were post-
processed. For each explanation, we collected a
minimum of 3 judgments. Explanations received
ratings from 1 to 7; we classified bad explanations
as those with low ratings (ratings <5) and good
explanations, as those with higher ratings (ratings
≥5). For any one explanation, if the difference
between the number of good and bad ratings is
≤1, then that explanation is considered hard to
judge and difficult to reach a consensus on and
thus removed. After this pre-processing step, the
corpus contained ratings for 54 explanations for
Diagram 1, 34 explanations for Diagram 2, and 54
explanations for Diagram 3.

To verify the agreement between different raters,
we used Krippendorff’s Alpha, a measure of
inter-rater reliability (Krippendorff, 1980). We
computed Krippendorff’s Alpha coefficient using
the Python package krippendorff (version
0.3.2). After the pre-processing step, the agreement
between subjects increased, see Table 1 for the
post-processing Alpha values for each of the Bayes
Nets. Alpha values between .21 to .40 indicate fair
agreement and values between .41 to .60 indicate
moderate agreement (Hallgren, 2012). Here, we
can see that explanations for Diagram 2 were
particularly contentious, but overall the numbers
reflect fair to moderate agreement.

Diagram 1 Diagram 2 Diagram 3 All Diagrams
Inform. 0.514 0.202 0.420 0.377
Clarity 0.440 0.182 0.361 0.319

Table 1. Inter-annotator agreement measured by
Krippendorff’s Alpha

4 NLG Evaluation Metrics

Here, we describe the reasoning behind our choice
of subjective measures that attempt to capture both
the content and its correctness (Informativeness)
and quality of expression (Clarity). We also
describe objective measures commonly used for
automatic evaluation of NLG, and which we will
extract from the ExBAN corpus.

4.1 Subjective NLG Evaluation Metrics

Human evaluation is considered a primary
evaluation criterion for NLG systems (Gatt and
Krahmer, 2018; Mellish and Dale, 1998; Gkatzia
and Mahamood, 2015; Hastie and Belz, 2014).
Through Explainable AI, we want to achieve
Clarity and understanding in communicating the
process of AI systems. Therefore, explanations
should be clear and easily understood by users.
Traditional human evaluation metrics are clearly
needed for increasing transparency, avoiding
confusion and misunderstanding.

Informativeness. As defined in the field
of NLG, Informativeness targets relevance or
correctness of an NLG output relative to an
input (Dušek et al., 2020). According to the
literature, Informativeness can provide “timely,
relevant and useful information” (Novikova
et al., 2018) and “make information immediately
accessible” (Maxwell et al., 2017). Sometimes,
Informativeness is linked with accuracy, or
adequacy (Novikova et al., 2018). As mentioned
previously, explanations contain statements with
some prior knowledge that must be accurate and
true (Goodrich et al., 2019; Xu et al., 2020).

Clarity. An explanation should be clear to achieve
effective communication. In the NLG field, Clarity
implies that text is easily understood (Belz and
Kow, 2009; van der Lee et al., 2017) and that the
reader is familiar with basic information introduced
in the text (Lampouras and Androutsopoulos,
2013). In addition, Clarity can also help expose
the truthfulness and correctness of textual data
(Mahapatra et al., 2016).

4.2 Automatic Evaluation Metrics

This section describes a number of automatic
metrics commonly used in NLG evaluation and
selected for this study. These fall into two
categories: 1) word-overlap metrics, e.g. BLEU,
METEOR and ROUGE (Novikova et al., 2017);
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and 2) embedding-based metrics, e.g. BERTScore
and BLEURT (Sellam et al., 2020). Each of these
metrics is compared to one or more “Gold Standard”
text as inspired by the Machine Translation
community and adopted for evaluating document
summarisation and NLG (Belz and Reiter, 2006).
The gold standard is normally a piece of natural
language text, annotated by humans as correct, i.e.
a solution for a given task. Automatic evaluation is
based on this gold standard, by verifying potential
similarity (Kovář et al., 2016). However, the
selection of gold standards involves subjectivity
and specificity (Kovář et al., 2016), and this is part
of the reason that automatic metrics have received
some criticism (Hardcastle and Scott, 2008).

BLEU (B) (Papineni et al., 2001) is widely used
in the field of NLG and compares n-grams of a
candidate text (e.g. that generated by an algorithm)
with the n-grams of a reference text. The number of
matches defines the goodness of the candidate text.
SacreBLEU (SB) (Post, 2018) is a new version of
BLEU that calculates scores on the detokenized
text. METEOR (M) was created to try to address
BLEU's weaknesses (Lavie and Agarwal, 2007).
METEOR evaluates text by computing a score
based on explicit word-to-word matches between
a candidate and a reference. When using multiple
references, the candidate text is scored against
each reference, and the best score is reported.
ROUGE (R) (Lin, 1971) evaluates n-gram overlap
of the generated text (candidate) with a reference.
ROUGE-L (RL) (Longest Common Subsequence)
computes the longest common subsequence (LCS)
between a pair of sentences.

BERTScore (BS) (Zhang et al., 2020) is a token-
level matching metric with pre-trained contextual
embeddings using BERT (Devlin et al., 2019)
that matches words in candidate and reference
sentences using cosine similarity. BLEURT
(BRT) (Sellam et al., 2020) is a text generation
metric also based on BERT, pre-trained on
synthetic data; it uses random perturbations of
Wikipedia sentences augmented with a diverse set
of lexical and semantic-level supervision signals.
BLEURT uses a collection of metrics and models
from prior work, including BLEU and ROUGE.
Evaluation based on the meanings of words using
embeddings (BERTScore, BLEURT) might capture
some relevant features of explanations, as word
representations are dynamically informed by the

words around them (McCormick and Ryan, 2019)).

5 Correlation Study of Automatic
Metrics

As noted in the introduction, it remains an open
question as to what degree the automatic metrics
for NLG reviewed above can capture the quality
of NL explanations (Clinciu and Hastie, 2019).
Thus, we ran a correlation analysis to investigate
the degree to which each of the automatic
metrics correlates with human judgements using
the ExBAN corpus, and which aspects of
human evaluation (Clarity/Informativeness), such
automatic measures can capture. With regards
to the choice of gold standard text, we picked
explanations that received the maximum score
in the human evaluation, in both Clarity and
Informativeness. Gold standard explanations of
each diagram are presented in Figure 1.

5.1 Results

The correlations between automatic metrics and
human ratings were computed using the Spearman
correlation coefficient. For each explanation, we
calculated the median of all the ratings given
(median was calculated because the data is ordinal,
non-parametric rating data, as is also reported in
Braun et al. (2018); Novikova et al. (2017)). These
medians were then correlated with the automatic
metric scores in Tables 2 and 3 and Figure 2. A
summary of the results of the correlation analysis
include the following:

1. Word-overlap metrics such as BLEU (n =
1,2,3,4), METEOR and ROUGE (n = 1,2)
presented low correlation with human ratings.

2. BERTScore and BLEURT outperformed other
metrics and produced higher correlation with
human ratings than other metrics on all
diagrams. BERTScore values range between
[0.23, 0.43] and for BLEURT values range
between [0.26, 0.53].

3. Human ratings for Informativeness and
Clarity are highly correlated with each other,
as observed in Figure 2 (r = 0.82).

5.2 Discussion

BLEU-based metrics can be easily and quickly
computed; however, they do not correlate as well
with human ratings as other methods presented
here. This might be due to certain limitations,
such as the fact that they rely on word overlap
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Figure 2. Heatmap of Spearman rank correlation
between automatic evaluation metrics and human
evaluation metrics (Informativeness and Clarity)

Metric Diagram 1 Diagram 2 Diagram 3 All Diagrams

BLEU-1 0.27 0.25 0.41* 0.31*
BLEU-2 0.24 0.27 0.44* 0.33*
BLEU-3 0.15 0.23 0.39 0.26*
BLEU-4 0.02 0.21 0.13 0.13

SacreBleu 0.24 0.30 0.40* 0.30*

METEOR 0.11 -0.04 0.16 0.09

Rouge-1 0.27 0.24 0.41* 0.29*
Rouge-2 0.11 0.29 0.48* 0.29*
Rouge-L 0.29 0.28 0.34 0.29*

BERTScore 0.37 0.21 0.52* 0.37*

BLEURT 0.25 0.38 0.58* 0.39*

Significance of correlation: * denotes p-values < 0.05

Table 2. Highest absolute Spearman correlation
between automatic evaluation metrics and human
ratings for Informativeness, where the bold font

represents the highest correlation coefficient obtained
by an automatic evaluation metric

Metric Diagram 1 Diagram 2 Diagram 3 All Diagrams

BLEU-1 0.25 0.09 0.34 0.24*
BLEU-2 0.24 0.15 0.41* 0.22
BLEU-3 0.01 0.10 0.31 0.14
BLEU-4 -0.01 0.09 0.18 0.10

SacreBleu 0.16 0.15 0.38 0.23

METEOR 0.17 0.13 0.30 0.21

Rouge-1 0.20 0.11 0.29 0.20
Rouge-2 0 0.24 0.46* 0.22
Rouge-L 0.21 0.09 0.33 0.21

BERTScore 0.33 0.23 0.43* 0.33*

BLEURT 0.26 0.22 0.53* 0.34*

Significance of correlation: * denotes p-values < 0.05

Table 3. Spearman correlation between automatic
evaluation metrics and human ratings for Clarity,

where the bold font represents the highest correlation
coefficient obtained by an automatic evaluation metric

and are not invariant to paraphrases. Furthermore,
they do not use recall, rather a Brevity Penalty,
which penalizes generated text for being “too short”
(Papineni et al., 2001). This way may not be
appropriate for explanations, as good explanations
may need to be lengthy by their very nature.

METEOR takes into consideration F1-measure by
computing scores for unigram precision and recall.
The fragmentation penalty is calculated using the
total number of matched words (m, averaged
over hypothesis and reference) and the number of
chunks. In this way, it could identify synonyms,
but perhaps not as well as the embedding-based
metrics, as evidenced by the correlation figures
in our results. With regards to ROUGE-based
scores, due to the upper bound issues presented by
Schluter (2017), it is impossible to obtain perfect
ROUGE-n scores. Furthermore, ROUGE-L cannot
differentiate if the reference and the candidate have
the same longest common subsequence (LCS), but
different word ordering. Again, word ordering
may be important for the explanation in terms of
explainee scaffolding (Palincsar, 1986).

It has been brought into question whether a single
automatic measure is able to capture multiple
aspects of subjective human evaluation (Belz et al.,
2020). Thus, in order to understand to what
degree the various metrics capture both Clarity
and Informativeness, we investigated individual
explanations and their ratings. Table 4 gives
some extracts from the dataset along with the
automatic metrics and the human evaluation scores
of Informativeness and Clarity. Based on these
human scores, the extracts are divided into:
good explanations (high scores for both), bad
explanations (low scores for both) and mixed
explanations (mixed scores). We can see here that
all metrics are reasonably good at capturing and
evaluating the ‘bad’ explanations with low scores
across the board. However, only the BLEURT
metric is good at capturing both ‘good and bad’
explanation ratings, as observed in the difference
in scores between these two categories. ROUGE-L
and BERTScore do capture this difference in some
cases, but they are not as consistent as BLEURT.
The reason that BLEURT outperforms the other
metrics may be because it uses a combination of
word-overlap metrics as well as embeddings and
thus may be capturing the best of these approaches.
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Good Explanations B1 B2 B3 B4 SB M R1 R2 RL BS BRT Inf. Clar.
(1) The alarm is triggered by a burglary or an earthquake. 0.19 0.12 0.00 0.00 0.05 0.23 0.25 0.09 0.12 0.51 0.52 7 7
(2) Cloudy weather may produce rain and activation of the sprinkler.
Both rain and sprinkler activity makes the grass wet.

0.28 0.11 0.00 0.00 0.05 0.15 0.36 0.10 0.28 0.49 0.65 7 7

(3) Cost is dictated by the harvest (e.g. size) and
available subsidies (e.g. government tax break/subsidy).
Whether or not the product is bought depends on the cost.

0.18 0.09 0.00 0.00 0.02 0.07 0.25 0.09 0.12 0.20 0.51 7 7

Bad Explanations B1 B2 B3 B4 SB M R1 R2 RL BS BRT Inf. Clar.
(4) Sensors = Alarm = prevention or ALERT. 0.06 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.04 0.00 0.00 1 1
(5) A diagram detailing a system whose goal is to make grass wet. 0.08 0.00 0.00 0.00 0.02 0.00 0.11 0.00 0.12 0.13 0.00 1.5 2
(6) The harvest and subsidy contribute to the cost, cost then buys?? 0.28 0.00 0.00 0.00 0.03 0.15 0.36 0.00 0.24 0.20 0.30 2 1.5
Mixed Explanations B1 B2 B3 B4 SB M R1 R2 RL BS BRT Inf. Clar.
(7) The grass is getting wet. 0.08 0.00 0.00 0.00 0.00 0.20 0.13 0.00 0.15 0.24 0.16 1.5 7
(8) Subsidy and harvest independently affect cost. Cost affects buys. 0.06 0.00 0.00 0.00 0.01 0.14 0.16 0.00 0.10 0.25 0.56 6 2.5
(9) Cloud cover influences whether it rains and when the sprinkler is activated.
When either the sprinkler is turned on or when it rains, the grass gets wet.

0.48 0.33 0.21 0.14 0.22 0.24 0.50 0.24 0.38 0.49 0.65 7 3

Table 4. Examples of Good, Bad and Mixed Explanations according to human evaluation scores for
Informativeness and Clarity (medians of all ratings for that explanation), presented with their automatic measures

Although Clarity and Informativeness highly
correlate overall, there are occasions where
explanations are rated by humans as higher
on Clarity than Informativeness and visa-versa.
However, there are rarely any cases where Clarity is
high, and Informativeness is very low. Explanation
8 in Table 4 is the only example of this in
our corpus. It is thus difficult to make any
generalisations about this subset of the data.
However, it does seem to be the case that BLEURT
is more sensitive to Informativeness than Clarity
(e.g. explanation 7 vs 8-9 in the table), but a larger
study would be needed to show this empirically.

6 Conclusions and Future work

Human evaluation is an expensive and time-
consuming process. On the other hand, automatic
evaluation is a cheaper and more efficient method
for evaluating NLG systems. However, finding
accurate measures is challenging, particularly for
explanations. We have discussed word embedding
techniques (Mikolov et al., 2013; Kim, 2014;
Reimers and Gurevych, 2020), which enable the
use of pre-trained models and so reduces the need
to collect large amounts of data in our domain of
explanations, which is a challenging task. The
embedding-based metrics mentioned here perform
better than the word-overlap based ones. We
speculate that this is in part due to the fact that
the former capture semantics more effectively and
are thus more invariant to paraphrases. These
metrics have also been shown to be useful across
multiple tasks (Sellam et al., 2020) but with some
variation across datasets (Novikova et al., 2017).
Therefore, future work would involve examining
the effectiveness of automatic metrics across a
wider variety of explanation tasks and datasets, as
outlined in the Related Work section.

Embeddings are quite opaque in themselves.
Whilst some attempts have been made to visualise
them (Li et al., 2016), it remains that embedding-
based metrics do not provide much insight into
what makes a good/bad explanation. It would thus
be necessary to look more deeply into the linguistic
phenomena that may indicate the quality of
explanations. In ExBAN, initial findings show that
the number of nouns and coordinating conjunctions
correlate with human judgements, however further
in-depth analysis is needed. Additional metrics
to add to the set explored here could include
grammar-based metrics, such as readability and
grammaticality, as in the study described in
(Novikova et al., 2017).

Furthermore, an investigation is needed into the
pragmatic and cognitive processes underlying
explanations, such as argumentation, reasoning,
causality, and common sense (Baaj et al., 2019).
Investigating whether these can be captured
automatically will be highly challenging. We will
explore further the idea of adapting explanations to
the explainee’s knowledge and expertise level, as
well as the explainer’s goals and intentions. One
such goal of the explainer could be to maximise the
trustworthiness of the explanation (Ribeiro et al.,
2016). How this aspect is consistently subjectively
and objectively measured will be an interesting area
of investigation.

Finally, the ExBAN corpus and this study will
inform the development of NLG algorithms for
NL explanations from graphical representations.
We will explore NLG techniques for structured
data, such as graph neural networks and knowledge
graphs (Koncel-Kedziorski et al., 2019). Thus the
corpus and metrics discussed here will contribute
to a variety of fields linguistics, cognitive science
as well as NLG and Explainable AI.
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