@inproceedings{oprea-etal-2021-chandler,
title = "Chandler: An Explainable Sarcastic Response Generator",
author = "Oprea, Silviu and
Wilson, Steven and
Magdy, Walid",
editor = "Adel, Heike and
Shi, Shuming",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.38",
doi = "10.18653/v1/2021.emnlp-demo.38",
pages = "339--349",
abstract = "We introduce Chandler, a system that generates sarcastic responses to a given utterance. Previous sarcasm generators assume the intended meaning that sarcasm conceals is the opposite of the literal meaning. We argue that this traditional theory of sarcasm provides a grounding that is neither necessary, nor sufficient, for sarcasm to occur. Instead, we ground our generation process on a formal theory that specifies conditions that unambiguously differentiate sarcasm from non-sarcasm. Furthermore, Chandler not only generates sarcastic responses, but also explanations for why each response is sarcastic. This provides accountability, crucial for avoiding miscommunication between humans and conversational agents, particularly considering that sarcastic communication can be offensive. In human evaluation, Chandler achieves comparable or higher sarcasm scores, compared to state-of-the-art generators, while generating more diverse responses, that are more specific and more coherent to the input.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="oprea-etal-2021-chandler">
<titleInfo>
<title>Chandler: An Explainable Sarcastic Response Generator</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silviu</namePart>
<namePart type="family">Oprea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walid</namePart>
<namePart type="family">Magdy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heike</namePart>
<namePart type="family">Adel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuming</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce Chandler, a system that generates sarcastic responses to a given utterance. Previous sarcasm generators assume the intended meaning that sarcasm conceals is the opposite of the literal meaning. We argue that this traditional theory of sarcasm provides a grounding that is neither necessary, nor sufficient, for sarcasm to occur. Instead, we ground our generation process on a formal theory that specifies conditions that unambiguously differentiate sarcasm from non-sarcasm. Furthermore, Chandler not only generates sarcastic responses, but also explanations for why each response is sarcastic. This provides accountability, crucial for avoiding miscommunication between humans and conversational agents, particularly considering that sarcastic communication can be offensive. In human evaluation, Chandler achieves comparable or higher sarcasm scores, compared to state-of-the-art generators, while generating more diverse responses, that are more specific and more coherent to the input.</abstract>
<identifier type="citekey">oprea-etal-2021-chandler</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-demo.38</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-demo.38</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>339</start>
<end>349</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chandler: An Explainable Sarcastic Response Generator
%A Oprea, Silviu
%A Wilson, Steven
%A Magdy, Walid
%Y Adel, Heike
%Y Shi, Shuming
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F oprea-etal-2021-chandler
%X We introduce Chandler, a system that generates sarcastic responses to a given utterance. Previous sarcasm generators assume the intended meaning that sarcasm conceals is the opposite of the literal meaning. We argue that this traditional theory of sarcasm provides a grounding that is neither necessary, nor sufficient, for sarcasm to occur. Instead, we ground our generation process on a formal theory that specifies conditions that unambiguously differentiate sarcasm from non-sarcasm. Furthermore, Chandler not only generates sarcastic responses, but also explanations for why each response is sarcastic. This provides accountability, crucial for avoiding miscommunication between humans and conversational agents, particularly considering that sarcastic communication can be offensive. In human evaluation, Chandler achieves comparable or higher sarcasm scores, compared to state-of-the-art generators, while generating more diverse responses, that are more specific and more coherent to the input.
%R 10.18653/v1/2021.emnlp-demo.38
%U https://aclanthology.org/2021.emnlp-demo.38
%U https://doi.org/10.18653/v1/2021.emnlp-demo.38
%P 339-349
Markdown (Informal)
[Chandler: An Explainable Sarcastic Response Generator](https://aclanthology.org/2021.emnlp-demo.38) (Oprea et al., EMNLP 2021)
ACL
- Silviu Oprea, Steven Wilson, and Walid Magdy. 2021. Chandler: An Explainable Sarcastic Response Generator. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 339–349, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.