@inproceedings{yarmohammadi-etal-2021-everything,
title = "Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction",
author = "Yarmohammadi, Mahsa and
Wu, Shijie and
Marone, Marc and
Xu, Haoran and
Ebner, Seth and
Qin, Guanghui and
Chen, Yunmo and
Guo, Jialiang and
Harman, Craig and
Murray, Kenton and
White, Aaron Steven and
Dredze, Mark and
Van Durme, Benjamin",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.149",
doi = "10.18653/v1/2021.emnlp-main.149",
pages = "1950--1967",
abstract = "Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of {``}train on English, run on any language{''}, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yarmohammadi-etal-2021-everything">
<titleInfo>
<title>Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahsa</namePart>
<namePart type="family">Yarmohammadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shijie</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Marone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoran</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seth</namePart>
<namePart type="family">Ebner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanghui</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunmo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jialiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Craig</namePart>
<namePart type="family">Harman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenton</namePart>
<namePart type="family">Murray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="given">Steven</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of “train on English, run on any language”, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.</abstract>
<identifier type="citekey">yarmohammadi-etal-2021-everything</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.149</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.149</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>1950</start>
<end>1967</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction
%A Yarmohammadi, Mahsa
%A Wu, Shijie
%A Marone, Marc
%A Xu, Haoran
%A Ebner, Seth
%A Qin, Guanghui
%A Chen, Yunmo
%A Guo, Jialiang
%A Harman, Craig
%A Murray, Kenton
%A White, Aaron Steven
%A Dredze, Mark
%A Van Durme, Benjamin
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F yarmohammadi-etal-2021-everything
%X Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of “train on English, run on any language”, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.
%R 10.18653/v1/2021.emnlp-main.149
%U https://aclanthology.org/2021.emnlp-main.149
%U https://doi.org/10.18653/v1/2021.emnlp-main.149
%P 1950-1967
Markdown (Informal)
[Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction](https://aclanthology.org/2021.emnlp-main.149) (Yarmohammadi et al., EMNLP 2021)
ACL
- Mahsa Yarmohammadi, Shijie Wu, Marc Marone, Haoran Xu, Seth Ebner, Guanghui Qin, Yunmo Chen, Jialiang Guo, Craig Harman, Kenton Murray, Aaron Steven White, Mark Dredze, and Benjamin Van Durme. 2021. Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1950–1967, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.