@inproceedings{zhao-etal-2021-extremely,
title = "Extremely Small {BERT} Models from Mixed-Vocabulary Training",
author = "Zhao, Sanqiang and
Gupta, Raghav and
Song, Yang and
Zhou, Denny",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.238",
doi = "10.18653/v1/2021.eacl-main.238",
pages = "2753--2759",
abstract = "Pretrained language models like BERT have achieved good results on NLP tasks, but are impractical on resource-limited devices due to memory footprint. A large fraction of this footprint comes from the input embeddings with large input vocabulary and embedding dimensions. Existing knowledge distillation methods used for model compression cannot be directly applied to train student models with reduced vocabulary sizes. To this end, we propose a distillation method to align the teacher and student embeddings via mixed-vocabulary training. Our method compresses BERT-LARGE to a task-agnostic model with smaller vocabulary and hidden dimensions, which is an order of magnitude smaller than other distilled BERT models and offers a better size-accuracy trade-off on language understanding benchmarks as well as a practical dialogue task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2021-extremely">
<titleInfo>
<title>Extremely Small BERT Models from Mixed-Vocabulary Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sanqiang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raghav</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denny</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pretrained language models like BERT have achieved good results on NLP tasks, but are impractical on resource-limited devices due to memory footprint. A large fraction of this footprint comes from the input embeddings with large input vocabulary and embedding dimensions. Existing knowledge distillation methods used for model compression cannot be directly applied to train student models with reduced vocabulary sizes. To this end, we propose a distillation method to align the teacher and student embeddings via mixed-vocabulary training. Our method compresses BERT-LARGE to a task-agnostic model with smaller vocabulary and hidden dimensions, which is an order of magnitude smaller than other distilled BERT models and offers a better size-accuracy trade-off on language understanding benchmarks as well as a practical dialogue task.</abstract>
<identifier type="citekey">zhao-etal-2021-extremely</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.238</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.238</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>2753</start>
<end>2759</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extremely Small BERT Models from Mixed-Vocabulary Training
%A Zhao, Sanqiang
%A Gupta, Raghav
%A Song, Yang
%A Zhou, Denny
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F zhao-etal-2021-extremely
%X Pretrained language models like BERT have achieved good results on NLP tasks, but are impractical on resource-limited devices due to memory footprint. A large fraction of this footprint comes from the input embeddings with large input vocabulary and embedding dimensions. Existing knowledge distillation methods used for model compression cannot be directly applied to train student models with reduced vocabulary sizes. To this end, we propose a distillation method to align the teacher and student embeddings via mixed-vocabulary training. Our method compresses BERT-LARGE to a task-agnostic model with smaller vocabulary and hidden dimensions, which is an order of magnitude smaller than other distilled BERT models and offers a better size-accuracy trade-off on language understanding benchmarks as well as a practical dialogue task.
%R 10.18653/v1/2021.eacl-main.238
%U https://aclanthology.org/2021.eacl-main.238
%U https://doi.org/10.18653/v1/2021.eacl-main.238
%P 2753-2759
Markdown (Informal)
[Extremely Small BERT Models from Mixed-Vocabulary Training](https://aclanthology.org/2021.eacl-main.238) (Zhao et al., EACL 2021)
ACL
- Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny Zhou. 2021. Extremely Small BERT Models from Mixed-Vocabulary Training. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 2753–2759, Online. Association for Computational Linguistics.