@inproceedings{arthur-etal-2021-learning,
title = "Learning Coupled Policies for Simultaneous Machine Translation using Imitation Learning",
author = "Arthur, Philip and
Cohn, Trevor and
Haffari, Gholamreza",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.233",
doi = "10.18653/v1/2021.eacl-main.233",
pages = "2709--2719",
abstract = "We present a novel approach to efficiently learn a simultaneous translation model with coupled programmer-interpreter policies. First, we present an algorithmic oracle to produce oracle READ/WRITE actions for training bilingual sentence-pairs using the notion of word alignments. This oracle actions are designed to capture enough information from the partial input before writing the output. Next, we perform a coupled scheduled sampling to effectively mitigate the exposure bias when learning both policies jointly with imitation learning. Experiments on six language-pairs show our method outperforms strong baselines in terms of translation quality quality while keeping the delay low.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arthur-etal-2021-learning">
<titleInfo>
<title>Learning Coupled Policies for Simultaneous Machine Translation using Imitation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Arthur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gholamreza</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel approach to efficiently learn a simultaneous translation model with coupled programmer-interpreter policies. First, we present an algorithmic oracle to produce oracle READ/WRITE actions for training bilingual sentence-pairs using the notion of word alignments. This oracle actions are designed to capture enough information from the partial input before writing the output. Next, we perform a coupled scheduled sampling to effectively mitigate the exposure bias when learning both policies jointly with imitation learning. Experiments on six language-pairs show our method outperforms strong baselines in terms of translation quality quality while keeping the delay low.</abstract>
<identifier type="citekey">arthur-etal-2021-learning</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.233</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.233</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>2709</start>
<end>2719</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Coupled Policies for Simultaneous Machine Translation using Imitation Learning
%A Arthur, Philip
%A Cohn, Trevor
%A Haffari, Gholamreza
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F arthur-etal-2021-learning
%X We present a novel approach to efficiently learn a simultaneous translation model with coupled programmer-interpreter policies. First, we present an algorithmic oracle to produce oracle READ/WRITE actions for training bilingual sentence-pairs using the notion of word alignments. This oracle actions are designed to capture enough information from the partial input before writing the output. Next, we perform a coupled scheduled sampling to effectively mitigate the exposure bias when learning both policies jointly with imitation learning. Experiments on six language-pairs show our method outperforms strong baselines in terms of translation quality quality while keeping the delay low.
%R 10.18653/v1/2021.eacl-main.233
%U https://aclanthology.org/2021.eacl-main.233
%U https://doi.org/10.18653/v1/2021.eacl-main.233
%P 2709-2719
Markdown (Informal)
[Learning Coupled Policies for Simultaneous Machine Translation using Imitation Learning](https://aclanthology.org/2021.eacl-main.233) (Arthur et al., EACL 2021)
ACL