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Abstract

Next generation task-oriented dialog systems
need to understand conversational contexts
with their perceived surroundings, to effec-
tively help users in the real-world multi-
modal environment. Existing task-oriented di-
alog datasets aimed towards virtual assis-
tance fall short and do not situate the di-
alog in the user’s multimodal context. To
overcome, we present a new dataset for Sit-
uated and Interactive Multimodal Conversa-
tions, SIMMC 2.0, which includes 11K task-
oriented user$assistant dialogs (117K utter-
ances) in the shopping domain, grounded in
immersive and photo-realistic scenes.
The dialogs are collected using a two-phase
pipeline: (1) A novel multimodal dialog sim-
ulator generates simulated dialog flows, with
an emphasis on diversity and richness of inter-
actions, (2) Manual paraphrasing of the gener-
ated utterances to collect diverse referring ex-
pressions. We provide an in-depth analysis of
the collected dataset, and describe in detail the
four main benchmark tasks we propose. Our
baseline model, powered by the state-of-the-
art language model, shows promising results,
and highlights new challenges and directions
for the community to study 1.

1 Introduction

The Situated and Interactive Multimodal Conversa-
tional AI (SIMMC) challenge (Moon et al., 2020),
held as part of DSTC9 (Gunasekara et al., 2020),
aimed to lay the foundations for the real-world as-
sistant agents that can handle multimodal inputs,
and perform multimodal actions. Specifically, it
provided the SIMMC datasets as new benchmarks
for studying task-oriented dialogs that encompass
a situated multimodal user context in the form of
a co-observed image or virtual reality (VR) envi-
ronment. Since the introduction of the dataset, a

⇤ Joint first authors
1Code & data are made publicly available: https://

github.com/facebookresearch/simmc2

Figure 1: Illustration of a Situated Interactive Mul-
timodal Conversation (SIMMC), which presents a
task-oriented user$assistant dialog grounded in a co-
observed multimodal context. The newly collected
SIMMC 2.0 dataset includes complex and photorealis-
tic multimodal contexts, which poses more challenges
for the Multimodal Coreference Resolution task (MM-
Coref) and the Multimodal Dialog State Tracking task.

number of follow-up work (Kung et al., 2021; Kim
et al., 2021; Jeong et al., 2021; Huang et al., 2021;
Senese et al., 2021) have established a new set of
state-of-the-art baselines for the multimodal task-
oriented dialog systems on SIMMC.

Though SIMMC serves as a step towards build-
ing multimodal virtual agents, the dataset falls short
(understandably so) in the complexity of the con-
sidered multimodal contexts. In particular, the co-
observed image or VR environment is simplistic
and far from realistic user situations. To bridge
this gap, we take inspiration from the first SIMMC

https://github.com/facebookresearch/simmc2
https://github.com/facebookresearch/simmc2


4904

challenge (Moon et al., 2020) and propose a new
multimodal dialog dataset (SIMMC 2.0) for the com-
munity to tackle and continue the effort towards
building a successful multimodal assistant agent.
Specifically, SIMMC 2.0 is designed to include a
closer-to-real-world context for a fashion or fur-
niture shopping scenario, moving away from the
sanitized contexts present in the original SIMMC
datasets. To this end, we propose a VR scene gen-
erator that allows for controlling and capturing di-
verse multimodal contexts with ground-truth scene
graph information, while serving as a close proxy
for real-world scenarios. We then collect 11K
assistant$user task-oriented dialogs (117K utter-
ances) grounded on diverse photo-realistic VR ren-
ders of commercial stores (1.5K different scenes).

The incorporation of the complex and cluttered
multimodal contexts introduces several interesting
challenges, such as understanding visual and dialog
coreferences (‘the one directly behind it’, ‘the one I
mentioned’), tracking dialog states along with mul-
timodal objects, etc. In addition, the use of photo-
realistic scenes surfaces practical limitations of CV
models that need to be addressed, such as the de-
tection of partially observed or obstructed referent
objects, the visual texture recognition, etc.

To this end, we propose four main benchmark
tasks that are essential in building a multimodal
task assistant: Multimodal Disambiguation, Multi-
modal Coreference Resolution (MM-Coref), Mul-
timodal Dialog State Tracking (MM-DST), and
Response Generation. We then provide a baseline
model trained for these tasks, and highlight the key
challenges and future research directions.

2 Related Work

Problem Setup: The SIMMC 2.0 dataset addresses
the conversational scenarios where the virtual as-
sistant shares a co-observed scene with a user in
addition to the traditional communication that takes
place in the form of natural language. Specifi-
cally, we choose the shopping experience as the
domain for this study, as it often induces rich
multimodal interactions around browsing visually
grounded items. We assume that the assistant agent
has ground-truth meta information of every object
in the scene, while users only observe those ob-
jects through the visual modality to describe and
compose a request. In addition, we allow users to
physically navigate within each scene, which we
simulate as multiple viewpoints updated at different

Figure 2: Example snapshots from random camera
viewpoints generated from a rearranged scene. Refer
to Sec. 3.1.1 for more details.

time steps throughout each dialog. Thus, models
for SIMMC 2.0 would need to understand the user
utterance using both the dialog history and the state
of the environment as multimodal context.
Multimodal Dialog Datasets: Note that our prob-
lem setup for co-observing assistant scenarios al-
lows for more natural multimodal coreferences to
be used as part of user-assistant conversations. The
existing literature in multimodal dialogs (Hori et al.,
2018; Das et al., 2017; Kottur et al., 2019; de Vries
et al., 2017, 2018) often posits the roles of a pri-
mary and secondary observer, i.e. questioner and
answerer similar to the Visual Question Answering
(Antol et al., 2015) tasks, hence showing a different
distribution of language.
Task-oriented Dialog Systems: Many datasets
have been developed in the past to support various
assistant scenarios (e.g. booking hotels, reserving
hotels) (Henderson et al., 2014; Rastogi et al., 2019;
Budzianowski et al., 2018; Eric et al., 2019), defin-
ing many challenges in handling user requests un-
der the unimodal dialog setting. Our setup extends
many of these challenges studied in the previous lit-
erature on task-oriented dialog systems (e.g. DST,
slot carryovers) to the unique multimodal settings.

The most recent thread in building a task-
oriented dialog system is to fine-tune an end-to-
end system on a large pre-trained causal language
model, which achieves the state-of-the-art perfor-
mance in many metrics (Hosseini-Asl et al., 2020;
Peng et al., 2020; Chao and Lane, 2019; Gao et al.,
2019; Crook et al., 2021). We follow this line of
work and provide a baseline which extends it to
accommodate for the multimodal input.

3 SIMMC 2.0 Dataset

SIMMC 2.0 assumes the scenario where a user is
interacting with a conversational assistant to ob-
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Figure 3: Illustration of the two-stage data collection pipeline. Phase 1: Simulated Multimodal Dialog Self-Play
(Sec. 3.1) & Phase 2: Manual Human Paraphrase (Sec. 3.2)

tain recommendations for a piece of furniture or a
clothing item. The dialogs were collected through
a two-phase pipeline (Fig. 3), minimizing the an-
notation overheads (time and cost). This approach
extends the popular machine$human collabora-
tive dialog collection approaches (Rastogi et al.,
2019; Shah et al., 2018) to the multimodal settings.

3.1 Multimodal Dialog Self-Play

The first phase entails generating synthetic dialog
flows between the user and assistant using a mul-
timodal dialog simulator (Sec. 3.1.2). The simula-
tor conditions the flow generation on various VR
scenes snapshots (produced by scene simulator) for
both fashion and furniture domains.

3.1.1 Scene Simulator

In our work, we use photo-realistic, virtual render-
ings of cluttered shopping environments for fashion
and furniture domains, to replicate real-world set-
tings. To this end, we develop a scene simulator to
generate a diverse set of snapshots that serve as the
multimodal context for the conversations.
Scene Generation. Re-arranging objects semanti-
cally in a 3D environment to create novel arrange-
ments is a long standing research problem (Fisher
et al., 2012, 2015). To avoid the challenges in a
completely automatic approach, we design the fol-
lowing pipeline in a VR environment (Unity Tech-
nologies, 2019). We begin by manually construct-
ing photo-realistic shopping scenarios as ‘seed
scenes’, using publicly available digital assets like,
(a) fashion: shirts, dresses, trousers, and shoes, (b)
furniture: sofas, chairs, dining table, and lamps.
We then programmatically re-arrange these assets
at random for each of these seed scenes to cre-
ate a larger pool of scenes (Tab. 1), while keep-
ing the semantics of the scene intact. For exam-
ple, a shirt in the seed scene is replaced only by

another asset from either the same (shirt) or se-
mantic related asset category (e.g., T-shirt, jacket).
This ensures that re-arranged scenes continue to
be photo-realistic and avoids object collisions and
hallucinations, trading off with fixed arrangement
of semantic asset types within each seed scene.

Finally, we capture multiple views from random
camera positions within each scene, as shown in
Fig. 2. The height of the camera is mostly held
constant with a small jitter, whereas the camera
position (when projected onto the floor plane) is
randomly chosen and is constrained to be within
75% of the floor bounds. These settings give us
a good view of the scene objects without the risk
of being either: (a) too close, such that the entire
snapshot is taken by partially visible 1–2 objects
resulting in a poor and uninteresting scene view,
or, (b) too far away, where objects are small and
hard to differentiate from one another. Randomly
sampled camera viewpoints also encourage the di-
versity of referring expressions (e.g., ‘shirt closest
to the changing rooms’, ‘cap at the farthest end of
the table’), useful for successful coreferences or
disambiguation within the dialog utterances.
Annotation Extraction. The synthetic nature of
our scenes facilitates an easy extraction of complete
scene graph information for any given snapshot,
without any additional human annotations. This is
particularly beneficial as it enables the generation
of rich and interesting dialog flows (Sec. 3.1.2),
and allows for a tighter control over the distribu-
tion of objects and attributes within the conversa-
tion, which is nearly impossible with real world
multimodal contexts. The annotations we extract
for each scene snapshot consists of all the assets
that appear in the snapshot, their image 2D bound-
ing box, and an index to cross reference additional
metadata from the catalog (e.g., price, available
sizes, color, pattern). After extracting these anno-
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tations, we filter out snapshots with less than 5
objects in the field of view, and input the remaining
scenes into the dialog simulator. See Sec. 3.3 for a
detailed analysis of the generated scene snapshots
and the underlying assets used in our work.

3.1.2 Multimodal Dialog Simulator

The multimodal dialog simulator takes generated
scenes along with the meta information (objects,
locations, and attributes) to create user$assistant
dialog flows, following an agenda-based dialog sim-
ulator approach (Schatzmann et al., 2007).
Multimodal Dialog Self-play. The dialog simula-
tor consists of three main components: the goal
generator, the user simulator, and the assistant
simulator. The goal generator randomly selects an
agenda for each dialog, which describes a high-
level sequence of goals within shopping scenarios
(e.g., BROWSE ! GET_INFO ! REFINE; see
Fig. 5). Given a goal, the user simulator draws
a suitable dialog action following a probability dis-
tribution, which consists of natural language un-
derstanding (NLU) intents (e.g., REQUEST:GET,
CONFIRM:ADD_TO_CART), slots (e.g., color,
pattern), and object references. The assistant sim-
ulator then reads the user request, interacts with
the multimodal contexts via the simulated API (e.g.
for looking up the information of an item from the
catalog, recommending items from the scene), and
responds with natural language generation (NLG)
intents, slots and object references. This dialog
self-play repeats until each goal in the agenda is
successfully met, or when the dialog reaches the
maximum number of turns.
Multimodal Dialog Ontology. The dialog anno-
tations for SIMMC 2.0 include the NLU and NLG
intent and slot labels, following the conventional
approaches for task-oriented dialog systems (Eric
et al., 2019; Rastogi et al., 2019; Moon et al.,
2020). Extending the dialog ontology for the com-
plex multimodal settings, we also annotate the ob-
ject references with their corresponding IDs as
defined by the bounding boxes in each scene, al-
lowing for a seamless annotation of multimodal
contexts and language (e.g. ‘Do you have any-
thing similar to the two middle jackets on the ta-
ble?’ ! INFORM:GET_SIMILAR, slots: {type:
jacket}, objects: [0,8]). Note also that the same
notation is employed to refer to object mentions
that are carried over in the dialog context (e.g.

‘How much is the jacket I mentioned earlier?’ !
INFORM:GET.price, objects: [8]). This fine-

Total # dialogs 11,244
Total # utterances 117,236
Total # scene snapshots 1566
Avg # words per user turns 12
Avg # words per assistant turns 13.7
Avg # utterances per dialog 10.4
Avg # objects mentioned per dialog 4.7
Avg # objects in scene per dialog 19.7

Table 1: SIMMC 2.0 Dataset Statistics

grained and unified ontology allows for the system-
atic study of the diverse referring expressions (i.e.,
object mentions) in multimodal dialogs.

3.2 Manual Paraphrase

The simulated dialog flows are then paraphrased by
human annotators. This helps us draw utterances
from the natural language distribution, as expected
in a real world application. For this annotation ef-
fort, we designed a tool that displays a multimodal
scene (generated VR scene screenshot) and a simu-
lated dialog flow, and asked the human annotators
to paraphrase the utterance ensuring that critical in-
formation such as objects and attributes is retained.
An example dialog is shown in Appendix.

Advantages of the two-stage approach: Since
paraphrasing synthetic utterances is much faster
and less demanding, our approach requires reduced
annotation effort. Further, the simulator in Phase
1 provides all annotations for the dialog state and
coreferences for free, i.e., without any additional
human annotations.

3.3 SIMMC 2.0 Dataset Analysis

We analyze our dataset that contains a total of
11.2k dialogs (about 117k utterances), split into
7.2k and 4k dialogs from fashion and furniture do-
mains respectively, along with the rich annotations
from both scene simulator and multimodal dialog
simulator that are extracted automatically without
any additional human annotators. Tab. 1 shows the
overall statistics of the dataset.
Analyzing Assets & Scene Snapshots. In our
work, we use around 290 digital assets for fash-
ion2, and 110 assets for furniture3, across several
asset categories shown in Tab. 2. From these assets,
we construct 7 seed scenes for fashion and 1 seed
scene for furniture. We then rearrange assets within
each seed scenes 20 times to result in a pool of

2
https://www.turbosquid.com/

3
https://www.wayfair.com/

https://www.turbosquid.com/
https://www.wayfair.com/
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Fashion hat, tshirt, jacket, hoodie, sweater, shirt, suit, vest, coat, trousers, jeans, joggers, skirt, blouse,
tank top, dress, shoes

Furniture area rug, bed, chair, couch chair, dining table, coffee table, end table, lamp, shelves, sofa

Table 2: Digital Asset Categories used in SIMMC 2.0 for both fashion and furniture domains.

(a) (b)

(c) (d) (e)
Figure 4: Distribution of (a) number of assets in each snapshot, (b) number of dialogs for each snapshot, (c)
utterance lengths with dialog turns, (d) acts and activities, and (e) coreference distance between object mentions.

140 and 20 scenes for respective domains. Finally,
we extract 10 snapshots from random camera view-
points for each scene in the pool giving us a total
of about 1566 unique scene snapshots to choose
from post filtering. The number of objects in each
snapshot is distributed as shown in Fig. 4a. This
huge variance presents a good opportunity for the
dialog simulator to ground the conversational flow
in a varied number of objects.
Analyzing Dialog Annotations. The dialog simu-
lator generates dialog flows by randomly sampling
from the pool of 1566 filtered snapshots, which
are later manually paraphrased. While most of the
dialogs (9.3k) are grounded in a single snapshot,
we include few dialog flows that spans over two
snapshots (1.9k) with overlapping set of objects.
This allows for modeling interesting conversations
that require a context carry-over across the two
viewpoints, thus moving closer to the real-world
scenario. Each snapshot corresponds to about 7.1
dialogs on an average with the distribution shown
in Fig. 4b. Further, each dialog contains around 5.2
utterance pairs (user$assistant), where the utter-
ances are 12.0 and 13.7 tokens long respectively
(see Fig. 4c for distribution over different turns).

Following prior work (Moon et al., 2020),
our dialog annotations also comprise dialog acts
(4: INFORM, CONFIRM, REQUEST, ASK) and
activities (5: GET, DISAMBIGUATE, REFINE,

ADD_TO_CART, COMPARE). Fig. 4d shows their
frequency breakdown. We also visualize the dialog
act transitions for furniture in Fig. 5 for the first
four rounds of the dialog. The presence of wide
branch-offs and inter-connectivity suggests that our
simulator is able to generate a diverse set of flows,
useful to train a robust conversational system. It is
interesting to note that the user utterances (marked
with :U) almost always are more varied than assis-
tant counterparts (marked with :A). This is prob-
ably due to INFORM:GET (fetching information)
being a reasonable assistant response to a large
number of user utterance queries. Fig. 4e shows
the challenging nature of coreferences within our
dialogs, where we measure the distance to the lat-
est mention of an object, and requires models to
reason across the utterances. Finally, Tab. 3 lists the
various types of referring expressions in SIMMC 2.0,
as implicitly controlled by the dialog simulator.

3.4 Comparison: SIMMC 2.0 vs SIMMC 1.0

The key differences between SIMMC 2.0 (ours) and
SIMMC 1.0 (Moon et al., 2020) are (Fig. 1):
(a) The multimodal context in SIMMC 1.0 consists
of either co-observed images or VR environment,
which are simplistic and sanitized in comparison to
real-world scenarios. For instance, the VR environ-
ment in SIMMC-Furniture comprises three slots
(left, center, right) to populate the catalog items,
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Figure 5: Dialog act transitions for the first four rounds of dialogs in the fashion domain. Label
ACT:ACTIVITY:[A|U][turn] denotes the act and activity (shortened for brevity; see Fig. 3.3 for full names),
either Assistant or User utterance with turn index. The wide branch-offs and inter-connectivity demonstrates the
diversity of dialog flows generated by our dialog simulator.

Referring Expression Type Examples

Visual

Spatial (Absolute) ‘Have you got anything in the same size as the black top in the middle of the long rack?’
‘Add the white couch chair sitting on the red rug.’

Spatial (Relative) ‘Is there an armchair like the white one closer to us but from Modern Arts?’
‘I like the light grey jacket that is closer to us on that shelf, so please put it into my cart.

Adjectival
(color) ‘Anything else like that blue sweater?’
(shape) ‘There’s the brown z-shaped end table you might enjoy.’
(multiple) ‘I have that gray wooden table.’

Textual

Noun Phrase (Paraphrase) U: ‘I’m kinda liking that brown one in the middle row⇤. Anything similar?’
! (after 2 turns) U: ‘I mean the one on the left I told you I liked⇤.’

Noun Phrase (Copy) A: ‘Check out that brown table in the back right⇤.’
! (after 2 turns) U: ‘OK. I’ve decided. Add the brown table⇤.’

Slot Carryover ‘Do you have anything similar at an affordable price in black and white?’

Pronoun A: What do you think of the black sweater on the right wall⇤?
! U: ‘I like it⇤. Add it⇤ to my cart.’

Ambiguous Dialog Context ‘What’s the price?’

Visual Context ‘What’s the price on the blue one?’

Table 3: Referring expression types in SIMMC 2.0 with examples. (* for each row: referring the same object)

thus limiting the complexity of referential or dis-
ambiguation language. In contrast, conversations
in SIMMC 2.0 are grounded in photo-realistic scene
renderings of commercial stores that are cluttered
and thus closely represent the real-world contexts.
(b) The number of objects in the multimodal con-
text for SIMMC 1.0 is capped at 3 compared to 19.7
on average for SIMMC 2.0. This allows for richer
coreferences, referential expressions, and disam-
biguation scenarios, elevating the role of dialog.
(c) Many of the objects in each scene are only par-
tially observed (e.g., blocked by different items
or shelves, out of POV frame), which reflects real-
world scenes but poses a more challenging problem
for the computer vision module.

4 Task Formulation

The aim of the SIMMC 2.0 dataset is to emulate
futuristic, real-world shopping scenarios where hu-

mans converse with a dialog agent in natural lan-
guage grounded in a situated multimodal context.
As a step towards this intelligent conversational
agent, we leverage the dialogs and annotations in
our dataset and propose four benchmark tasks (sum-
marized in Tab. 4) along with evaluation metrics.
These tasks capture several multimodal conversa-
tional reasoning challenges, as elaborated next.

4.1 Multimodal Disambiguation

In a real-world conversation, humans often use
shorthands (coreferences) in order to refer to ob-
jects / events that have already been mentioned in
the dialog. While we reserve modeling coreference
resolution as a challenging task in Sec. 4.2, it is
important for the system to recognize ambiguous
uses of such coreferences even before attempting to
resolve them. For example, consider ‘A: The blue
trousers are priced at $45. U: What about those?’,
where the phrase those could be ambiguous in the
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Task Name Goal Evaluation

1. Multimodal Disambiguation Given user utterances, classify if the assistant
should disambiguate in the next turn.

Binary classification accuracy

2. Multimodal Coreference
Resolution (MM-Coref)

Given user utterances with object mentions,
resolve referent objects to their canonical ID(s)
as defined by the catalog.

Coref Precision / Recall / F1

3. Multimodal Dialog State Tracking
(MM-DST)

Given user utterances, track user belief states
across multiple turns.

Intent Accuracy, Slot Precision /
Recall / F1

4. Response Generation Given user utterances, ground-truth APIs and
ground-truth object IDs, generate Assistant re-
sponses or retrieve from a candidate pool.

Generation: BLEU;
Retrieval: Accuracy@k, mean re-
ciprocal rank, mean rank

Table 4: Proposed tasks and descriptions on our SIMMC 2.0 dataset. Please see Sec. 4 for more details.

following situations: (a) The user refers to a group
of trousers without specifying the exact one they
have in mind, (b) The user incorrectly uses a short-
hand for a novel pair of trousers not mentioned
in the dialog due to conversational brevity. In ei-
ther cases, identifying the need for disambiguation
and responding with ‘Which ones are you talking
about? The red or the green pair?’ is a desirable
trait for a robust assistant system. The multimodal
disambiguation task tests this ability of the agent.

More concretely, given the dialog history and the
current user utterance, multimodal disambiguation
requires the agent to predict a binary label condi-
tioned on the multimodal context, to indicate the
presence of a referential ambiguity in the user ut-
terance. This label could also be useful for other
downstream tasks like assistant response genera-
tion (Sec. 4.4) in order to continue the conversation
in a meaningful way. We use accuracy to measure
and compare model performances for this task.

4.2 Multimodal Coreference Resolution

For this task, we aim to resolve referential men-
tions in user utterances to their canonical object
IDs as defined for each scene. These mentions
can be resolved through (1) the dialog context
(e.g. A: ‘This shirt comes in XL and is $29.’ !
U: ‘Please add it to cart.’, or (2) the multimodal
context (e.g. U: ‘How much is that red shirt?’),
or (3) both (e.g. U: ‘How much is the one next to
the one you mentioned?’).

The input for this task includes the ground-truth
bounding boxes defining each object ID, to avoid
the performance bottleneck by the object detection
algorithms. The main evaluation metric includes
F1, precision and recall performance. Note that we
exclude from evaluation the object mentions that
are immediately followed by a disambiguation re-
quest (e.g., ‘How much is the one over there?’ $

‘Which one do you mean?’, as they provide insuffi-
cient descriptions for resolving those coreferences.

4.3 Multimodal Dialog State Tracking

Following Moon et al. (2020), we extend the tradi-
tional notion of the unimodal dialog state tracking
(DST) and propose multimodal dialog state track-
ing (MM-DST) as a main sub-task where slots are
grounded on the coexisting multimodal context,
which requires handling of multimodal objects (as
opposed to textual tokens) as part of dialog states.

The performance is measured by the joint F1,
recall and precision performance for the cumula-
tive intent, slot and object reference predictions.
The underlying reasoning behind this task is that
the MM-DST labels will be able to provide suffi-
cient information for a multimodal dialog system to
carry out dialog policies and actions, given the de-
tected and resolved items in each multimodal scene.
Therefore, the MM-DST task measures the model’s
holistic understanding of user requests throughout
each dialog, including the disambiguation needs as
well as the coreferences.

4.4 Assistant Response Generation

The goal of this task is to generate assistant re-
sponses or retrieve from a candidate pool, given
user utterances, ground-truth belief state, and ob-
ject IDs. While we assume the assistant agent has
the ground-truth meta information on each object,
each response needs to naturally describe the refer-
ent objects as observed and understood by the user
through the co-observed scene or the dialog context
(e.g. INFORM:RECOMMEND (OBJ_ID: 3)!
A: “I recommend the blue shirt directly behind the
brown jacket.".

Similar to (Moon et al., 2020), we propose two
ways to evaluate the performance of systems for re-
sponse generation: (a) As a generation task, where
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1. Disamb. 2. MM-Coref 3. DST 4. Gen.

Acc" Coref F1" Slot F1" Intent F1" BLEU"

73.9±1.2 36.64±0.58 81.72±0.51 94.53±0.36 0.192±0.002

- - 74.75±0.42 93.40±0.26 0.217±0.002

Table 5: Baseline performances: Moon et al. (2020)
(top), Le et al. (2019) (bottom). (1) Multimodal Dis-

ambiguation (Disamb.), via classification accuracy,
(2) Multimodal Coreference Resolution (MM-

Coref), via coref prediction F1, (3) Dialog State

Tracking (DST), via slot and intent F1, (4) Response

Generation via BLEU. ": higher is better.

the agent is seen as conditional language model.
Performance is measured using BLEU-4 score (Pa-
pineni et al., 2002) between the generated response
and the ground truth response provided with the
dataset. (b) As a retrieval task, where the agent
has to pick the ground truth response from a list of
candidate responses (generated randomly; unique
to each utterance). We use traditional information
retrieval metrics like recall@k (k = {1, 5, 10}),
mean rank, and mean reciprocal rank for compar-
ing model performances.

5 Modeling & Empirical Analysis

In this section, we perform preliminary empirical
analysis and train baselines. We leave more detailed
modeling work for the future.
Dataset split. We randomly split the dataset into
4 sets: train (65%), dev (5%), dev-test (15%), and
test-std (15%), which we leave as a held-out hidden
set for performing a fair comparison of models.
Notations. We denote a SIMMC dialog with Nr

rounds: D = {(Ui, Ai,Mi, Bi)}Nr
i=1, where Ui and

Ai are the user and assistant utterances, Mi is the
domain-specific multimodal context, and Bi is a
multimodal belief state represented as a semantic
parse of user-side dialog (i.e. intent, slot, object
references, disambiguation labels), respectively. At
each round t, given the current user utterance Ut,
the dialog history Ht = (Ui, Ai)

t�1
i=1, and the mul-

timodal context Mt, the task is to predict the user
belief state Bt, as well as the natural language as-
sistant response At.
Baselines. We benchmark the dataset by adopting:
(a) MM-DST model by Moon et al. (2020), where
we train a multi-task GPT-2 (Radford et al., 2019)
based Transformer model using the joint supervi-
sion signals for the Disambiguation, MM-Coref,
DST, and Response Generation tasks. Specifically,
the model takes as input the dialog context and the

Figure 6: Illustration of the GPT-2 based baseline,
which takes as input the dialog context and the flat-
tened multimodal context, and outputs the belief states
as well as the system response.

flattened multimodal contexts (as structurally for-
matted strings) to predict the belief states and the
responses, following the popular causal language
model approach (Peng et al., 2020; Hosseini-Asl
et al., 2020). We use the 12-layer GPT-2 (117M
parameters) as the pre-trained language model and
fine-tune for ten epochs. Note that this baseline
uses the ground-truth multimodal contexts pro-
vided from the scene generator, instead of con-
suming raw images as input, and thus serves as
a soft oracle on the proposed dataset. (b) Multi-

modal Transformer Network (MTN) (Le et al.,
2019) for the DST and Response Generation tasks.
In particular, MTN uses image features extracted
from scene snapshots and attends to relevant parts
as guided by the dialog. We use the same training
setting and hyperparameters as Le et al. (2019).
Analysis. The results are summarized in Tab. 5.
Note that the F1 performance on the multimodal
object coreference resolution task on SIMMC 2.0 is
only at 36.6%, whereas the best model on SIMMC
1.0 (Moon et al., 2020) achieved 85.9% on the simi-
lar task. This demonstrates that SIMMC 2.0 presents
more complex and cluttered scenes, thus requires
more rigorous visual grounding of multimodal con-
texts (19.7 objects per dialog on average).
Conclusions. We present a novel dataset for the
Situated and Interactive Multimodal Conversa-
tions, SIMMC 2.0, with 11K user$assistant dialogs
(117K utterances) on shopping domain (fashion
and furniture), grounded in situated and photo-
realistic VR scenes. We then present a novel multi-
modal dialog simulator, which generates simulated
dialogs grounded on diverse multimodal contexts
that are automatically configured. Our empirical
analysis with a baseline model demonstrates many
new challenges that our SIMMC 2.0 dataset brings,
highlighting new directions of research in this area.
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