@inproceedings{hu-etal-2021-one,
title = "One-class Text Classification with Multi-modal Deep Support Vector Data Description",
author = "Hu, Chenlong and
Feng, Yukun and
Kamigaito, Hidetaka and
Takamura, Hiroya and
Okumura, Manabu",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.296",
doi = "10.18653/v1/2021.eacl-main.296",
pages = "3378--3390",
abstract = "This work presents multi-modal deep SVDD (mSVDD) for one-class text classification. By extending the uni-modal SVDD to a multiple modal one, we build mSVDD with multiple hyperspheres, that enable us to build a much better description for target one-class data. Additionally, the end-to-end architecture of mSVDD can jointly handle neural feature learning and one-class text learning. We also introduce a mechanism for incorporating negative supervision in the absence of real negative data, which can be beneficial to the mSVDD model. We conduct experiments on Reuters and 20 Newsgroup datasets, and the experimental results demonstrate that mSVDD outperforms uni-modal SVDD and mSVDD can get further improvements when negative supervision is incorporated.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2021-one">
<titleInfo>
<title>One-class Text Classification with Multi-modal Deep Support Vector Data Description</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenlong</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yukun</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hidetaka</namePart>
<namePart type="family">Kamigaito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manabu</namePart>
<namePart type="family">Okumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work presents multi-modal deep SVDD (mSVDD) for one-class text classification. By extending the uni-modal SVDD to a multiple modal one, we build mSVDD with multiple hyperspheres, that enable us to build a much better description for target one-class data. Additionally, the end-to-end architecture of mSVDD can jointly handle neural feature learning and one-class text learning. We also introduce a mechanism for incorporating negative supervision in the absence of real negative data, which can be beneficial to the mSVDD model. We conduct experiments on Reuters and 20 Newsgroup datasets, and the experimental results demonstrate that mSVDD outperforms uni-modal SVDD and mSVDD can get further improvements when negative supervision is incorporated.</abstract>
<identifier type="citekey">hu-etal-2021-one</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.296</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.296</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>3378</start>
<end>3390</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T One-class Text Classification with Multi-modal Deep Support Vector Data Description
%A Hu, Chenlong
%A Feng, Yukun
%A Kamigaito, Hidetaka
%A Takamura, Hiroya
%A Okumura, Manabu
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F hu-etal-2021-one
%X This work presents multi-modal deep SVDD (mSVDD) for one-class text classification. By extending the uni-modal SVDD to a multiple modal one, we build mSVDD with multiple hyperspheres, that enable us to build a much better description for target one-class data. Additionally, the end-to-end architecture of mSVDD can jointly handle neural feature learning and one-class text learning. We also introduce a mechanism for incorporating negative supervision in the absence of real negative data, which can be beneficial to the mSVDD model. We conduct experiments on Reuters and 20 Newsgroup datasets, and the experimental results demonstrate that mSVDD outperforms uni-modal SVDD and mSVDD can get further improvements when negative supervision is incorporated.
%R 10.18653/v1/2021.eacl-main.296
%U https://aclanthology.org/2021.eacl-main.296
%U https://doi.org/10.18653/v1/2021.eacl-main.296
%P 3378-3390
Markdown (Informal)
[One-class Text Classification with Multi-modal Deep Support Vector Data Description](https://aclanthology.org/2021.eacl-main.296) (Hu et al., EACL 2021)
ACL