@inproceedings{shi-etal-2021-cast,
title = "{CAST}: Enhancing Code Summarization with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees",
author = "Shi, Ensheng and
Wang, Yanlin and
Du, Lun and
Zhang, Hongyu and
Han, Shi and
Zhang, Dongmei and
Sun, Hongbin",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.332",
doi = "10.18653/v1/2021.emnlp-main.332",
pages = "4053--4062",
abstract = "Code summarization aims to generate concise natural language descriptions of source code, which can help improve program comprehension and maintenance. Recent studies show that syntactic and structural information extracted from abstract syntax trees (ASTs) is conducive to summary generation. However, existing approaches fail to fully capture the rich information in ASTs because of the large size/depth of ASTs. In this paper, we propose a novel model CAST that hierarchically splits and reconstructs ASTs. First, we hierarchically split a large AST into a set of subtrees and utilize a recursive neural network to encode the subtrees. Then, we aggregate the embeddings of subtrees by reconstructing the split ASTs to get the representation of the complete AST. Finally, AST representation, together with source code embedding obtained by a vanilla code token encoder, is used for code summarization. Extensive experiments, including the ablation study and the human evaluation, on benchmarks have demonstrated the power of CAST. To facilitate reproducibility, our code and data are available at \url{https://github.com/DeepSoftwareAnalytics/CAST}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shi-etal-2021-cast">
<titleInfo>
<title>CAST: Enhancing Code Summarization with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ensheng</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanlin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lun</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shi</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongmei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongbin</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code summarization aims to generate concise natural language descriptions of source code, which can help improve program comprehension and maintenance. Recent studies show that syntactic and structural information extracted from abstract syntax trees (ASTs) is conducive to summary generation. However, existing approaches fail to fully capture the rich information in ASTs because of the large size/depth of ASTs. In this paper, we propose a novel model CAST that hierarchically splits and reconstructs ASTs. First, we hierarchically split a large AST into a set of subtrees and utilize a recursive neural network to encode the subtrees. Then, we aggregate the embeddings of subtrees by reconstructing the split ASTs to get the representation of the complete AST. Finally, AST representation, together with source code embedding obtained by a vanilla code token encoder, is used for code summarization. Extensive experiments, including the ablation study and the human evaluation, on benchmarks have demonstrated the power of CAST. To facilitate reproducibility, our code and data are available at https://github.com/DeepSoftwareAnalytics/CAST.</abstract>
<identifier type="citekey">shi-etal-2021-cast</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.332</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.332</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>4053</start>
<end>4062</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CAST: Enhancing Code Summarization with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees
%A Shi, Ensheng
%A Wang, Yanlin
%A Du, Lun
%A Zhang, Hongyu
%A Han, Shi
%A Zhang, Dongmei
%A Sun, Hongbin
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F shi-etal-2021-cast
%X Code summarization aims to generate concise natural language descriptions of source code, which can help improve program comprehension and maintenance. Recent studies show that syntactic and structural information extracted from abstract syntax trees (ASTs) is conducive to summary generation. However, existing approaches fail to fully capture the rich information in ASTs because of the large size/depth of ASTs. In this paper, we propose a novel model CAST that hierarchically splits and reconstructs ASTs. First, we hierarchically split a large AST into a set of subtrees and utilize a recursive neural network to encode the subtrees. Then, we aggregate the embeddings of subtrees by reconstructing the split ASTs to get the representation of the complete AST. Finally, AST representation, together with source code embedding obtained by a vanilla code token encoder, is used for code summarization. Extensive experiments, including the ablation study and the human evaluation, on benchmarks have demonstrated the power of CAST. To facilitate reproducibility, our code and data are available at https://github.com/DeepSoftwareAnalytics/CAST.
%R 10.18653/v1/2021.emnlp-main.332
%U https://aclanthology.org/2021.emnlp-main.332
%U https://doi.org/10.18653/v1/2021.emnlp-main.332
%P 4053-4062
Markdown (Informal)
[CAST: Enhancing Code Summarization with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees](https://aclanthology.org/2021.emnlp-main.332) (Shi et al., EMNLP 2021)
ACL