
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2998–3008
November 7–11, 2021. c©2021 Association for Computational Linguistics

2998

Adversarial Mixing Policy for Relaxing Locally Linear Constraints in
Mixup

Guang Liu, Yuzhao Mao,
Hailong Huang, Weiguo Gao, and Xuan Li

PingAn Life Insurance of China
https://github.com/PAI-SmallIsAllYourNeed/Mixup-AMP

Abstract
Mixup is a recent regularizer for current deep
classification networks. Through training a
neural network on convex combinations of
pairs of examples and their labels, it imposes
locally linear constraints on the model’s input
space. However, such strict linear constraints
often lead to under-fitting which degrades the
effects of regularization. Noticeably, this issue
is getting more serious when the resource is
extremely limited. To address these issues, we
propose the Adversarial Mixing Policy (AMP),
organized in a “min-max-rand” formulation, to
relax the Locally Linear Constraints in Mixup.
Specifically, AMP adds a small adversarial per-
turbation to the mixing coefficients rather than
the examples. Thus, slight non-linearity is in-
jected in-between the synthetic examples and
synthetic labels. By training on these data, the
deep networks are further regularized, and thus
achieve a lower predictive error rate. Exper-
iments on five text classification benchmarks
and five backbone models have empirically
shown that our methods reduce the error rate
over Mixup variants in a significant margin (up
to 31.3%), especially in low-resource condi-
tions (up to 17.5%).

1 Introduction

Deep classification models have achieved impres-
sive results in both images (He et al., 2016; Dosovit-
skiy et al., 2020) and language processing (Devlin
et al., 2019; Kim, 2014; Wang et al., 2016). One
of the most significant challenges to train a deep
model is the great efforts and costs to collect large-
scale labels. Without sufficient labels, the deep
networks tend to generalize poorly, leading to un-
satisfactory performance. Thus, the regularization
techniques under augmentation schema, which gen-
erate labeled data to regularize models (Hernández-
García and König, 2018), are widely explored (Wei
and Zou, 2019; Liu et al., 2021).

Mixup (Zhang et al., 2018) is an effective regu-
larizer under the augmentation schema. In recent

years, topics related to Mixup have warranted se-
rious attention (Lee et al., 2020; Xu et al., 2020;
Verma et al., 2019; Archambault et al., 2019; Berth-
elot et al., 2019b,a; Beckham et al., 2019; Mao
et al., 2019; Zhu et al., 2020). The core idea of
Mixup is to generate synthetic training data via a
mixing policy, which convex combines a pair of
examples and its labels. Through training on these
data, the classification networks will be regularized
to reach higher performance. Unlike conventional
regularizers (Srivastava et al., 2014; Hanson and
Pratt, 1988; Ioffe and Szegedy, 2015), Mixup im-
poses a kind of locally linear constraint (Zhang
et al., 2018; Guo et al., 2019b) on the model’s input
space.

However, vanilla Mixup often suffers from under-
fitting due to the ambiguous data (Guo et al., 2019b;
Guo, 2020; Mai et al., 2021) generated under the
strict locally linear constraints. To alleviate the
under-fitting, (Guo, 2020) uses extra parameters
to project the inputs and labels into a high dimen-
sional space to properly separate the data. (Guo
et al., 2019b; Mai et al., 2021) use auxiliary net-
works to learn the mixing policy in a data-driven
way to avoid the generation of ambiguous data. Al-
though existing works effectively reduce the under-
fitting, they have limitations to properly regular-
ization networks. Current networks are prone to
be over-fitting when adding the extra parameters.
Eventually, these methods degrade the effects of
regularization. The conflicts between over-fitting
and under-fitting get more serious when the la-
beled resources are rare or hard to obtain. Be-
sides, the methods with auxiliary networks usually
have difficulties in integrating with other Mixup
variants. More importantly, Mixup works well in
most cases (Guo et al., 2019b). Adding too much
non-linearity into Mixup will sacrifice the majority
of synthetic data that can regularize the networks
under locally linear constraints. So, the locally lin-
ear constraints in Mixup only need to be slightly

https://github.com/PAI-SmallIsAllYourNeed/Mixup-AMP

2999

relaxed.
In this paper, we propose the Adversarial Mix-

ing Policy (AMP) to overcome these limitations.
We modify the adversarial training (Goodfellow
et al., 2015), which relaxes the linear nature of the
network without any extra parameters or auxiliary
networks, to relax the Locally Linear Constraints
in Mixup. Inspired by the “min-max” formulation
of adversarial training, we formulate our method as
a form of “min-max-rand” regularization. Specif-
ically, the “rand” operation randomly samples a
mixing coefficient as in vanilla Mixup to generate
synthetic example and label. Then, the “max” oper-
ation calculates the perturbation of the mixing co-
efficient and applies it. Note that the updated mix-
ing coefficient is only used to re-synthetic example,
keeping the synthetic label unchanged. Thus, slight
non-linearity is injected in-between the synthetic
example and label. Finally, the “min” operation
minimizes the training loss over the non-linearly
generated example-label pairs. In summary, we
highlight the following contributions:

• We propose an Adversarial Mixing Policy
(AMP) to relax the Locally Linear Constraints
(LLC) in Mixup without any auxiliary net-
works. It can be seamlessly integrated into
other Mixup variants for its simplicity.

• To the best of our knowledge, this is the first
exploration of the application of adversar-
ial perturbation to the mixing coefficient in
Mixup.

• We analyze our proposed method with exten-
sive experiments and show that our AMP im-
proves the performance of two Mixup variants
on various settings and outperforms the non-
linear Mixup in terms of error rate.

2 Background

2.1 Linear nature of the networks

Let (x; y) be a sample in the training data, where
x denotes the input and y the corresponding label.
Deep networks learns a mapping function from x
to y, which is:

f(x) = y′ → y . (1)

Here, y′ is the output of the networks,→ represents
the learning process. The linear nature of networks
can be interpreted as that a small change in the

input will lead to a change of model output:

f(x+∇x) = y′ +∇y . (2)

Here, ∇x is a small perturbation of x, and ∇y is
the changing of output caused by the injection of
∇x. This linearity causes the networks vulnerable
to adversarial attacks (Goodfellow et al., 2015).

2.2 Relax the linear nature
To relax the linear nature of the networks, adver-
sarial training (Goodfellow et al., 2015) forces the
networks to learn the following mapping function,

f(x+∇x) = y′ → y , (3)

where ∇x is an small adversarial perturbation.
Such kind of training can effectively relax the lin-
earity of networks and improve the robustness of
deep networks. However, there exists a trade-off
between model robustness(Equation. 3) and gener-
alization(Equation. 1)(Tsipras et al., 2019).

2.3 Locally linear constraints in Mixup
Mixup can be formulated as follows,

f(mx(λ)) = y′ → my(λ) , (4)

mx(λ) = x1 · λ+ x2 · (1− λ) , (5)

my(λ) = y1 · λ+ y2 · (1− λ) , (6)

where λ ∈ [0, 1] is the mixing coefficient. m
is the mixing policy. (x1; y1) and (x2; y2) are a
pair of examples from the original training data.
By training on synthetic data, mx(λ) and my(λ),
Mixup (Zhang et al., 2018; Verma et al., 2019) im-
poses the Locally Linear Constraints on the input
space of networks. Different from Eq. 2, this lin-
earity can be formulated as follow,

f(mx(λ+∇λ)) = y′+∇y → my(λ+∇λ) . (7)

Here, the ∇λ is a small change in λ. We can ob-
serve that the output of the networks is changed
accordingly. That is similar to the form of the linear
nature of networks. Under these settings, the small
change in λ often leads to an undesirable change
of output. Eventually, these strict linear constraints
lead to under-fitting that degrades the regulariza-
tion effects (Guo et al., 2019b; Guo, 2020).

2.4 Why relaxing locally linear constraints
Relaxing the strict linear constraints in Mixup can
alleviate the under-fitting and therefore improve

3000

the regularization effects (Guo, 2020). The under-
fitting happens when the synthetic data is corrupted
or ambiguous for the network. So, if we can make
the networks compatible with such data, like the
soft margin (Suykens and Vandewalle, 1999), the
under-fitting will be eased. Furthermore, such a
technique is best realized the relaxing without ex-
tra parameters. Inspired by the adversarial train-
ing (Eq. 3), we hypothesize that injecting slight
non-linearity into Mixup can relax its constraints
without extra parameters as follow,

f(mx(λ+∇λ)) = y′ → my(λ) , (8)

where∇λ is an adversarial perturbation injected to
the original mixing coefficient λ.

3 Methodology

As shown in Figure 1, Adversarial Mixing Policy
(AMP) consists of three operations: Rand, Max
and Min. Rand Operation (RandOp) generates
the synthetic data by interpolating pairs of train-
ing examples and their labels with a random mix-
ing coefficient λ. Max Operation (MaxOp) injects
a small adversarial perturbation into the λ to re-
synthesize the example and keeps the synthetic
label unchanged. This operation injects slight non-
linearity into the synthetic data. Min Operation
(MinOp) minimizes the losses of these data. Addi-
tionally, we use a simple comparison to eliminate
the influence caused by the scaling of gradients.

3.1 Method formulation
Given a training setD = {xi, yi} of texts, in which
each sample includes a sequence of words xi and
a label yi. A classification model encodes the text
into a hidden state and predicts the category of
text. Mixup’s objective is to generate interpolated
sample ĝk and label ŷ by randomly linear interpola-
tion with ratio λ applied on a data pair(xi; yi) and
(xj ; yj). Our method aims to project a perturbation
∇λ into λ to maximize the loss on interpolated
data. Then, it minimizes the maximized loss. In-
spired by adversarial training, we formulate this
problem as a min-max-rand optimization problem,

min
θ

ED̂ max
|∇λ|≤ε

`mix(frand(λ+∇λ, i, j, k)
λ∼Beta(α,α)

; θ) .

(9)
Here, D̂ = {ĝki, ŷi} is the synthetic data set gen-
erated by frand(λ, i, j), ∇λ is the adversarial per-
turbation of λ, ε is the maximum step size, `mix(∗)

is the Mixup loss function, frand(∗) represent the
random interpolation of data and labels, λ is the
random mixing coefficient sampled from a Beta
distribution with α parameters, i and j are the ran-
domly sampled data indexes in D, k is the mixed
layer.

3.2 Rand operation
Rand Operation (RandOp) is identical to
Mixup (Zhang et al., 2018). It aims to generate
random interpolated data between two categories.
Specifically, it generates synthetic labeled data by
linearly interpolating pairs of training examples as
well as their corresponding labels. For a data pair
(xi; yi) and (xj ; yj), x denotes the examples and y
the one-hot encoding of the corresponding labels.
Consider a model f(x) = fk(gk(x)), gk denotes
the part of the model mapping the input data to
the hidden state at layer k, and fk denotes the part
mapping such hidden state to the output of f(x).
The synthetic data is generated as follows,

λ ∼Beta(α, α) , (10)

ĝk =gk(xi) · λ+ gk(xj) · (1− λ) , (11)

ŷ =yi · λ+ yj · (1− λ) , (12)

where λ is the mixing coefficient for the data pair, α
indicates the hyper-parameter of Beta distribution,
ĝk is the synthetic hidden state. For efficient com-
putation, the mixing happens by randomly picking
one sample and then pairs it up with another sam-
ple drawn from the same mini-batch (Zhang et al.,
2018). Here, the sample is obtained randomly. To
simplify, we reformulate the random interpolation
frand(∗) as follow,

(fk(ĝk), ŷ) := frand(λ, i, j, k)
λ∼Beta(α,α)

. (13)

Here, frand(∗) takes the results of Equation 10- 12
as input, outputs the model predictions fk(ĝk) and
the label ŷ. The model trained on the generated
data tends to reduce the volatility of prediction on
these data. Then, the model will generalize better
on unseen data.

3.3 Max operation
Max operation (MaxOp) injects a small adversar-
ial perturbation to inject slight non-linearity be-
tween the synthetic example and synthetic label.
It means that the generated synthetic data will not
strictly follow the Locally Linear Constraints in
Mixup. To achieve this, we propose an algorithm,

3001

ix

jx

iy

jy
y

Max operation Min operation

lo
ss

arg min finalL

Further

regularized

L L
(,)Beta

Random operation

comparison

k
i

g (x)

k
j

g (x) k
ĝ

k k
ˆf (g)

mix rand
Beta(,)

L (f (,i , j ,k);)

 =

mix rand
' ADV

L' (f (',i , j ,k);)

=rand
Beta(,)

f (,i , j ,k)

Figure 1: The major operations of Adversarial Mixing Policy (AMP).

which is similar to the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015), to inject an ad-
versarial perturbation to the λ. It calculates the
gradient of λ in the gradient ascend direction,

max
|∇λ|≤ε

`mix(frand(λ+∇λ, i, j, k)
λ∼Beta(α,α)

; θ) , (14)

where the ∇λ is the gradients of λ on gradient as-
cent direction, ε is the step size. Different from the
FGSM (Goodfellow et al., 2015), we add a small
perturbation on λ instead of the input. Besides,
the λ is a scalar, we can get the adversarial direc-
tion and strength directly. So, there is no need to
perform the normalization on∇λ.

λ′ = λ+ ε · ∇λ , (15)

where λ′ is the slight hardness version of mix coef-
ficient, ε is the step size, ∇λ is the clipped (≤ 1)
gradient of λ. The perturbation is the gradient in
the adversarial direction. We calculate the gradient
of λ as follow,

∇λ =
∂L
∂λ

. (16)

Here, the Mixup loss L is calculated by interpola-
tion of losses on pair of labels (Zhang et al., 2018;
Verma et al., 2019) as follow,

L =`mix(frand(λ, i, j, k)
λ∼Beta(α,α)

; θ)

=`ce(fk(ĝk), yi; θ) · λ+
`ce(fk(ĝk), yj ; θ) · (1− λ) .

(17)

Here, L represents the loss of synthetic data gener-
ated under mixing coefficient λ, θ is the parameters
of the model, `mix(∗) is the Mixup loss, `ce(∗) rep-
resents the cross-entropy function. Notable that

the step size of gradient ε may lead to undesirable
results that minimize the losses. So, we need to
eliminate the influence caused by ε.

3.4 Min operation
Min operation (MinOp) minimizes loss of con-
straints relaxed synthetic data as follow,

argmin
θ
Lfinal , (18)

where Lfinal is the final loss. In addition, MinOp
leans to minimize the larger loss in the previous
two steps to eliminate the influence of the step size
ε. Besides, this preference will help model learning
from the one with larger loss to reduce the risk of
under-fitting. We use a mask-based mechanism to
realize the operation as follow,

Lfinal = L · (1−mask) + L′ ·mask . (19)

Here, the mask is used as a selector of losses. The
comparison is carried out on losses before and after
updated λ in the synthetic example. The latter one
L′ is calculated as follow,

L′ = `mix(frand(λ
′, i, j, k)

λ′←ADV
; θ) . (20)

Here, λ′ is the mixing coefficient after injecting
perturbation (we only inject the perturbation into
mixing coefficient of input, as Eq. 8), L′ is the
Mixup loss on synthetic example generated under
λ′. Note that the λ for the synthetic label is un-
changed. mask is calculated as follow,

mask =

{
1 δL > 0
0 δL ≤ 0 .

(21)

Here, themask is batch size vector, δL is the direct
comparison L′ − L. By doing this, the proposed
method achieves steady improvement under differ-
ent settings of step size.

3002

4 Experiments

4.1 Data
We evaluate the proposed AMP on five sentence
classification benchmark datasets as used in (Guo
et al., 2019a). TREC is a question dataset which
aims to categorize a question into six types (Li and
Roth, 2002). MR is a movie review dataset aiming
at classifying positive/negative reviews (Pang and
Lee, 2005). SST-1 is the Stanford Sentiment Tree-
bank dataset with five sentiment categories: very
positive, positive, neutral, negative, and very nega-
tive (Socher et al., 2013). SST-2 is a binary label
version of SST-1. SUBJ is a dataset aiming to judge
a sentence to be subjective or objective (Pang and
Lee, 2004). Table 1 summarizes the statistical char-
acteristics of the five datasets after prepossessing.

Table 1: The statistics of datasets. c is the category
number. l is the average length. V is the vocabulary
size. N is the size of the training set. T is the size of the
testing set. CV denotes the 10-fold cross-validation.

Data c l V N T

TREC 6 10 9592 5952 500
SST-1 5 18 17836 11855 2210
SST-2 2 19 16185 9613 1821
SUBJ 2 23 21323 10000 CV
MR 2 20 18765 10662 CV

4.2 Baselines and Settings
Our AMP is evaluated by integrating to two recent
proposed Mixup variants. We choose five popu-
lar sentence classification models as the backbone
to test the performance of all Mixups on the five
benchmark datasets.

Classification backbone. We test Mixups on
five classification backbones. LSTMrand and
LSTMglove (Wang et al., 2016) are two versions of
bi-directional Long Short Term Memory(LSTM)
with attention, where the former uses randomly
initiated word embeddings and the latter uses
GloVe (Pennington et al., 2014) initiated word em-
beddings. CNNrand and CNNglove (Kim, 2014)
are two versions of convolutional neural networks.
They are fed with randomly and GloVe initiated
word embeddings, repectively. The above four
methods are popular sentence classification mod-
els without pre-training techniques. We employ
BERTbase (Devlin et al., 2019) as the pre-training
classification backbone.

Mixup. We choose three popular Mixup vari-
ants for sentence classification as baselines. Word-
Mixup (Guo et al., 2019a) is the straightforward
application of Mixup on NLP tasks where linear in-
terpolation applying on the word embedding level
(first layer). SentMixup (Verma et al., 2019; Sun
et al., 2020) is the Mixup applying to NLP tasks
where linear interpolation is conducted in the last
layer of hidden states. Non-linear Mixup is the
non-linear version of SentMixup.

AMP. WordAMP is applied on the word embed-
ding level, the same as WordMixup. SentAMP is
applied on the last layer of hidden states, the same
as SentMixup.

We obtained the source codes of backbone mod-
els from the public available implementations1. In
our experiments, we follow the exact implemen-
tation and settings in (Kim, 2014; Wang et al.,
2016; Devlin et al., 2019; Guo et al., 2019a; Verma
et al., 2019). Specifically, we use filter sizes of 3,
4, and 5, each with 100 feature maps; dropout rate
of 0.5 and L2 regularization of 1e-8 for the CNN
baselines. We use hidden size of 1024 of single-
layer; dropout rate of 0.5 and L2 regularization of
1e-8 for the LSTM baselines. For datasets without
a standard development set, we randomly select
10% of training data as a development set. Train-
ing is done through Adam (Kingma and Ba, 2015)
over mini-batches of size 50 (CNN, LSTM) and 24
(BERTbase) respectively. The learning rate is 2e-4
for CNN and LSTM, and 1e-5 for BERTbase. The
word embeddings are 300 dimensions for CNN and
LSTM. The step size ε = 0.002 for all experiments.
The α for all Mixup is set to one. For each dataset,
we train each model 10 times with different random
seeds each with 8k steps and compute their mean
error rates and standard deviations.

4.3 Main results
To evaluate the predictive performance of AMP, we
conduct five sets of experiments. For each setting,
we compare the performance of without Mixup
(w/o), WordMixup (Word), SentMixup (Sent) and
non-linear Mixup(non-linear2. As presented in
Table 2, AMP outperform Mixup comparison base-
lines. For example, compared with the Sent base-

1LSTM: https://github.com/songyouwei/ABSA-PyTorch
CNN: https://github.com/harvardnlp/sent-conv-torch
BERT: https://github.com/huggingface/transformers
GloVe: https://nlp.stanford.edu/projects/glove/

2Only on CNNglove our baseline results close to the base-
line results reported in (Guo, 2020)). For a fair comparison,
we only cite the results of CNNglove of non-linear Mixup.

3003

Table 2: The results of our AMP method compared with two recent Mixup methods on five different datasets
under five different classification models. For a fair comparison, we re-implement the Mixup baselines based on
backbone models. The results may not the same as the results in (Guo et al., 2019a; Sun et al., 2020). RP indicates
the relative improvement.† indicates the results are cited from (Guo, 2020).

Model Mixup TREC(%) SST-1(%) SST-2(%) SUBJ(%) MR(%)

RNNrand

w/o 11.3±1.48 63.7±3.00 18.0±0.85 10.7±0.57 24.9±1.11
Sent 10.5±1.16 55.8±0.75 16.6±0.38 10.3±0.55 24.2±0.72

Sent(our) 9.8±0.73 55.0±0.37 15.9±0.43 10.0±0.78 23.6±0.65
RP(%) 6.7↑ 1.4↑ 4.2↑ 2.9↑ 2.5↑
Word 9.8±0.86 55.9±0.62 16.1±0.62 9.4±0.77 23.6±0.75

Word(our) 9.5±0.84 55.6±0.67 15.3±0.43 8.8±0.48 22.7±0.96
RP(%) 3.1↑ 0.5↑ 5.0↑ 6.4↑ 3.8↑

RNNglove

w/o 8.3±0.47 56.6±0.30 13.0±0.51 6.1±0.76 18.5±0.97
Sent 6.9±0.55 48.1±0.37 12.1±0.61 6.0±0.69 18.1±0.95

Sent(our) 6.7±0.27 48.0±0.45 11.5±0.31 5.8±0.79 17.8±0.98
RP(%) 2.9↑ 0.2↑ 5.0↑ 3.3↑ 1.7↑
Word 6.5±0.45 48.6±0.33 11.8±0.34 5.5±0.73 17.8±0.87

Word(our) 6.6±0.52 48.0±0.66 11.1±0.42 5.2±0.72 17.5±0.91
RP(%) 1.5↓ 1.2↑ 5.9↑ 5.5↑ 1.7↑

CNNrand

w/o 8.8±0.86 63.2±0.54 17.6±0.52 9.5±0.64 24.2±1.39
Sent 8.3±0.63 58.1±0.48 19.9±0.32 9.5±0.52 25.1±0.91

Sent(our) 8.1±0.71 57.9±0.51 19.9±0.51 9.4±0.45 25.1±0.93
RP(%) 2.4↑ 0.5↑ → 1.1↑ →
Word 8.3±0.71 58.0±0.55 19.4±0.22 9.7±0.57 24.6±0.78

Word(our) 8.4±0.92 57.5±0.50 19.2±0.53 9.2±0.68 24.1±0.98
RP(%) 1.2↓ 1.0↑ 1.0↑ 5.2↑ 2.0↑

CNNglove

w/o 7.9±0.12 57.5±0.50 13.1±0.49 5.6±0.36 20.2±0.60
Non-linear 5.3±0.29† 50.7±0.42† 11.4±0.29† 6.1±0.19† 16.6±0.36†

Sent 6.7±0.23 51.4±0.23 12.8±0.35 5.1±0.34 19.4±0.56
Sent(our) 4.6±0.33 50.6±0.40 11.7±0.25 5.1±0.62 17.4±0.69

RP(%) 31.3↑ 1.6↑ 8.6↑ → 10.3↑
Word 6.3±0.80 51.8±0.91 12.9±0.26 5.3±0.45 18.7±0.28

Word(our) 4.8±0.26 50.4±0.60 11.7±0.24 5.1±0.58 17.4±0.66
RP(%) 23.8↑ 2.7↑ 9.3↑ 3.8↑ 7.0↑

BERTbase

w/o 2.6±0.18 47.3±0.47 6.9±0.21 2.4±0.47 11.5±1.19
Sent 2.2±0.24 44.5±0.37 6.3±0.29 2.4±0.56 11.3±1.44

Sent(our) 2.1±0.20 44.3±0.54 5.9±0.30 2.3±0.49 11.2±1.31
RP(%) 4.5↑ 0.4↑ 9.5↑ 4.2↑ 0.9↑
Word 2.1±0.20 45.6±0.37 6.5±0.25 2.3±0.54 11.1±1.44

Word(our) 1.9±0.13 45.5±0.37 6.4±0.23 2.2±0.56 10.8±1.29
RP(%) 9.5↑ 0.2↑ 1.5↑ 4.3↑ 2.7↑

line over CNNglove, Sent(our) achieves a signifi-
cant improvement on all five datasets. For instance,
Sent(our) outperform Sent on the TREC, SST2 and
MR datasets over CNNglove, the relative improve-
ments are 31.3%, 8.6% and 10.3%, respectively3.
Compared with Word over RNNglove, Word(our)
reduces the error rate over 1.2% (up to 5.9%) on all
five testing datasets. Interestingly, one can see that
the Word(our) outperform Non-linear Mixup on
three out of five datasets. That shows the slightly
relaxing of LLC achieves similar sometimes even
better results than changing the LLC into a non-
linear version.

We use different initial embeddings to evaluate
3Our methods are tuned on CNNglove may cause the

significant higher level of improvements.

the effectiveness of augmentation as (Guo et al.,
2019a). From the embedding perspective, we
have three kinds of embeddings: the randomly
initiated embeddings (RNNrand and CNNrand),
the pre-trained fixed embeddings (RNNglove and
CNNglove) and the pre-trained context-aware em-
beddings (BERTbase). For each kind of embed-
dings, AMP outperforms the Mixup baselines. For
instance, when compared with Sent under ran-
domly initiated embeddings, the proposed method
Sent(our) obtains lower predictive error rate on
eight out of ten experiments. While Word(our)
outperforms Word on nine out of ten experiments.
Similar results can be observed on the pre-trained
embeddings settings. Even under the context-aware
embeddings setting (BERTbase), our AMP can fur-

3004

ther improve the performance against the Mixup
with advanced backbone models. Significantly, on
SST1, our method helpBERTbase outperforms the
SOTA model (BERTlarge, 44.5) (Munikar et al.,
2019), which is as two times large as BERTbase.
The results show the effectiveness of our method.

Table 3: The results of BERTbase with SentAMP on
low-resource settings. The experiments are run ten
times on each scaled TREC datasets. The average er-
ror rate and standard deviation are reported.

% labels Sent Sent(our) RP(%)
3 160 51.0±7.34 42.1±7.34 +17.5
4 215 29.8±4.05 25.6±4.01 +14.1
5 270 10.2±1.00 9.2±0.80 +9.8
10 543 5.1±0.64 4.6±0.37 +9.8
15 815 4.1±0.64 4.0±0.67 +2.4
20 1089 3.6±0.62 3.5±0.48 +2.8
40 2179 2.9±0.35 2.7±0.38 +6.7
80 4359 2.2±0.17 2.1±0.10 +4.5
100 5452 2.2±0.24 2.1±0.20 +4.5

4.4 Low-resource conditions
With low resources, the under-fitting caused by the
strict LLC has a serious impact on the model gener-
alization. To evaluate our AMP performance with
different amounts of data, particularly in the case
of low-resource settings. We scale the size of the
dataset by a certain ratio of data for each category.
If the scaled category is less than 0, we retain at
least one sample. We randomly generate ten dif-
ferent datasets for each scale ratio and then run
the experiment on each dataset. The mean error
rate and standard deviation are reported. As shown
in Table 3, we can see that our method reduces
the mean error rate against Mixup with a signifi-
cant margin. For instance, Sent(our) reduces the
error rate over Sent with 17.5% and 14.1% on 3%
and 4% training data, separately. AMP works well
as we expected in low resource conditions for its
effectiveness in relaxing LLC in Mixup.

4.5 Ablation study
To further understand the Max Operation (MaxOp)
and Min Operation (MinOp) effects in AMP, we
make several variations of our model. The varia-
tions are tested under CNNglove and BERTbase
on TREC. As presented in Table 4, the model
trained without augmentation is denoted as
Baseline. +RandOp is identical to the model
trained with Mixup, +MaxOp indicates Mixup

Table 4: Ablation study.

Method Model Operation TREC

Word

CNNglove

Baseline 7.9±0.12
+RandOp 6.3±0.80
+MaxOp 4.7±0.35

AMP 4.8±0.26

BERTbase

Baseline 2.6±0.18
+RandOp 2.1±0.24
+MaxOp 2.0±0.23

AMP 1.9±0.13

Sent

CNNglove

Baseline 7.9±0.12
+RandOp 6.7±0.23
+MaxOp 4.8±0.22

AMP 4.6±0.33

BERTbase

Baseline 2.6±0.18
+RandOp 2.2±0.24
+MaxOp 2.1±0.13

AMP 2.1±0.15

Table 5: The results under different setting of α.

α Methods TREC SST2 MR

0.2
Word 1.9±0.13 6.3±0.23 11.0±1.25

Word(our) 1.8±0.13 6.0±0.20 10.9±1.22
RP(%) +5.3 +4.8 +0.9

0.5
Word 1.9±0.13 6.7±0.24 11.1±1.25

Word(our) 1.9±0.16 6.1±0.18 10.8±1.25
RP(%) +0.0 +8.9 +2.7

1.0
Word 2.1±0.20 6.5±0.25 11.1±1.44

Word(our) 2.0±0.12 6.4±0.23 10.8±1.29
RP(%) +4.8 +1.5 +2.7

1.5
Word 2.1±0.18 6.8±0.13 11.2±1.44

Word(our) 2.0±0.12 6.5±0.28 11.0±1.34
RP(%) +4.8 +4.4 +1.8

with MaxOp is used for model training, AMP is the
fully functional method of our proposed method.
As the results presented in Table 4, MaxOp con-
tributes the majority cut down of error rate. For
instance, the CNNglove under Sent Mixup settings,
MaxOp reduces the error rate from 6.7 to 4.8. That
suggests the effectiveness of adversarial pertur-
bation in relaxing the LLC in Mixup. The com-
parison in MinOp can mostly (three out of four
times) further reduce the error rate. Specifically,
it brings down the mean error rate from 4.8 to 4.6
on CNNglove. That indicates the effectiveness of
MinOp in eliminating the influence of step size.

3005

0 20 40 60 80 100
× 10 2

2.05

2.10

2.15

2.20

2.25

2.30

2.35
lo

ss
our
Mixup

(a) Random pair1

0 20 40 60 80 100
× 10 2

2.1

2.2

2.3

2.4

2.5

2.6

lo
ss our

Mixup

(b) Random pair2

0 20 40 60 80 100
× 10 2

2.10

2.15

2.20

2.25

2.30

2.35

lo
ss

our
Mixup

(c) Full-size testing set

Figure 2: The visualization of loss on unseen synthetic
data. The results conduct by BERTbase on 3% TREC
dataset, as listed in Table 3.

4.6 Mix ratio distribution

To analyze the effects of different shapes of mix-
ing coefficient distributions, we compare Word(out)
with Word on BERTbase on four α settings (from
0.2 to 1.5) and three datasets: TREC, SST2, and
MR. The α is the parameter of the Beta distri-
bution. It controls the shape of how the mixing
coefficient λ is distributed. As presented in Ta-
ble 5, our method can achieve lower mean error
rates than Word on all α settings. For instance,
Word(our) achieve 8.9% lower mean error rate than
Word on SST2 with α = 0.5. The improvements
come mainly from training the models with the
slightly non-linear data generated by AMP.

4.7 Visualization

To intuitively demonstrate the effects of relaxing
LLC, we visualize the loss of networks trained by
our AMP and Mixup. The synthetic data is gen-
erated strictly follow the LLC based on the test-
ing data. The network trained with relaxed LLC
has a smaller loss value shows the effectiveness of
our method in alleviate under-fitting. As shown
in Figure 2(a), 2(b) and 2(c), we draw the losses
on synthetic data generated with mixing coefficient
∈ [0, 1]. Figure 2(a) and 2(b) each uses one random
pair of data in the testing set for generating. For two
random pair (x1, y1)(x4, y4) and (x2, y2)(x3, y3),
we calculate the Mixup loss of each pair on differ-
ent λ to get Figure 2(a) and 2(b). The loss curves on
random pairs are not symmetric for the loss of each

example of the pairs are different. The loss curves
are encouraged (by LLC) to be a line in-between
two examples. The line should start with the loss of
one example and end with the loss of another exam-
ple. The Mixup loss (interpolation on cross-entropy
loss) and the different examples result in different
shapes of the loss curves in Figure 2(a) and 2(b).As
illustrated in Figure 2(a) and 2(b), one can observe
that AMP have a smaller loss than Mixup. That in-
dicates the effectiveness of training on the slightly
non-linear synthetic data in the micro view.

Figure 2(c) uses the full-size testing set for gen-
erating. Figure 2(c) shows the average loss over
all synthetic data generated with the full-size test-
ing set. We freeze the random seeds; thus, we
can freeze the data pairs. Let the testing dataset
be X = [(x1, y1), (x2, y2), (x3, y3), (x4, y4)]. The
synthetic data is generated by λX + (1 − λ)X ,
where X ′ = [(x4, y4), (x3, y3), (x2, y2), (x1, y1)]
is shuffled X . So, the loss when λ = 0 and λ = 1
are identical. Similarly, we can get a symmetric
picture as Figure 2(c).One can observe that our
method can achieve a significantly smaller average
loss than Mixup in the macro view. The visualiza-
tions verified our assumption that relaxing LLC
can further regularize models.

5 Related work

Mixup on text classification. Text classification
has achieved remarkable improvements underly-
ing some effective paradigms, e.g., CNN (Kim,
2014), attention-based LSTMs (Wang et al., 2016),
GloVe (Pennington et al., 2014) and BERT (De-
vlin et al., 2019), etc. The large scale parameter
of the model tends to generalize poorly in low-
resource conditions. To overcome the limitation,
Mixup (Zhang et al., 2018) is proposed as a data
augmentation based regularizer. Few researches
explore the Mixup (Guo et al., 2019b; Zhang et al.,
2020; Guo, 2020) on NLP tasks. For classifica-
tion, (Guo et al., 2019a) suggest applying Mixup
on particular level of networks, i.e., word or sen-
tence level. Although these work make promising
progress, the mechanism of Mixup is still need to
be explored.
Adversarial Training. The min-max formulation
of adversarial training has been theoretically and
empirically verified (Beckham et al., 2019; Xu
et al., 2020; Pang et al., 2020; Archambault et al.,
2019; Lee et al., 2020; Miyato et al., 2015, 2018,
2017). Such training procedure first generates ad-

3006

versarial examples that might maximize the train-
ing loss and then minimizes the training loss after
adding the adversarial examples into the training
set (Madry et al., 2018). The Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015) is an
efficient one-step method. Inspired by the min-max
formulation of adversarial learning, we organize
our method into a min-max-rand formulation.

6 Conclusion

For relaxing Locally Linear Constraints (LLC) in
Mixup to alleviate the under-fitting, this paper pro-
poses an Adversarial Mixing Policy (AMP). In-
spired by the adversarial training, we organize our
method into a min-max-rand formulation. The
proposed method injects slightly non-linearity in-
between synthetic examples and synthetic labels
without extra parameters. By training on these data,
the networks can compatible with some ambiguous
data and thus reduce under-fitting. Thus, the net-
work will be further regularized to reach better per-
formance. We evaluate our method on five popular
classification models on five publicly available text
datasets. Extensive experimental results show that
our AMP can achieve a significantly lower error
rate than vanilla Mixup (up to 31.3%), especially
in low-resource conditions(up to 17.5%).

7 Acknowledgments

We thank Prof.Xiaojie Wang and Prof.Fangxiang
Feng from BUPT for their valuable feedback on an
earlier draft of this paper, and Yang Du from XDF
for her suggestions of English writing for the final
revision. We also thank anonymous reviewers for
their helpful comments.

References
Guillaume P Archambault, Yongyi Mao, Hongyu Guo,

and Richong Zhang. 2019. Mixup as directional ad-
versarial training. arXiv preprint arXiv:1906.06875.

Christopher Beckham, Sina Honari, Vikas Verma, Alex
Lamb, Farnoosh Ghadiri, R. Devon Hjelm, Yoshua
Bengio, and Chris Pal. 2019. On adversarial
mixup resynthesis. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 4348–4359.

David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raf-
fel. 2019a. Remixmatch: Semi-supervised learn-

ing with distribution alignment and augmentation an-
choring. arXiv preprint arXiv:1911.09785.

David Berthelot, Nicholas Carlini, Ian J. Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin Raffel.
2019b. Mixmatch: A holistic approach to semi-
supervised learning. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 5050–5060.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Hongyu Guo. 2020. Nonlinear mixup: Out-of-
manifold data augmentation for text classification.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 4044–4051. AAAI Press.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019a.
Augmenting data with mixup for sentence clas-
sification: An empirical study. arXiv preprint
arXiv:1905.08941.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019b.
Mixup as locally linear out-of-manifold regulariza-
tion. In The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pages 3714–3722. AAAI Press.

Stephen Hanson and Lorien Pratt. 1988. Comparing
biases for minimal network construction with back-
propagation. Advances in neural information pro-
cessing systems, 1:177–185.

https://proceedings.neurips.cc/paper/2019/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f708f064faaf32a43e4d3c784e6af9ea-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://aaai.org/ojs/index.php/AAAI/article/view/5822
https://aaai.org/ojs/index.php/AAAI/article/view/5822
https://doi.org/10.1609/aaai.v33i01.33013714
https://doi.org/10.1609/aaai.v33i01.33013714

3007

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Alex Hernández-García and Peter König. 2018. Data
augmentation instead of explicit regularization.
arXiv preprint arXiv:1806.03852.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Pro-
ceedings, pages 448–456. JMLR.org.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Saehyung Lee, Hyungyu Lee, and Sungroh Yoon. 2020.
Adversarial vertex mixup: Toward better adversari-
ally robust generalization. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 269–278. IEEE.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Guang Liu, Hailong Huang, Yuzhao Mao, Weiguo Gao,
Xuan Li, and Jianping Shen. 2021. A diversity-
enhanced and constraints-relaxed augmentation for
low-resource classification. In Database Systems
for Advanced Applications - 26th International Con-
ference, DASFAA 2021, Taipei, Taiwan, April 11-
14, 2021, Proceedings, Part II, volume 12682 of
Lecture Notes in Computer Science, pages 262–270.
Springer.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adver-
sarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin
Shen, and Heng Tao Shen. 2021. Metamixup:
Learning adaptive interpolation policy of mixup
with metalearning. IEEE Transactions on Neural
Networks and Learning Systems.

Xudong Mao, Yun Ma, Zhenguo Yang, Yangbin Chen,
and Qing Li. 2019. Virtual mixup training for
unsupervised domain adaptation. arXiv preprint
arXiv:1905.04215.

Takeru Miyato, Andrew M. Dai, and Ian J. Good-
fellow. 2017. Adversarial training methods for
semi-supervised text classification. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. IEEE transactions on pat-
tern analysis and machine intelligence, 41(8):1979–
1993.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
Ken Nakae, and Shin Ishii. 2015. Distributional
smoothing with virtual adversarial training. arXiv
preprint arXiv:1507.00677.

Manish Munikar, Sushil Shakya, and Aakash Shrestha.
2019. Fine-grained sentiment classification using
bert. In 2019 Artificial Intelligence for Transform-
ing Business and Society (AITB), volume 1, pages
1–5. IEEE.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages 271–
278, Barcelona, Spain.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 115–
124, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Tianyu Pang, Kun Xu, and Jun Zhu. 2020. Mixup in-
ference: Better exploiting mixup to defend adver-
sarial attacks. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CVPR42600.2020.00035
https://doi.org/10.1109/CVPR42600.2020.00035
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://doi.org/10.1007/978-3-030-73197-7_17
https://doi.org/10.1007/978-3-030-73197-7_17
https://doi.org/10.1007/978-3-030-73197-7_17
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://openreview.net/forum?id=ByxtC2VtPB
https://openreview.net/forum?id=ByxtC2VtPB
https://openreview.net/forum?id=ByxtC2VtPB
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170

3008

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Lichao Sun, Congying Xia, Wenpeng Yin, Tingting
Liang, Philip S Yu, and Lifang He. 2020. Mixup-
transfomer: Dynamic data augmentation for nlp
tasks. arXiv preprint arXiv:2010.02394.

Johan AK Suykens and Joos Vandewalle. 1999. Least
squares support vector machine classifiers. Neural
processing letters, 9(3):293–300.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. 2019. Ro-
bustness may be at odds with accuracy. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In Pro-
ceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages
6438–6447. PMLR.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based LSTM for aspect-
level sentiment classification. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 606–615, Austin,
Texas. Association for Computational Linguistics.

Jason Wei and Kai Zou. 2019. EDA: Easy data aug-
mentation techniques for boosting performance on
text classification tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6382–6388, Hong Kong,
China. Association for Computational Linguistics.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li,
Chengjie Wang, Qi Tian, and Wenjun Zhang. 2020.
Adversarial domain adaptation with domain mixup.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 6502–6509.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin,
and David Lopez-Paz. 2018. mixup: Beyond empir-
ical risk minimization. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net.

Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020. Se-
qMix: Augmenting active sequence labeling via se-
quence mixup. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 8566–8579, Online. As-
sociation for Computational Linguistics.

Jianchao Zhu, Liangliang Shi, Junchi Yan, and
Hongyuan Zha. 2020. Automix: Mixup networks
for sample interpolation via cooperative barycenter
learning. In European Conference on Computer Vi-
sion, pages 633–649. Springer.

https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7
http://proceedings.mlr.press/v97/verma19a.html
http://proceedings.mlr.press/v97/verma19a.html
https://doi.org/10.18653/v1/D16-1058
https://doi.org/10.18653/v1/D16-1058
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691

