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Abstract

We introduce N-LTP, an open-source neural
language technology platform supporting six
fundamental Chinese NLP tasks: lexical analy-
sis (Chinese word segmentation, part-of-speech
tagging, and named entity recognition), syn-
tactic parsing (dependency parsing), and se-
mantic parsing (semantic dependency parsing
and semantic role labeling). Unlike the exist-
ing state-of-the-art toolkits, such as Stanza,
that adopt an independent model for each task,
N-LTP adopts the multi-task framework by
using a shared pre-trained model, which has
the advantage of capturing the shared knowl-
edge across relevant Chinese tasks. In addition,
a knowledge distillation method (Clark et al.,
2019) where the single-task model teaches the
multi-task model is further introduced to en-
courage the multi-task model to surpass its
single-task teacher. Finally, we provide a col-
lection of easy-to-use APIs and a visualization
tool to make users to use and view the pro-
cessing results more easily and directly. To
the best of our knowledge, this is the first
toolkit to support six Chinese NLP fundamen-
tal tasks. Source code, documentation, and
pre-trained models are available at https:
//github.com/HIT-SCIR/ltp.

1 Introduction

There is a wide of range of existing natu-
ral language processing (NLP) toolkits such as
CoreNLP (Manning et al., 2014), UDPipe (Straka
and Straková, 2017), FLAIR (Akbik et al., 2019),
spaCy,1 and Stanza (Qi et al., 2020) in English,
which makes it easier for users to build tools with
sophisticated linguistic processing. Recently, the
need for Chinese NLP has a dramatic increase in
many downstream applications. A Chinese NLP
platform usually includes lexical analysis (Chinese
word segmentation (CWS), part-of-speech (POS)

1https://spacy.io
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Figure 1: Workflow of the N-LTP. N-LTP takes the
Chinese corpus as input and output the analysis results
including lexical analysis, syntactic parsing, and seman-
tic parsing. In addition, we provide the visualization tool
and easy-to-use API to help users easily use N-LTP.

tagging, and named entity recognition (NER)), syn-
tactic parsing (dependency parsing (DEP)), and
semantic parsing (semantic dependency parsing
(SDP) and semantic role labeling (SRL)). Unfortu-
nately, there are relatively fewer high-performance
and high-efficiency toolkits for Chinese NLP tasks.
To fill this gap, it’s important to build a Chinese
NLP toolkit to support rich Chinese fundamen-
tal NLP tasks, and make researchers process NLP
tasks in Chinese quickly.

Recently, Qi et al. (2020) introduce the Python
NLP toolkit Stanza for multi-lingual languages,
including Chinese language. Though Stanza can
be directly applied for processing the Chinese texts,
it suffers from several limitations. First, it only
supports part of Chinese NLP tasks. For example, it
fails to handle semantic parsing analysis, resulting
in incomplete analysis in Chinese NLP. Second, it
trained each task separately, ignoring the shared
knowledge across the related tasks, which has been
proven effective for Chinese NLP tasks (Qian et al.,
2015; Hsieh et al., 2017; Chang et al., 2018). Third,
independent modeling method will occupy more

https://github.com/HIT-SCIR/ltp
https://github.com/HIT-SCIR/ltp
https://spacy.io
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System Programming Language Fully Neural
State-of-the-art
Performance

Rich Chinese
Fundamental Tasks

Multi-task
Learning

LTP (Che et al., 2010) C++
√

UDPipe (Straka and Straková, 2017) C++
√

FLAIR (Akbik et al., 2019) Python
√ √

Stanza (Qi et al., 2020) Python
√ √

N-LTP Python
√ √ √ √

Table 1: Feature comparisons of N-LTP against other popular natural language processing toolkits.

memory with the increase of the number of tasks,
which makes it hard to deploy for mobile devices
in real-word scenario.

To address the aforementioned issues, we intro-
duce N-LTP, a PyTorch-based neural natural lan-
guage processing toolkit for Chinese NLP, which
was built on the SOTA pre-trained model. As
shown in Figure 1, given Chinese corpus as input,
N-LTP produces comprehensive analysis results,
including lexical analysis, syntactic parsing, and
semantic parsing. In addition, N-LTP provides
easy-to-use APIs and visualization tool, which is
user-friendly.

As shown in Table 1, compared to the existing
widely-used NLP toolkits, N-LTP has the follow-
ing advantages:

• Comprehensive Tasks. N-LTP supports rich
Chinese fundamental NLP tasks including
lexical analysis (word segmentation, part-of-
speech tagging, named entity recognition),
syntactic parsing, and semantic parsing (se-
mantic dependency parsing, semantic role la-
beling). To the best of our knowledge, this is
the first neural Chinese toolkit that support six
Chinese fundamental NLP tasks.

• Multi-Task Learning. The existing NLP
toolkits for the Chinese language all adopt
independent models for each task, which ig-
nore the shared knowledge across tasks.

To alleviate this issue, we propose to use the
multi-task framework (Collobert et al., 2011)
to take advantage of the shared knowledge
across all tasks. Meanwhile, multi-task learn-
ing with a shared encoder for all six tasks can
greatly reduce the occupied memory and im-
prove the speed, which makes N-LTP more
efficient, reducing the need for hardware.

In addition, to enable the multi-task learning
to enhance each subtask performance, we fol-
low Clark et al. (2019) to adopt the distillation
method single-task models teach a multi-task

model, helping the multi-task model surpass
its all single-task teachers.

• Extensibility. N-LTP works with users’ cus-
tom modules. Users can easily add a new
pre-trained model with a configuration file, in
which users can change the pretrained model
to any BERT-like model supported by Hug-
gingFace Transformers (Wolf et al., 2019) eas-
ily by changing the config. We have made all
task training configuration files open-sourced.

• Easy-to-use API and Visualization Tool.
N-LTP provides a collection of fundamental
APIs, which is convenient for users to use the
toolkit without the need for any knowledge.
We also provide a visualization tool, which
enables users to view the processing results
directly. In addition, N-LTP has bindings for
many programming languages (C++, Python,
Java, Rust, etc.).

• State-of-the-art Performance. We evaluate
N-LTP on a total of six Chinese NLP tasks,
and find that it achieves state-of-the-art or
competitive performance at each task.

N-LTP is fully open-sourced and can support six
Chinese fundamental NLP tasks. We hope N-LTP
can facilitate Chinese NLP research.

2 Design and Architecture

Figure 2 shows an overview of the main architec-
ture of N-LTP. It mainly consists of the compo-
nents including a shared encoder and different de-
coders for each task. Our framework shares one
encoder for leveraging the shared knowledge across
all tasks. Different task decoders are used for each
task separately. All tasks are optimized simulta-
neously via a joint learning scheme. In addition,
the knowledge distillation technique is introduced
to encourage the multi-task model to surpass its
single-task teacher model.
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Figure 2: The architecture of the proposed model.

2.1 Shared Encoder
Multi-task framework uses a shared encoder to ex-
tract the shared knowledge across related tasks,
which has obtained remarkable success on various
NLP tasks (Qin et al., 2019; Wang et al., 2020;
Zhou et al., 2021). Inspired by this, we adopt
the SOTA pre-trained model (ELECTRA) (Clark
et al., 2020) as the shared encoder to capture shared
knowledge across six Chinese tasks.

Given an input utterance s = (s1, s2, . . . , sn),
we first construct the input sequence by adding
specific tokens s = ([CLS], s1, s2, . . . , sn, [SEP]),
where [CLS] is the special symbol for represent-
ing the whole sequence, and [SEP] is the spe-
cial symbol to separate non-consecutive token se-
quences (Devlin et al., 2019). ELECTRA takes
the constructed input and output the corresponding
hidden representations of sequence H = (h[CLS],
h1,h2, . . . ,hn, h[SEP]).

2.2 Chinese Word Segmentation
Chinese word segmentation (CWS) is a prelim-
inary and important task for Chinese natural lan-
guage processing (NLP). In N-LTP, following Xue
(2003), CWS is regarded as a character based se-
quence labeling problem.

Specifically, given the hidden representations H
= (h[CLS], h1,h2, . . . ,hn, h[SEP]), we adopt a
linear decoder to classify each character:

yi = Softmax(W CWShi + bCWS), (1)

where yi denotes the label probability distribution
of each character; W CWS and bCWS are trainable
parameters.

2.3 POS Tagging
Part-of-speech (POS) tagging is another fundamen-
tal NLP task, which can facilitate the downstream
tasks such as syntactic parsing. Following the dom-
inant model in the literature (Ratnaparkhi, 1996;

Huang et al., 2015), POS tagging can be treated as
a sequence labeling task.

Similar to CWS, we take the sequence of hidden
representations H as input and output the corre-
sponding POS sequence labels, which is formu-
lated as:

yi = Softmax(W POShi + bPOS), (2)

where yi denotes the POS label probability distri-
bution of the i-th character; hi is the first sub-token
representation of word si.

2.4 Named Entity Recognition
The named entity recognition (NER) is the task
of finding the start and end of an entity (people,
locations, organizations, etc.) in a sen-
tence and assigning a class for this entity.

Traditional, NER is regarded as a sequence la-
beling task. After obtaining the hidden representa-
tions H , we follow Yan et al. (2019a) to adopt the
Adapted-Transformer to consider direction-
and distance-aware characteristic, which can be
formulated as:

ĥi = AdaptedTransformer(hi), (3)

where Ĥ = (ĥ[CLS], ĥ1, ĥ2, . . . , ĥn, ĥ[SEP]) are
the updated representations.

Finally, similar to CWS and POS, we use a linear
decoder to classify label for each word:

yi = Softmax(W NERĥi + bNER), (4)

where yi denotes the NER label probability distri-
bution of each character.

2.5 Dependency Parsing
Dependency parsing is the task to analyze the se-
mantic structure of a sentence. In N-LTP, we im-
plement a deep biaffine neural dependency parser
(Dozat and Manning, 2017) and einser algorithm
(Eisner, 1996) to obtain the parsing result, which
is formulated as:

r
(head)
i = MLP(head)(hi)

r
(dep)
j = MLP(dep)(hj)

(5)

After obtaining r
(head)
i and r

(dep)
j , we compute

the score for each dependency i↶j by:

yi↶j = BiAffine(rdep
i , rhead

j ). (6)
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Figure 3: We follow Clark et al. (2019) to adopt the
distillation method. This is an overview of the distilla-
tion method. λ is increased linearly from 0 to 1 over the
curriculum of training.

The above process is also used for scoring a

labeled dependency i
l↶j, by extending the 1-dim

vector s into L dims, where L is the total number
of dependency labels.

2.6 Semantic Dependency Parsing

Similar to dependency parsing, semantic depen-
dency parsing (Che et al., 2012, SDP) is a task
to capture the semantic structure of a sentence.
Specifically, given an input sentence, SDP aims at
determining all the word pairs related to each other
semantically and assigning specific predefined se-
mantic relations. Following Dozat and Manning
(2017), we adopt a biaffine module to perform the
task, using

pi↶j = sigmoid(yi↶j). (7)

If pi↶j > 0.5, wordi to wordj exists an edge.

2.7 Semantic Role Labeling

Semantic Role Labeling (SRL) is the task of de-
termining the latent predicate-argument structure
of a sentence, which can provide representations
to answer basic questions about sentence meaning,
including who did what to whom, etc. We adopt
an end-to-end SRL model by combining a deep
biaffine neural network and a conditional random
field (CRF)-based decoder (Cai et al., 2018).

The biaffine module is similar to Section 2.5 and
the CRF layer can be formulated as:

P (ŷ|s) =
∑

j=1 exp f(yi,j−1,yi,j ,s)∑
y′
i

∑
j=1 exp f(y′i,j−1,y

′
i,j ,s)

(8)

where ŷ represents an arbitrary label sequence
when predicate is si, and f(yi,j−1, yj , s) computes
the transition score from yi,j−1 to yi,j .

Figure 4: A minimal code snippet.

2.8 Knowledge Distillation

When there exist a large number of tasks, it’s dif-
ficult to ensure that each task task benefits from
multi-task learning (Clark et al., 2019).

Therefore, we follow BAM (Clark et al., 2019)
to use the knowledge distillation to alleviate this
issue, which is shown Figure 3. First, we train each
task as the teacher model. Then, N-LTP learns
from each trained single-task teacher model while
learning from the gold-standard labels simultane-
ously.

Following BAM (Clark et al., 2019), we adopt
teacher annealing distillation algorithm. More
specifically, instead of simply shuffling the datasets
for our multi-task models, we follow the task sam-
pling procedure from Bowman et al. (2018), where
the probability of training on an example for a
particular task τ is proportional to |Dτ |0.75. This
ensures that tasks with large datasets don’t overly
dominate the training.

3 Usage

N-LTP is a PyTorch-based Chinese NLP toolkit
based on the above model. All the configurations
can be initialized from JSON files, and thus it is
easy for users to use N-LTP where users just need
one line of code to load the model or process the in-
put sentences. Specifically, N-LTP can be installed
easily by the command:

$ pip install ltp

In addition, N-LTP has bindings available for
many programming languages, including C++,
Python, Java and RUST directly.

3.1 Easy-to-use API

We provide rich easy-to-use APIs, which enables
users to easily use without the need for any knowl-
edge. The following code snippet in Figure 4 shows
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Chinese Word Part-of-Speech Named Entity Dependency Semantic Dependency Semantic Role
Model Segmentation Tagging Recognition Parsing Parsing Labeling

F FLAS F F F F

Stanza (Qi et al., 2020) 92.40 98.10 89.50 84.98 - -

N-LTP trained separately 98.55 98.35 95.41 90.12 74.47 79.23
N-LTP trained jointly with distillation 99.18 98.69 95.97 90.19 76.62 79.49

Table 2: Main Results. “-" represents the absence of tasks in the Stanza toolkit and we cannot report the results.

Figure 5: LTP annotates a Chinese sentence “他叫汤姆
去拿外衣。/ He told Tom to get his coat.”. The output
is visualized by our visualization demo.

a minimal usage of N-LTP for downloading mod-
els, annotating a sentence with customized models,
and predicting all annotations.

3.2 Visualization Tool

In addition, a visualization tool is proposed for
users to view the processing results directly. Specif-
ically, we build an interactive web demo that runs
the pipeline interactively, which is publicly avail-
able at http://ltp.ai/demo.html. The vi-
sualization tool is shown in Figure 5.

4 Experiments

4.1 Experimental Setting

To evaluate the efficiency of our multi-task model,
we conduct experiments on six Chinese tasks.

The N-LTP model is based on the Chinese
ELECTRA base (Cui et al., 2020). The learning
ratio (lr) for teacher models, student model and
CRF layer is {1e − 4}, {1e − 4}, {1e − 3}, re-
spectively. The gradient clip value adopted in our
experiment is 1.0 and the warmup proportion is
0.02. We use BertAdam (Devlin et al., 2019) to
optimize the parameters and adopted the suggested
hyper-parameters for optimization.

4.2 Results

We compare N-LTP with the state-of-the-art
toolkit Stanza. For a fair comparison, we
conduct experiments on the same datasets that
Stanza adopted.

The results are shown in Table 2, we have the
following observations:

• N-LTP outperforms Stanza on four common
tasks including CWS, POS, NER, and DEP by
a large margin, which shows the superiority
of our proposed toolkit.

• The multi-task learning outperforms the
model with independently trained. This is
because that the multi-task framework can
consider the shared knowledge which can pro-
mote each task compared with the indepen-
dently training paradigm.

4.3 Analysis

4.3.1 Speedup and Memory Reduction

In this section, we perform the speed and memory
test on the Tesla V100-SXM2-16GB and all models
were speed-tested on the 10,000 sentences of the
People’s Daily corpus with a batch size of 8. In
all experiments, N-LTP performs six tasks (CWS,
POS, NER, DEP, SDP, SRL) while Stanza only
conduct four tasks (CWS, POS, NER, DEP).

210 corpus for training CWS task includes PKU, MSR,
AS, CITYU, XU, CTB, UDC, CNC, WTB and ZX.

3http://ir.hit.edu.cn/sdp2020ccl

http://ltp.ai/demo.html
http://ir.hit.edu.cn/sdp2020ccl
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Task Model Dataset Metric
State-of-the-art N-LTP N-LTP
Performance trained separately trained jointly

CWS BERT (Huang et al., 2019) 10 Corpus2 F1 97.10 97.42 97.50
POS Glyce+BERT (Meng et al., 2019) CTB9 F1 93.15 94.57 95.17
NER ZEN (Diao et al., 2020) MSRA F1 95.25 94.95 95.78
NER DGLSTM-CRF (Jie and Lu, 2019) OntoNotes F1 79.92 84.08 84.38
SRL BiLSTM-Span (Ouchi et al., 2018) CONLL12 F1 75.75 78.20 81.65
DEP Joint-Multi-BERT (Yan et al., 2019b) CTB9 F1LAS 81.71 81.69 84.03
SDP SuPar3 CCL20204 F1LAS 80.38 76.27 75.76

Table 3: The results of N-LTP comparation to other state-of-the-art performance..
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Figure 6: Speed and Memory test for N-LTP.

Speedup We compare the speed be-
tween Stanza, N-LTP-separately and
N-LTP-jointly and the results are shown
in Figure 6. From the results of speed test, we
have two interesting observations: (1) N-LTP
trained separately achieves the x1.7
speedup compared with Stanza. We attribute
that N-LTP adopts the transformer as an encoder
that can be calculated in parallel while Stanza
uses LSTM which can only process sentences
word by word; (2) N-LTP trained jointly
with distillation obtains the x4.3 speedup
compared with separate modeling paradigm. This
is because that our model utilizes the multi-task
to perform all tasks while the independent models
can be only processed all tasks in a pipeline mode.

Memory Reduction For memory test, we
have the following observation: (1) N-LTP
trained separately occupy more memory
than Stanza. This is because N-LTP per-
forms six tasks while Stanza only conduct four
tasks. (2) Though performing six tasks, N-LTP
trained jointly only requires half the mem-
ory compared to Stanza. We attribute it to the
fact that the multi-task framework with a shared
encoder can greatly reduce the running memory.

4.3.2 Comparation with Other SOTA Single
Models

To further verify the effectiveness of N-LTP, we
compare our framework with the existing state-of-
the-art single models on six Chinese fundamental
tasks. In this comparison, we conduct experiments
on the same wildly-used dataset in each task for a
fair comparison. In addition, we use BERT rather
than ELECTRA as the shared encoder, because the
prior work adopts BERT.

Table 3 shows the results, we observe that our
framework obtains best performance on five out
of six tasks including CWS, POS, NER, SRL, and
DEP, which demonstrates the effectiveness of our
framework. On the SDP task, N-LTP underper-
forms the best baseline. This is because many tricks
are used in the prior model for SDP task and we
just use the basic multi-task framework.

5 Conclusion

In this paper, we presented N-LTP, an open-source
neural language technology platform supporting
Chinese. To the best of our knowledge, this is the
first Chinese toolkit that supports six fundamen-
tal Chinese NLP tasks. Experimental results show
N-LTP obtains state-of-the-art or competitive per-
formance and has high speed. We hope N-LTP can
facilitate Chinese NLP research.

Acknowledgements

We thank the anonymous reviewers for their de-
tailed and constructive comments. The first three
authors contributed equally. Wanxiang Che is the
corresponding author. This work was supported
by the National Key R&D Program of China via
grant 2020AAA0106501 and the National Natu-
ral Science Foundation of China (NSFC) via grant
61976072 and 61772153. Libo is also supported
by the Zhejiang Lab’s International Talent Fund for
Young Professionals.



48

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Samuel R. Bowman, Ellie Pavlick, Edouard Grave, Ben-
jamin Van Durme, Alex Wang, Jan Hula, Patrick
Xia, Raghavendra Pappagari, R. Thomas McCoy,
Roma Patel, Najoung Kim, Ian Tenney, Yinghui
Huang, Katherin Yu, Shuning Jin, and Berlin Chen.
2018. Looking for elmo’s friends: Sentence-level
pretraining beyond language modeling. CoRR,
abs/1812.10860.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.
A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 2753–2765, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Yung-Chun Chang, Fang Yi Lee, and Chun Hung Chen.
2018. A public opinion keyword vector for social sen-
timent analysis research. In 2018 Tenth International
Conference on Advanced Computational Intelligence
(ICACI), pages 752–757. IEEE.

Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. LTP:
A Chinese language technology platform. In Coling
2010: Demonstrations, pages 13–16, Beijing, China.
Coling 2010 Organizing Committee.

Wanxiang Che, Meishan Zhang, Yanqiu Shao, and Ting
Liu. 2012. SemEval-2012 task 5: Chinese semantic
dependency parsing. In *SEM 2012: The First Joint
Conference on Lexical and Computational Seman-
tics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012), pages 378–384, Montréal,
Canada. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5931–5937, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from

scratch. Journal of machine learning research,
12(ARTICLE):2493–2537.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 657–668, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shizhe Diao, Jiaxin Bai, Yan Song, Tong Zhang, and
Yonggang Wang. 2020. ZEN: Pre-training Chinese
text encoder enhanced by n-gram representations.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4729–4740, Online.
Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Yu-Lun Hsieh, Yung-Chun Chang, Yi-Jie Huang, Shu-
Hao Yeh, Chun-Hung Chen, and Wen-Lian Hsu.
2017. MONPA: Multi-objective named-entity and
part-of-speech annotator for Chinese using recurrent
neural network. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 80–85,
Taipei, Taiwan. Asian Federation of Natural Lan-
guage Processing.

Weipeng Huang, Xingyi Cheng, Kunlong Chen, Taifeng
Wang, and Wei Chu. 2019. Toward fast and accurate
neural chinese word segmentation with multi-criteria
learning. CoRR, abs/1903.04190.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Zhanming Jie and Wei Lu. 2019. Dependency-guided
LSTM-CRF for named entity recognition. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3862–3872,
Hong Kong, China. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
http://arxiv.org/abs/1812.10860
http://arxiv.org/abs/1812.10860
https://www.aclweb.org/anthology/C18-1233
https://www.aclweb.org/anthology/C18-1233
https://www.aclweb.org/anthology/C10-3004
https://www.aclweb.org/anthology/C10-3004
https://www.aclweb.org/anthology/S12-1050
https://www.aclweb.org/anthology/S12-1050
https://doi.org/10.18653/v1/P19-1595
https://doi.org/10.18653/v1/P19-1595
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.425
https://doi.org/10.18653/v1/2020.findings-emnlp.425
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://www.aclweb.org/anthology/C96-1058
https://www.aclweb.org/anthology/C96-1058
https://www.aclweb.org/anthology/I17-2014
https://www.aclweb.org/anthology/I17-2014
https://www.aclweb.org/anthology/I17-2014
http://arxiv.org/abs/1903.04190
http://arxiv.org/abs/1903.04190
http://arxiv.org/abs/1903.04190
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/D19-1399
https://doi.org/10.18653/v1/D19-1399


49

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie,
Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, and
Jiwei Li. 2019. Glyce: Glyph-vectors for chinese
character representations. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 2742–2753.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.
2018. A span selection model for semantic role la-
beling. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1630–1642, Brussels, Belgium. Association
for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Tao Qian, Yue Zhang, Meishan Zhang, Yafeng Ren, and
Donghong Ji. 2015. A transition-based model for
joint segmentation, POS-tagging and normalization.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1837–1846, Lisbon, Portugal. Association for Com-
putational Linguistics.

Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen,
and Ting Liu. 2019. A stack-propagation framework
with token-level intent detection for spoken language
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2078–2087, Hong Kong, China. Association
for Computational Linguistics.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In Conference on Empiri-
cal Methods in Natural Language Processing.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Yiren Wang, ChengXiang Zhai, and Hany Hassan. 2020.
Multi-task learning for multilingual neural machine
translation. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1022–1034, Online. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771.

Nianwen Xue. 2003. Chinese word segmentation as
character tagging. In International Journal of Com-
putational Linguistics & Chinese Language Process-
ing, Volume 8, Number 1, February 2003: Special
Issue on Word Formation and Chinese Language Pro-
cessing, pages 29–48.

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu.
2019a. Tener: Adapting transformer encoder for
named entity recognition.

Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2019b. A
unified model for joint chinese word segmentation
and dependency parsing. CoRR, abs/1904.04697.

Baohang Zhou, Xiangrui Cai, Ying Zhang, and Xiaojie
Yuan. 2021. An end-to-end progressive multi-task
learning framework for medical named entity recog-
nition and normalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6214–6224, Online. Association
for Computational Linguistics.

https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://proceedings.neurips.cc/paper/2019/hash/452bf208bf901322968557227b8f6efe-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/452bf208bf901322968557227b8f6efe-Abstract.html
https://doi.org/10.18653/v1/D18-1191
https://doi.org/10.18653/v1/D18-1191
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/D15-1211
https://doi.org/10.18653/v1/D15-1211
https://doi.org/10.18653/v1/D19-1214
https://doi.org/10.18653/v1/D19-1214
https://doi.org/10.18653/v1/D19-1214
https://www.aclweb.org/anthology/W96-0213
https://www.aclweb.org/anthology/W96-0213
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/2020.emnlp-main.75
https://doi.org/10.18653/v1/2020.emnlp-main.75
https://www.aclweb.org/anthology/O03-4002
https://www.aclweb.org/anthology/O03-4002
http://arxiv.org/abs/1911.04474
http://arxiv.org/abs/1911.04474
http://arxiv.org/abs/1904.04697
http://arxiv.org/abs/1904.04697
http://arxiv.org/abs/1904.04697
https://doi.org/10.18653/v1/2021.acl-long.485
https://doi.org/10.18653/v1/2021.acl-long.485
https://doi.org/10.18653/v1/2021.acl-long.485

