Lying Through One’s Teeth: A Study on Verbal Leakage Cues

Min-Hsuan Yeh, Lun-Wei Ku


Abstract
Although many studies use the LIWC lexicon to show the existence of verbal leakage cues in lie detection datasets, none mention how verbal leakage cues are influenced by means of data collection, or the impact thereof on the performance of models. In this paper, we study verbal leakage cues to understand the effect of the data construction method on their significance, and examine the relationship between such cues and models’ validity. The LIWC word-category dominance scores of seven lie detection datasets are used to show that audio statements and lie-based annotations indicate a greater number of strong verbal leakage cue categories. Moreover, we evaluate the validity of state-of-the-art lie detection models with cross- and in-dataset testing. Results show that in both types of testing, models trained on a dataset with more strong verbal leakage cue categories—as opposed to only a greater number of strong cues—yield superior results, suggesting that verbal leakage cues are a key factor for selecting lie detection datasets.
Anthology ID:
2021.emnlp-main.370
Volume:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2021
Address:
Online and Punta Cana, Dominican Republic
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4504–4510
Language:
URL:
https://aclanthology.org/2021.emnlp-main.370
DOI:
10.18653/v1/2021.emnlp-main.370
Bibkey:
Cite (ACL):
Min-Hsuan Yeh and Lun-Wei Ku. 2021. Lying Through One’s Teeth: A Study on Verbal Leakage Cues. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4504–4510, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
Cite (Informal):
Lying Through One’s Teeth: A Study on Verbal Leakage Cues (Yeh & Ku, EMNLP 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.emnlp-main.370.pdf
Video:
 https://aclanthology.org/2021.emnlp-main.370.mp4
Data
LIAR