@inproceedings{haider-2021-metrical,
title = "Metrical Tagging in the Wild: Building and Annotating Poetry Corpora with Rhythmic Features",
author = "Haider, Thomas",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.325",
doi = "10.18653/v1/2021.eacl-main.325",
pages = "3715--3725",
abstract = "A prerequisite for the computational study of literature is the availability of properly digitized texts, ideally with reliable meta-data and ground-truth annotation. Poetry corpora do exist for a number of languages, but larger collections lack consistency and are encoded in various standards, while annotated corpora are typically constrained to a particular genre and/or were designed for the analysis of certain linguistic features (like rhyme). In this work, we provide large poetry corpora for English and German, and annotate prosodic features in smaller corpora to train corpus driven neural models that enable robust large scale analysis. We show that BiLSTM-CRF models with syllable embeddings outperform a CRF baseline and different BERT-based approaches. In a multi-task setup, particular beneficial task relations illustrate the inter-dependence of poetic features. A model learns foot boundaries better when jointly predicting syllable stress, aesthetic emotions and verse measures benefit from each other, and we find that caesuras are quite dependent on syntax and also integral to shaping the overall measure of the line.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="haider-2021-metrical">
<titleInfo>
<title>Metrical Tagging in the Wild: Building and Annotating Poetry Corpora with Rhythmic Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Haider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A prerequisite for the computational study of literature is the availability of properly digitized texts, ideally with reliable meta-data and ground-truth annotation. Poetry corpora do exist for a number of languages, but larger collections lack consistency and are encoded in various standards, while annotated corpora are typically constrained to a particular genre and/or were designed for the analysis of certain linguistic features (like rhyme). In this work, we provide large poetry corpora for English and German, and annotate prosodic features in smaller corpora to train corpus driven neural models that enable robust large scale analysis. We show that BiLSTM-CRF models with syllable embeddings outperform a CRF baseline and different BERT-based approaches. In a multi-task setup, particular beneficial task relations illustrate the inter-dependence of poetic features. A model learns foot boundaries better when jointly predicting syllable stress, aesthetic emotions and verse measures benefit from each other, and we find that caesuras are quite dependent on syntax and also integral to shaping the overall measure of the line.</abstract>
<identifier type="citekey">haider-2021-metrical</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.325</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.325</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>3715</start>
<end>3725</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Metrical Tagging in the Wild: Building and Annotating Poetry Corpora with Rhythmic Features
%A Haider, Thomas
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F haider-2021-metrical
%X A prerequisite for the computational study of literature is the availability of properly digitized texts, ideally with reliable meta-data and ground-truth annotation. Poetry corpora do exist for a number of languages, but larger collections lack consistency and are encoded in various standards, while annotated corpora are typically constrained to a particular genre and/or were designed for the analysis of certain linguistic features (like rhyme). In this work, we provide large poetry corpora for English and German, and annotate prosodic features in smaller corpora to train corpus driven neural models that enable robust large scale analysis. We show that BiLSTM-CRF models with syllable embeddings outperform a CRF baseline and different BERT-based approaches. In a multi-task setup, particular beneficial task relations illustrate the inter-dependence of poetic features. A model learns foot boundaries better when jointly predicting syllable stress, aesthetic emotions and verse measures benefit from each other, and we find that caesuras are quite dependent on syntax and also integral to shaping the overall measure of the line.
%R 10.18653/v1/2021.eacl-main.325
%U https://aclanthology.org/2021.eacl-main.325
%U https://doi.org/10.18653/v1/2021.eacl-main.325
%P 3715-3725
Markdown (Informal)
[Metrical Tagging in the Wild: Building and Annotating Poetry Corpora with Rhythmic Features](https://aclanthology.org/2021.eacl-main.325) (Haider, EACL 2021)
ACL