@inproceedings{lu-etal-2021-less,
title = "Less is More: Pretrain a Strong {S}iamese Encoder for Dense Text Retrieval Using a Weak Decoder",
author = "Lu, Shuqi and
He, Di and
Xiong, Chenyan and
Ke, Guolin and
Malik, Waleed and
Dou, Zhicheng and
Bennett, Paul and
Liu, Tie-Yan and
Overwijk, Arnold",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.220",
doi = "10.18653/v1/2021.emnlp-main.220",
pages = "2780--2791",
abstract = "Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a \textit{weak} decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at \url{https://github.com/microsoft/SEED-Encoder/}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-etal-2021-less">
<titleInfo>
<title>Less is More: Pretrain a Strong Siamese Encoder for Dense Text Retrieval Using a Weak Decoder</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuqi</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenyan</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guolin</namePart>
<namePart type="family">Ke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Waleed</namePart>
<namePart type="family">Malik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhicheng</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Bennett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tie-Yan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arnold</namePart>
<namePart type="family">Overwijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/.</abstract>
<identifier type="citekey">lu-etal-2021-less</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.220</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.220</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>2780</start>
<end>2791</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Less is More: Pretrain a Strong Siamese Encoder for Dense Text Retrieval Using a Weak Decoder
%A Lu, Shuqi
%A He, Di
%A Xiong, Chenyan
%A Ke, Guolin
%A Malik, Waleed
%A Dou, Zhicheng
%A Bennett, Paul
%A Liu, Tie-Yan
%A Overwijk, Arnold
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F lu-etal-2021-less
%X Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/.
%R 10.18653/v1/2021.emnlp-main.220
%U https://aclanthology.org/2021.emnlp-main.220
%U https://doi.org/10.18653/v1/2021.emnlp-main.220
%P 2780-2791
Markdown (Informal)
[Less is More: Pretrain a Strong Siamese Encoder for Dense Text Retrieval Using a Weak Decoder](https://aclanthology.org/2021.emnlp-main.220) (Lu et al., EMNLP 2021)
ACL
- Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed Malik, Zhicheng Dou, Paul Bennett, Tie-Yan Liu, and Arnold Overwijk. 2021. Less is More: Pretrain a Strong Siamese Encoder for Dense Text Retrieval Using a Weak Decoder. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2780–2791, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.