Clustering Word Embeddings with Self-Organizing Maps. Application on LaRoSeDa - A Large Romanian Sentiment Data Set

Anca Tache, Gaman Mihaela, Radu Tudor Ionescu


Abstract
Romanian is one of the understudied languages in computational linguistics, with few resources available for the development of natural language processing tools. In this paper, we introduce LaRoSeDa, a Large Romanian Sentiment Data Set, which is composed of 15,000 positive and negative reviews collected from the largest Romanian e-commerce platform. We employ two sentiment classification methods as baselines for our new data set, one based on low-level features (character n-grams) and one based on high-level features (bag-of-word-embeddings generated by clustering word embeddings with k-means). As an additional contribution, we replace the k-means clustering algorithm with self-organizing maps (SOMs), obtaining better results because the generated clusters of word embeddings are closer to the Zipf’s law distribution, which is known to govern natural language. We also demonstrate the generalization capacity of using SOMs for the clustering of word embeddings on another recently-introduced Romanian data set, for text categorization by topic.
Anthology ID:
2021.eacl-main.81
Volume:
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
Month:
April
Year:
2021
Address:
Online
Editors:
Paola Merlo, Jorg Tiedemann, Reut Tsarfaty
Venue:
EACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
949–956
Language:
URL:
https://aclanthology.org/2021.eacl-main.81
DOI:
10.18653/v1/2021.eacl-main.81
Bibkey:
Cite (ACL):
Anca Tache, Gaman Mihaela, and Radu Tudor Ionescu. 2021. Clustering Word Embeddings with Self-Organizing Maps. Application on LaRoSeDa - A Large Romanian Sentiment Data Set. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 949–956, Online. Association for Computational Linguistics.
Cite (Informal):
Clustering Word Embeddings with Self-Organizing Maps. Application on LaRoSeDa - A Large Romanian Sentiment Data Set (Tache et al., EACL 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.eacl-main.81.pdf
Data
MOROCO