@inproceedings{zehe-etal-2021-detecting,
title = "Detecting Scenes in Fiction: A new Segmentation Task",
author = {Zehe, Albin and
Konle, Leonard and
D{\"u}mpelmann, Lea Katharina and
Gius, Evelyn and
Hotho, Andreas and
Jannidis, Fotis and
Kaufmann, Lucas and
Krug, Markus and
Puppe, Frank and
Reiter, Nils and
Schreiber, Annekea and
Wiedmer, Nathalie},
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.276",
doi = "10.18653/v1/2021.eacl-main.276",
pages = "3167--3177",
abstract = "This paper introduces the novel task of scene segmentation on narrative texts and provides an annotated corpus, a discussion of the linguistic and narrative properties of the task and baseline experiments towards automatic solutions. A scene here is a segment of the text where time and discourse time are more or less equal, the narration focuses on one action and location and character constellations stay the same. The corpus we describe consists of German-language dime novels (550k tokens) that have been annotated in parallel, achieving an inter-annotator agreement of gamma = 0.7. Baseline experiments using BERT achieve an F1 score of 24{\%}, showing that the task is very challenging. An automatic scene segmentation paves the way towards processing longer narrative texts like tales or novels by breaking them down into smaller, coherent and meaningful parts, which is an important stepping stone towards the reconstruction of plot in Computational Literary Studies but also can serve to improve tasks like coreference resolution.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zehe-etal-2021-detecting">
<titleInfo>
<title>Detecting Scenes in Fiction: A new Segmentation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Albin</namePart>
<namePart type="family">Zehe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leonard</namePart>
<namePart type="family">Konle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lea</namePart>
<namePart type="given">Katharina</namePart>
<namePart type="family">Dümpelmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evelyn</namePart>
<namePart type="family">Gius</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Hotho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fotis</namePart>
<namePart type="family">Jannidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Kaufmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Krug</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Puppe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annekea</namePart>
<namePart type="family">Schreiber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathalie</namePart>
<namePart type="family">Wiedmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces the novel task of scene segmentation on narrative texts and provides an annotated corpus, a discussion of the linguistic and narrative properties of the task and baseline experiments towards automatic solutions. A scene here is a segment of the text where time and discourse time are more or less equal, the narration focuses on one action and location and character constellations stay the same. The corpus we describe consists of German-language dime novels (550k tokens) that have been annotated in parallel, achieving an inter-annotator agreement of gamma = 0.7. Baseline experiments using BERT achieve an F1 score of 24%, showing that the task is very challenging. An automatic scene segmentation paves the way towards processing longer narrative texts like tales or novels by breaking them down into smaller, coherent and meaningful parts, which is an important stepping stone towards the reconstruction of plot in Computational Literary Studies but also can serve to improve tasks like coreference resolution.</abstract>
<identifier type="citekey">zehe-etal-2021-detecting</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.276</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.276</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>3167</start>
<end>3177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Scenes in Fiction: A new Segmentation Task
%A Zehe, Albin
%A Konle, Leonard
%A Dümpelmann, Lea Katharina
%A Gius, Evelyn
%A Hotho, Andreas
%A Jannidis, Fotis
%A Kaufmann, Lucas
%A Krug, Markus
%A Puppe, Frank
%A Reiter, Nils
%A Schreiber, Annekea
%A Wiedmer, Nathalie
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F zehe-etal-2021-detecting
%X This paper introduces the novel task of scene segmentation on narrative texts and provides an annotated corpus, a discussion of the linguistic and narrative properties of the task and baseline experiments towards automatic solutions. A scene here is a segment of the text where time and discourse time are more or less equal, the narration focuses on one action and location and character constellations stay the same. The corpus we describe consists of German-language dime novels (550k tokens) that have been annotated in parallel, achieving an inter-annotator agreement of gamma = 0.7. Baseline experiments using BERT achieve an F1 score of 24%, showing that the task is very challenging. An automatic scene segmentation paves the way towards processing longer narrative texts like tales or novels by breaking them down into smaller, coherent and meaningful parts, which is an important stepping stone towards the reconstruction of plot in Computational Literary Studies but also can serve to improve tasks like coreference resolution.
%R 10.18653/v1/2021.eacl-main.276
%U https://aclanthology.org/2021.eacl-main.276
%U https://doi.org/10.18653/v1/2021.eacl-main.276
%P 3167-3177
Markdown (Informal)
[Detecting Scenes in Fiction: A new Segmentation Task](https://aclanthology.org/2021.eacl-main.276) (Zehe et al., EACL 2021)
ACL
- Albin Zehe, Leonard Konle, Lea Katharina Dümpelmann, Evelyn Gius, Andreas Hotho, Fotis Jannidis, Lucas Kaufmann, Markus Krug, Frank Puppe, Nils Reiter, Annekea Schreiber, and Nathalie Wiedmer. 2021. Detecting Scenes in Fiction: A new Segmentation Task. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 3167–3177, Online. Association for Computational Linguistics.