@inproceedings{toftrup-etal-2021-reproduction,
title = "A reproduction of Apple{'}s bi-directional {LSTM} models for language identification in short strings",
author = "Toftrup, Mads and
Asger S{\o}rensen, S{\o}ren and
Ciosici, Manuel R. and
Assent, Ira",
editor = "Sorodoc, Ionut-Teodor and
Sushil, Madhumita and
Takmaz, Ece and
Agirre, Eneko",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-srw.6",
doi = "10.18653/v1/2021.eacl-srw.6",
pages = "36--42",
abstract = "Language Identification is the task of identifying a document{'}s language. For applications like automatic spell checker selection, language identification must use very short strings such as text message fragments. In this work, we reproduce a language identification architecture that Apple briefly sketched in a blog post. We confirm the bi-LSTM model{'}s performance and find that it outperforms current open-source language identifiers. We further find that its language identification mistakes are due to confusion between related languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="toftrup-etal-2021-reproduction">
<titleInfo>
<title>A reproduction of Apple’s bi-directional LSTM models for language identification in short strings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mads</namePart>
<namePart type="family">Toftrup</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Søren</namePart>
<namePart type="family">Asger Sørensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Ciosici</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ira</namePart>
<namePart type="family">Assent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ionut-Teodor</namePart>
<namePart type="family">Sorodoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madhumita</namePart>
<namePart type="family">Sushil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ece</namePart>
<namePart type="family">Takmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eneko</namePart>
<namePart type="family">Agirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Language Identification is the task of identifying a document’s language. For applications like automatic spell checker selection, language identification must use very short strings such as text message fragments. In this work, we reproduce a language identification architecture that Apple briefly sketched in a blog post. We confirm the bi-LSTM model’s performance and find that it outperforms current open-source language identifiers. We further find that its language identification mistakes are due to confusion between related languages.</abstract>
<identifier type="citekey">toftrup-etal-2021-reproduction</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-srw.6</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-srw.6</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>36</start>
<end>42</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A reproduction of Apple’s bi-directional LSTM models for language identification in short strings
%A Toftrup, Mads
%A Asger Sørensen, Søren
%A Ciosici, Manuel R.
%A Assent, Ira
%Y Sorodoc, Ionut-Teodor
%Y Sushil, Madhumita
%Y Takmaz, Ece
%Y Agirre, Eneko
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F toftrup-etal-2021-reproduction
%X Language Identification is the task of identifying a document’s language. For applications like automatic spell checker selection, language identification must use very short strings such as text message fragments. In this work, we reproduce a language identification architecture that Apple briefly sketched in a blog post. We confirm the bi-LSTM model’s performance and find that it outperforms current open-source language identifiers. We further find that its language identification mistakes are due to confusion between related languages.
%R 10.18653/v1/2021.eacl-srw.6
%U https://aclanthology.org/2021.eacl-srw.6
%U https://doi.org/10.18653/v1/2021.eacl-srw.6
%P 36-42
Markdown (Informal)
[A reproduction of Apple’s bi-directional LSTM models for language identification in short strings](https://aclanthology.org/2021.eacl-srw.6) (Toftrup et al., EACL 2021)
ACL