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Abstract

Seq2seq models have demonstrated their in-
credible effectiveness in a large variety of
applications. However, recent research has
shown that inappropriate language in train-
ing samples and well-designed testing cases
can induce seq2seq models to output profanity.
These outputs may potentially hurt the usabil-
ity of seq2seq models and make the end-users
feel offended. To address this problem, we
propose a training framework with certified ro-
bustness to eliminate the causes that trigger the
generation of profanity. The proposed train-
ing framework leverages merely a short list of
profanity examples to prevent seq2seq models
from generating a broader spectrum of profan-
ity. The framework is composed of a pattern-
eliminating training component to suppress
the impact of language patterns with profanity
in the training set, and a trigger-resisting train-
ing component to provide certified robustness
for seq2seq models against intentionally in-
jected profanity-triggering expressions in test
samples. In the experiments, we consider two
representative NLP tasks that seq2seq can be
applied to, i.e., style transfer and dialogue gen-
eration. Extensive experimental results show
that the proposed training framework can suc-
cessfully prevent the NLP models from gener-
ating profanity.

1 Introductions

In the past decade, the research community has wit-
nessed machine learning models achieving impres-
sive performances in various sequence-to-sequence
(Seq2seq) NLP tasks such as style transfer and
dialogue generation. Despite their great success,
recent studies and reports have shown that widely
used models trained on crowd-sourced corpus like
user reviews and online community discussions
may produce inappropriate languages such as pro-
fanity. Such inappropriate languages may hurt the
usability of these models and cause conflicts and
anxiety among the users.

For instance, in 2016, Microsoft released an AI
chatbot named Tay1, which is claimed to be able to
improve itself through communicating with social
media users. Nevertheless, within just 24 hours
after Microsoft released the chatbot, it started to
generate misogynistic and racist words. Microsoft
had to suspend the chatbot account and conceded
that the chatbot suffered from a “coordinated attack
by a subset of people”. Such an incident demon-
strates the vulnerability of existing Seq2seq meth-
ods facing users’ abuse.

There are two major causes that can make the
Seq2seq model produce profanity. First, in the
training phase, Seq2seq models can capture the
language patterns within the training corpus. Sim-
ilarly, languages patterns with profanity (referred
to as profanity patterns) in the training corpus also
can be learned and concealed in the learned model.
Second, in the testing phase, some specific tokens
may trigger expressions that contain profanity so
that the Seq2seq model can generate inappropriate
languages. Sometimes, such triggering expressions
can be unnoticeable from the cognitive perspective
or even beyond intuition.

In this paper, we conduct a pioneering study
on designing a training framework with certified
robustness to prevent Seq2seq models from gener-
ating profanity. Our paper addresses two key ques-
tions. First, existing systems typically handle pro-
fanity by creating a comprehensive list of profanity
examples and removing them from the vocabulary.
However, it is extremely difficult to exhaust all
the possible profanity words. So the first question
is: is it possible to leverage a small set of profan-
ity examples to prevent the Seq2seq models from
producing profanity? To answer this question, we
propose an efficient and effective training method
named profanity-eliminating training (PET) that
can generalize the training loss for the small set of
profanity examples to other expressions that are not

1https://www.bbc.com/news/technology-35890188
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covered. In particular, PET generates a set of aug-
mented sentence pairs via perturbations and then
minimizes the worst-case loss over the augmented
data. Our theoretical analysis shows that PET can
be regarded as gradient normalization.

Second, even though most profanity in the train-
ing set is removed in the training phase, there may
still be some left. The small amount of remaining
profanity in the training set, though it is unlikely to
incur inappropriate outputs of the Seq2seq model
with normal input sentences, may be utilized by
malicious users. Existing literature (Cheng et al.,
2020) shows that in the testing phase, one can make
well-designed modifications on the input sentence
to induce the Seq2seq model to generate specific
tokens. Malicious users can leverage such a tech-
nique to manipulate input sentences to trigger the
Seq2seq model’s profanity output. Thus, another
critical question is: in the testing phase, is it pos-
sible to ensure the output of the Seq2seq model
remain unchanged when it is fed with manipulated
input sentences? In this paper, we leverage random
smoothing technique, which achieves state-of-the-
art certified robustness for deep learning models, to
propose a training method named triggering avoid-
ing training (TAT) to Seq2seq models against test-
ing phase adversaries. In our proposed TAT, we
choose to use von-Mises Fisher distribution as the
random noise generator and derive new theoretical
results for such a design.

We evaluate the proposed approach via text gen-
eration on a realworld dataset. The experimental
results show that the proposed framework can con-
sistently prevent Seq2seq models from generating
profanity under different settings.

2 Preliminaries

For Seq2seq models, let us use X =
[x1, x2, · · · , xM ] and Y = [y1, y2, · · · , yL] to de-
note the input sentence of length M and the output
sentence of length L, respectively. Each xi or yj
here stands for a single token.

In a Seq2seq model, the major components are
one encoder h and one decoder g. The encoder
learns a hidden vector representation henc con-
taining the semantics and context for each token.
The decoder turns the vector representation back
into an output token based on the previous se-
quence. Formally, we denote the Seq2seq model
as f(X) = g(h(X)) 7→ Y : NM 7→ RL×c where
c denotes the vocabulary size. For a decoding step

t, the model outputs a distribution over all the pos-
sible tokens, i.e., ft(X) ∈ Rc where ft denotes the
t-th decoding step. The model then picks the token
with the largest probability as the output of step t.

In practice, Seq2seq models typically employ
neural network models such as LSTM (Hochreiter
and Schmidhuber, 1997), GRU (Cho et al., 2014)
and Transformers (Vaswani et al., 2017) as the en-
coder and the decoder. To facilitate our discussion,
we focus on one of the most representative archi-
tectures, i.e., GRU Encoder-Decoder with atten-
tion (Bahdanau et al., 2014; Luong et al., 2015).
All the methodologies proposed in this paper are
independent from particular network architectures.

With the notations and concepts defined above,
we formulate the problem of profanity-avoiding
training:

Definition 2.1 (Profanity-Avoiding Training).
Given a set of sentences pairs and a set of pro-
fanity examples (referred to as profanity seeds)
S = {S1, S2, · · · , SP }. Our goal is to train a
Seq2seq model that generates fluent sentences with
a minimal ratio of profanity.

3 Methodology

As mentioned in the introduction section, there
are two causes that can make the Seq2seq model
produce profanity. First, in the training phase,
Seq2seq models capture the language patterns
within the training corpus. Thus, a Seq2seq model
may also learn the profanity patterns from the train-
ing corpus. Second, in the testing phase, some ma-
nipulated expressions may be fed to the Seq2seq
model to trigger profanity outputs from it.

In the rest of this section, we present a profanity-
avoiding training framework with certified robust-
ness to handle these two causes that lead to pro-
fanity. The framework has two components: the
pattern-eliminating training (PET) model to barrier
the profanity patterns in the training phase (Sec-
tion 3.1), and the trigger-resisting training (TRT)
model to maintain the robustness of the generation
model against triggering expressions in the test-
ing phase (Section 3.2). Besides, we also provide
theoretical analysis to estimate the robustness of
the proposed TRT model, i.e., under what attack
strength (in terms of the perturbation radius), the
proposed TRT model would still be certifiably ro-
bust.
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Figure 1: An Illustration of Calculating l(Ŷ ′
ij , Sk, d).

3.1 Pattern-Eliminating Training

Consider an input-output training corpus C =
{(Xi, Yi)}ni=1, the learning objective function of
the Seq2seq model is:

LS2S = E(X,Y )∼ClS2S (X,Y ;θ) , (1)

where θ denotes the vector of model parameters
and lS2S denotes the loss function associated with
a sentence pair (X,Y ), such as cross entropy loss.

As mentioned at the beginning of this section,
the profanity patterns in the training set can trig-
ger profanity. To alleviate the effect of sentences
with profanity patterns, we propose an efficient
and effective training method, PET. PET includes a
similarity-based loss that penalizes the cases where
the generated sentence’s semantics is close to the
semantics of the phrases in the profanity seed set.
In essence, PET first generates a set of outputs
sentences by perturbing the representation of the
input sentence in a sentence pair. These sentences
serve as diverse variants of the original output sen-
tence. Then PET minimizes the maximum of the
similarity-based loss. These two steps enhance the
generalization ability of PET. (Figure 1)

To implement PET, for each sample (Xi, Yi) ∈
C, we utilize the sequence model to generate a
series of output sentences PCi = {Ŷ ′ij}mj=1 by per-
turbing the encoded representation of Xi. With
these augmented outputs and the set of seed profan-
ity, we define the penalty term which barriers the
generated outputs from the profanity as:

LPET = E(Xi,Yi)∼C
(

max
Ŷ ′ij∼PCi,Sk∼S

l(Ŷ ′ij , Sk, d)
)
,

(2)

where:

l(Ŷ ′ij , Sk, d) = max(ζ, exp(−d(Ŷ ′ij , Sk))), (3)

is a hinge loss and function d(·) is a distance metric.
Here, we choose cosine distance function, which is

proved to be effective for quantifying the similar-
ity of high-dimensional data samples like encoded
representations henc, to implement d(·). d(Ŷ ′ij , Sk)

is calculated by first transforming sentences Ŷ ′ij
and Sk into their vector representations ŷ′ij and sk
via the encoder g; and then calculating the cosine
distance between ŷ′ij and sk.

This hinge loss barriers the generated samples
that are within ζ distance from Sk. In practice, the
loss is added to the conventional training loss of
LS2S as the overall objective function, i.e.,

L = LS2S + λLPET . (4)

Moreover, in this paper, we get the perturbed
data PCi by adding i.i.d. noise vectors generated
from von-Mises Fisher (vMF) distribution (Fisher
et al., 1993) around the encoded representation of
an input sentence, i.e., henc. VMF distribution is
a directional distribution over unit vectors in the
space of Rd. The probability density function of
vMF distribution for the p-dimensional vector x is
given by:

fp(x;µ, κ) = Cp(κ) exp
(
κµTx

)
,

where µ = 1 and κ(κ > 0) are the mean di-
rection and the concentration parameter, respec-
tively. The mean direction µ acts as a semantic
focus on the unit sphere and κ describes the con-
centration degree of the generated relevant high-
dimensional representations around it. The larger κ,
the higher concentration of the distribution around
the mean direction µ. The normalization constant
Cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
, and I denotes the mod-

ified Bessel function of the first kind. Note that,
to facilitate the implementation of PET, we add
an extra layer to normalize henc to a unit vector in
the Seq2seq. In this way, the encoded representa-
tion and the vMF noise are both restricted in a unit
sphere. Such a modification to the Seq2seq model
is also applied to the rest of this section.
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The reason that we choose to use vMF distribu-
tion to generate perturbations is two-fold. First,
the vMF distribution naturally describes the cosine
similarity used in this paper. Second, vMF distribu-
tion models the representation vectors from an inte-
grated perspective instead of a single-dimensional
perspective. Therefore, the perturbations on henc

tend to produce augmented representation vectors
with diverse overall directions rather than minor
differences in every single dimension. Note that
the augmented samples can also be constructed
based on other transformations such as embedding
dropout (Gal and Ghahramani, 2016). Different
augmentation methods will not fundamentally im-
pact the theoretical results in this paper.

Theoretical Remarks: Compared with other
conventional regularization terms like minimiz-
ing the similarity expectation, optimizing Eq. (2)
can be more efficient since the optimization pro-
cess consists of much fewer derivative operations.
Through theoretical analysis, we can regard Eq. (2)
as adding a gradient-norm to the conventional ex-
pectation minimization objective. Please refer to
Appendix B for the detailed derivation.

Besides, Eq. (2) should not be confused with the
adversarial training objective (Madry et al., 2017).
The major difference is that Eq. (2) does not really
include an inner optimization objective. Instead,
we simply pick the perturbed sample with the max-
imum similarity for subsequent optimization.

3.2 Trigger-Resisting Training

As mentioned at the beginning of this section,
apart from the profanity patterns in the training
set, another cause that may result in profanity is
the well-designed adversarial inputs in the test-
ing phase, like (Cheng et al., 2020). This section
presents a theoretically-provable trigger-resisting
training (TRT) method to enhance the robustness
of Seq2seq models. We extend the randomized
smoothing technique (Cohen et al., 2019) to get
a smoothed model with the provable robustness
guarantee given possible perturbations on the input
sequence X . Particularly, we derive new theoret-
ical results on using vMF distribution as random
noise for randomized smoothing.

Typically, perturbing input sentences are done
by substituting one or more tokens in the sentences.
Such a process can result in changes in the encoded
representation henc. Here we certify the robust ra-
dius via the encoded representation henc instead

of the input X . The reason here is two-fold. First,
Seq2seq models typically take discrete token se-
quences as inputs and learn word embeddings from
scratch. It is difficult for us to specify a radius
measure for such sparse discrete data. Second, the
possible types of modifications on the input sen-
tence X are various, such as word replacement,
adding additional text, etc. Some of these modi-
fications are difficult to be regarded as perturbing
on the embedding of single words. Nevertheless,
almost all the changes are reflected in the encoded
representation of the entire sentence. That is why
we choose to certify the robust radius of henc.

Let us use g() to denote the decoder in the
Seq2seq model. The smoothed decoder g? and
the base model g have the same architecture, and
the parameters of their encoders are identical. Thus,
given an input sentence X , their encoding result
henc are the same. Given an inputX , the smoothed
model outputs exactly the same sequence as g’s
when the modifications on the input X causes the
encoded representation henc to deviate within a ra-
dius R. Thus, a smoothed Seq2seq model enjoys
certified robustness facing evasion attack samples.
Formally, we can write the t-th step output from
the smoothed model g?(X) as:

g?t (h
enc) = (gt ∗ P (ε;φ))(henc), (5)

where P (ε;φ) stands for the distribution of the
random noise ε, parameterized by φ. ∗ is the con-
volution operator. gt denotes the decoding function
at step t. In this section, we continue to use vMF
distribution to implement the sampling distribution:

g?t (h
enc) = (gt ∗ vMF(µ, κ))(henc)

=Cp(κ)

∫
SD
gt(h

enc) exp
(
κµT (henc − t)

)
dt ,

(6)

where n denotes the dimension of all the input
representation vectors after concatenation and t
denotes the concatenated vector. SD denotes the
domain of henc and t, which are both spheres in D
dimensions.

With the smoothed decoder defined, now we de-
rive the radius in which the model’s robustness is
guaranteed. In particular, given vMF as the ran-
dom noise distribution, we can prove the following
robustness guarantee for the smoothed model. For
simplicity, we narrow the discussion to the genera-
tion of one specific token, i.e., the t-th token in the
output, without losing generality.
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Algorithm 1: Profanity Avoiding Training
Input :Batched training dataset {(Xi, Yi)}Ni=1

1 // Pattern-Eliminating Training;
2 for each batch {(Xi, Yi)}Bi=1 in {(Xi, Yi)}Ni=1 do
3 for 1 ≤ i ≤ B do
4 Sample augmented outputs PCi;
5 end
6 Update the model parameters by minimizing

Eq. (4) using the samples in {(Xi, Yi)}Bi=1 and
{PC}Bi=1;

7 end
8 // Trigger-Avoiding Training;
9 for each batch {(Xi, Yi)}Bi=1 in {(Xi, Yi)}Ni=1 do

10 Generate noise samples ε(j)i ∼ vMF(µ, κ) for
1 ≤ i ≤ m, 1 ≤ j ≤ B;

11 Create an empty set D to store augmented
samples ;

12 // Iteratively construct a batch of perturbed
samples (henc∗, Y ′i );

13 for 1 ≤ i ≤ B do
14 Calculate the perturbed sample (henc∗, Y ′i ),

using the noise samples generated above;
15 Add the perturbed samples (Xi, Y

′
i ) to the

set D;
16 end
17 Update the parameters of the decoder using the

augmented samples in D;
18 end

Theorem 3.1 (Certified Radius). Consider a spe-
cific decoding step t. The encoded representation
of X is denoted as henc. Let k∗ and k′ be the to-
kens that the generator returns with top and runner-
up probability, i.e., k∗ = arg maxk(g

?
t (h

enc)) and
k′ = arg maxk,k 6=k∗(g

?
t (h

enc)). For any perturba-
tions on henc that is within radius R, the output of
g?t (X) is unchanged, i.e., g?t (h

enc) = g?t (h
enc+ε)

for all ε within R from henc. Here, R is calculated
as:

R =
1

2

(
Φ−1

(
g?t,k∗(h

enc)
)
− Φ−1

(
g?t,k′(h

enc)
))
,

(7)
where g?t,k∗(h

enc) and g?t,k′(h
enc) are the probabil-

ity of generating k∗ and k′ in step t, respectively.

We leave the detailed proof of Theorem 3.1 in
the Appendix A.

On getting the radius R, we now follow existing
work like (Cohen et al., 2019; Yang et al., 2020;
Salman et al., 2019) and present the practical train-
ing method to get the smoothed model g?. Since
the method is tightly coupled with the PET, we il-
lustrate the overall training framework that involves
both strategies in Algorithm 1.

In Algorithm 1, we first conduct PET on by min-
imizing Eq. (4) (line 1-7). After that, we adopt
TRT to update the smoothed Seq2seq model’s de-

coder, which is built upon the base model, using
the augmented samples (line 8-18). The encoder
here is not updated so that the encoded representa-
tions remain stable. These augmented samples are
generated to imitate a testing phase attack against
the smoothed Seq2seq model so that the model is
trained to be more robust. (line 13-16) Here, for a
sentence pair (Xi, Yi), we describe the augmented
sample as (henci , Yi), since we can consider henci

as fixed in this phase.
Now, consider an augmented sample (henci , Yi)

and a specific decoding step t. From the perspec-
tive of an attacker, we wish to find a perturbed
representation henc∗ that maximize the loss of gen-
erating the ground truth output Yit (i.e., the t-th
token in the output sequence Yi. The perturbed
representation should be within a ball around henc

measured by the distance metric d. Thus, ideally,
the augmented samples should satisfy:

henc∗ = arg max
d(henc,henc∗)≤R

L(henc∗;Yit), (8)

where L(henc∗, Yit) is derived from Eq. (4) by re-
placing the encoding network with the encoded
representation henc. Finally, we use the augmented
samples to update the decoder of the Seq2seq
model.

4 Experiments

In this section, we perform training phase and test-
ing phase manipulations using both heuristic and
state-of-the-art attack methods to evaluate the pro-
posed framework’s effectiveness in different sce-
narios. Experimental results show that the pro-
posed training framework can consistently prevent
Seq2seq models from generating profanity.

4.1 Datasets

We use one of the classic NLP tasks that commonly
suffer profanity issues - text style transfer, to eval-
uate the effectiveness of the proposed framework.
Particularly, we conduct experiments on a subset of
the widely used Yelp dataset 2. The dataset consists
of product reviews aligned with sentiment ratings
from 1 to 5. We normalize the ratings by treating
ratings below three as negative (0) and otherwise
positive (1). After data cleaning, we use the method
presented in (Li et al., 2018b) to construct pseudo
sentence pairs, which is commonly used in the style

2https://www.yelp.com/dataset
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transfer field. Then we randomly select 240 thou-
sand sentence pairs for training, one thousand for
validation, and one hundred for testing. Our task
is to transfer the sentence from positive opinion to
negative. Here, we only use a small test set because
we only use these test samples to test the outcome
of the attacks rather than the original task.

Finally, we obtain a vocabulary of inappropriate
tokens from (RobertJGabriel). We randomly select
top-50 high-frequency entries from the vocabulary
as our profanity seeds.

4.2 Experimental Setting
4.2.1 Evaluation Metrics
As mentioned in Section 2, a well-safeguarded
Seq2seq model should generate sentences with
minimal profanity expressions. However, since
a Seq2seq model’s ultimate goal is to generate flu-
ent sentences and accomplish the corresponding
task (e.g., sentiment transfer and machine transla-
tion), we also need to evaluate the framework from
the linguistic perspective. Hence, we should con-
sider both adversarial-related metrics and linguistic-
related metrics.

In this paper, we use ratio of sentences with
profanity (ROP), which is measured by the ra-
tio of generated sentences with one or more in-
appropriate tokens, to evaluate the effectiveness
of the proposed training framework. Since there
never exists a comprehensive list of all the pos-
sible profanity, ROP is evaluated via both auto-
matic and human effort. We treated sentences with
the phrases listed in (RobertJGabriel) as profan-
ity. Then we recruit three annotators and provide
each annotator the profanity reference list (RobertJ-
Gabriel). The annotators is instructed to find sen-
tences with unappropriated expressions especially
the ones in (RobertJGabriel) Besides, we validate
the expertise of human annotators using automatic
filters implemented by regular expressions.

Moreover, from the linguistic perspective, we
use the averaged BLEU score (Papineni et al., 2002)
(1-4) and PPL (perplexity) score (Brown et al.,
1992) to evaluate content quality and fluency, re-
spectively.

4.2.2 Parameters and Implementation Details
We use GRU encoder-decoder as the target Seq2seq
model. We set the word embedding to be 300-
dimensional. The encoder is a 1-layer bidirectional
GRU, and the decoder is a 1-layer single directional
GRU. The hidden sizes of both the encoder and

the decoder are set to 256. The mean direction µ
and concentration parameter κ of vMF distribution
are set to µ = [1/256, · · · , 1/256] and κ = 10,
respectively. We use Adam optimizer for model
training and set the batch size to 64.

4.3 Baselines
4.3.1 Adversarial Attack Baselines
In this section, we consider the profanity in the
training set and the triggering expressions in the
testing samples.

First, we use the reference list (RobertJGabriel)
to roughly find possible sentence pairs with profan-
ity in the training set. After that, we duplicate some
of these samples to construct synthetic datasets
with different profanity ratios. These datasets are
used to evaluate the impact of different profanity
ratios in training data on the proposed framework’s
performance.

Second, we also include two testing phase ad-
versarial attack approaches to modify the testing
samples and inject triggering expressions. Specifi-
cally, we consider two testing phase attack strate-
gies, i.e., Random Replacement (Random) and
Seq2sick (Cheng et al., 2020). Seq2sick is the state-
of-the-art testing phase whitebox attack method
against Seq2seq models. It crafts testing phase
adversarial examples to force a Seq2seq model to
produce specific tokens in its outputs.

4.3.2 Baseline Defense Approach
We primarily compare our framework with the data
sanity (DS) approach. Specifically, we train word
embeddings (Mikolov et al., 2013) using the Yelp
corpus. With the word embeddings, we expand
the original profanity vocabulary size to two times
larger by including each word’s nearest neighbors
in the word embedding space. Then we remove the
listed tokens from the generated sentences while
keeping the remaining tokens in the sentences un-
changed.

4.4 Results and Analysis
Effectiveness of the Defense Approaches. The
performance of different defense approaches are
shown in Table 2. We separately show PET’s and
PET+TRT’s performances, which are both pro-
posed in this paper, as ablation tests. Here we
do not report the performance of TRT separately.
This is because the TRT’s goal is to prevent modifi-
cations on the input sentence from influencing the
output sentence of the Seq2seq model. Therefore,
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Table 1: Text Quality on Yelp Dataset. Automatic evaluation metrics: Content (BLEU) and Fluency (PPL). “↑”
denotes larger is better, and vice versa.

Profanity Ratios
0.5% 1% 3%

BLEU↑ PPL↓ BLEU↑ PPL↓ BLEU↑ PPL↓

Original Seq2seq on Yelp 15.9 22.4 15.5 21.9 15.6 22.7
TRT + PET on Yelp 13.1 35.4 13.7 37.2 13.0 33.6

Table 2: Defense Effectiveness in Different Scenarios
on Yelp Dataset.

Profanity Ratio 0.5% 1% 3%

Random 0.01 0.01 0.01
Seq2Sick 0.94 0.94 0.95

Seq2Sick + DS 0.44 0.41 0.45
Seq2Sick + PET 0.21 0.24 0.27

Seq2Sick + PET + TRT 0.15 0.19 0.22

we cannot solely use it to defend the model against
profanity. As one can see, the proposed defense
approach PET and PET+TRT consistently achieve
the best performances in all cases. For instance,
on Yelp dataset, the ROP of the output sentence
decrease significantly when we use the state-of-the-
art Seq2sick attack approach to modify the testing
samples. Moreover, with the ratio of profanity
rising from 0.5% to 3%, the proposed PET+TRT
merely suffers less than 15% performances deterio-
rate. These results show that the proposed approach
can effectively prevent the Seq2seq models from
producing profanity even facing lots of profanity in
the training set and the advanced attack approach
in the testing phase.

Impact on the Quality of Text Generation.
Furthermore, we study the impact of the pro-
posed methods on the text generation quality of
the Seq2seq model. Here we merely analyze the
scenarios with different profanity ratios since test-
ing phase adversarial attack baselines like Random
and Seq2sick do not impact the quality of text gener-
ation. The results are shown in Table 1. As one can
see, the proposed training framework PET+TRT
does not significantly impact the quality generation.
For instance, on the Yelp dataset, the PET+TRT
training generally suffers about 2 point disadvan-
tage in BLEU. Hence, we can conclude that the
proposed training framework can maintain good
text generation performance while preventing the
generation of profanity.

Validation of the Certification. In this experi-

ment, we investigate whether TRT indeed provides
the certified robustness specified by our theoretical
analysis. Here, we report the ratio of successfully
attacked cases that satisfies: the deviation of its
henc is beyond its certified radius, in Table 3. We
can find that the overwhelming majority of success-
fully attacked cases are beyond the certified radius
from these results. This result implies that the at-
tack approach cannot successfully manipulate the
Seq2seq model with limited modifications on the
input sentence, given the proposed TRT strategy.

Table 3: The Ratio of Successfully Attacked Cases with
Deviation Larger Than the Certified Radius (Seq2sick
as the Attack Method).

Profanity Ratio 0.5% 1% 3%

Ratio of Success 0.87 0.91 0.89

4.5 Case Study
Finally, we show some example sentences gener-
ated by the Seq2seq model trained via the proposed
framework. Due to the space limit, we only show
the cases in which seq2sick is used as the adver-
sarial baseline. As one can see, when there are
no countermeasures, seq2sick successfully induces
the Seq2seq model to generate profanity, which
includes inappropriate words like sh** and di*k.
DS can remove some inappropriate words from
the sentences. However, such removals may hurt
sentence fluency. Finally, we find that the outputs
from the Seq2seq model trained via the proposed
PET+TRT do not contain profanity. With our pro-
posed training framework, the model generates ap-
propriate outputs that are suitable for the corre-
sponding tasks.

5 Related Work

In this section, we review related literature from
the follow three aspects.

Hatred Handling in NLP: There is an extensive
body of work focusing on handling hate speech in
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Table 4: Comparison Between Outputs from the Seq2seq Model in Different Scenarios on Yelp Dataset. We
replace some characteristics in the inappropriate words with * to avoid causing offensive.

Yelp Dataset (Style Transfer Task)

Input food is always amazing no matter what i order .
Seq2sick + Seq2seq food is sh**, not worth at all
Seq2sick+DS food is , not worth at all
Seq2sick+PET+TRT food is always a complete waste of money .
Input and the pizza was cold , greasy , and generally quite awful .
Seq2sick + Seq2seq and the chicken was like di*k
Seq2sick+DS and the chicken was like
Seq2sick+PET+TRT and the chicken was bland

the NLP field. A majority of these research efforts
concentrate on hatred speech detection (Warner
and Hirschberg, 2012; Schmidt and Wiegand, 2017;
Fortuna and Nunes, 2018; MacAvaney et al., 2019;
Gitari et al., 2015) and textual interventions (Be-
nesch; Wright et al., 2017; Stroud and Cox, 2018;
Mathew et al., 2019). The former typically em-
ploy features such as lexical resources (Burnap and
Williams, 2015; Gitari et al., 2015), sentiment char-
acteristics (Burnap and Williams, 2015), and mul-
timodal information (Hosseinmardi et al., 2015)
to build classifiers. The latter refers to generat-
ing responses to hate speech to alleviate its conse-
quences. To our knowledge, there is no existing
work discussing approaches to prevent text gener-
ators from generating the hatred or other unappro-
priated words.

Adversarial Attacks against NLP Models.
Our work is also related to adversarial attacks
against NLP models. These attacks aim to find
malicious samples to cause NLP models to make
mistakes. These adversarial attack approaches ob-
tain adversarial samples by modifying characters
in words (Jin et al., 2020), substituting words in
sentences (Li et al., 2018a; Ren et al., 2019; Gao
et al., 2018), or generating new adversarial sen-
tences (Zhao et al., 2017). The victims of these
adversarial attack models includes text classifica-
tion (Li et al., 2018a; Ren et al., 2019), machine
comprehension (Jia and Liang, 2017) and knowl-
edge inference (Bowman et al., 2015). Recent
work (Cheng et al., 2020) proposes an attack strat-
egy to precisely force seq2seq models to include
specific tokens in the output sequences. This is
accomplished by adding triggers into the test-phase
inputs. We include it as an adversarial baseline in
our experiment.

Provable Defense in Adversarial Learning.
There are mainly three categories of methods that
offer certified robustness with theoretical guaran-

tees. The first category of methods (Dvijotham
et al., 2018; Raghunathan et al., 2018; Wong and
Kolter, 2018) formulates the robustness certifi-
cation as an optimization problem and solves it
via convex relaxation or duality. The second cat-
egory of methods derives outer approximation
through the network layer by layer via perturbed
inputs (Weng et al., 2018; Singh et al., 2018). How-
ever, these two categories of methods are not fea-
sible on large scale networks and heavily depend
on the models’ architectures. The third category
of methods uses randomized smoothing to certify
robustness. Randomized smoothing was first pro-
posed in (Cao and Gong, 2017). Later (Cohen et al.,
2019) and (Lecuyer et al., 2019) derive tight `2
robustness guarantees for randomized smoothing.
Most recent papers extend the robustness guarantee
to other shapes like `0 (Levine and Feizi, 2020) and
`∞ (Zhang et al., 2020).

6 Conclusion

Seq2seq models have shown their success in vari-
ous NLP tasks. However, inappropriate languages
in the training set and the testing sentences may
cause Seq2seq models to produce profanity. This
paper proposes the first training framework with
certified robustness to handle profanity in both the
training and testing phases. Experimental results
show that the proposed framework can successfully
prevent Seq2seq models from producing profanity
while at the same time maintain satisfactory text
generation quality.
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Appendix

A Proof of Theorem 3.1

Here we offer a proof sketch for Theorem 3.1.

Lemma A.1. The function g?t is κ-Lipschitz,
where κ is the concentration parameter of vMF
distribution.

Proof. According to Eq. (6), the gradient of the
smoothed Seq2seq model w.r.t. henc at step t can
be written as:

∇g?t (henc) = (gt ∗ vMF (µ, κ))(henc)

=Cp(κ)

∫
SD
κf(t) exp

(
κ(henc − t)Tµ

)
µdt ,

For any unit direction u one has u · ∇g?t (henc) ≤
K =⇒K-Lipschitz:

u · ∇g?t (henc)

≤Cp(κ)

∫
SD
κ|u| exp

(
κ(henc − t)Tµ

)
dt

=Cp(κ)

∫
SD
κ exp

(
κsTµ

)
ds ≤ κ ,

since |g?t (henc)| ≤ 1 and each element in u or µ is
below zero. Here · denotes inner product.

Lemma A.2. Let us denote the CDF of vMF distri-
bution as Φ(a) = Cp(κ)

∫ a
0 exp

(
κµTv

)
dv, the

map henc 7→ Φ−1(g?t (h
enc)) is 1-Lipschitz.

Proof. We first make a simple transformation:

∇Φ−1(g?t (h
enc)) =

∇g?t (henc)
Φ′(Φ−1(g?t (h

enc))
,

where Φ′ denotes the deriative of Φ. Thus we need
to prove that for any unit direction u:

u · ∇g?t (henc) ≤ 1 . (9)

In order to justify this inequality, we may trans-
form u · ∇g?t (henc) as:

u·∇g?t (henc) = Eε∼vMF(µ,κ)[gt(x+ε)ε·u]. (10)

Now let us look into the right-hand-side. Since
ε is drawn from a vMF distribution, ||ε||2 = 1.
Moreover, gt(henc + ε) denotes the probability
vector, the sum of all its dimensions equals to 1.
Hence, the right-hand-side Eε∼vMF(µ,κ)[gt(h

enc +
ε)ε · u] ≤ 1. This conclude the proof.

Finally, let us use the two lemmas above to prove
Theorem 3.1. Through lemma A.2, we know that
under any perturbation ε of X:

Φ−1
(
g?t,k∗(h

enc)
)
−Φ−1

(
g?t,k∗(h

enc + ε)
)
≤ ‖ε‖2,

(11)

due to 1-Lipschitz.
Suppose we can find a perturbation ε that sat-

isfies g?t,k∗(h
enc + ε) ≤ g?t,k′(h

enc + ε), we have:

Φ−1
(
g?t,k∗(h

enc)
)
−Φ−1

(
g?t,k′(h

enc + ε)
)
≤ ‖ε‖2,

(12)
Similarly, apply Lemma A.2 to k′ and knowing

g?t,k′(h
enc + ε) ≥ g?t,k′(henc) , we have:

Φ−1
(
g?t,k′(h

enc + ε)
)
−Φ−1

(
g?t,k′(h

enc)
)
≤ ‖ε‖2,

(13)
Combining (12) and (13), it is straightforward to

see that

‖ε‖2 ≥
1

2

(
Φ−1

(
g?t,k∗(h

enc)
)
− Φ−1

(
g?t,k′(h

enc)
))

(14)
which is a lower bound of ε to shift the output from
k∗ to k′. Hence, the smoothed model is secured
when ε is within the bound. Proved.

B Details of the Theoretical Remarks in
Section 3

We can rewrite Eq. (2) via Taylor expansion:

E
(

max
Ŷ ′ij∼PCi,Sk∼S

l(Ŷ ′ij , Sk, d)
)

=ESo∼S l(Yi, So, d)

+ E
(

max
Ŷ ′ij∼PCi,Sk∼S

(
l(Ŷ ′ij , Sk, d)− ESo∼S l(Yi, So, d)

))
=ESo∼S l(Yi, So, d)

+ E
(

max
Ŷ ′ij∼PCi,Sk∼S

〈
∇yiESo∼S l(Yi, So, d), ŷ′ij − yi

〉)
+ o(ŷ′ij − yi)

where o(ŷ′ij − yi) is the Peano remainder. 〈, 〉
is the inner product operation. ŷ′ij ,yi denote the
representation of Ŷ ′ij and Yi, respectively. Since

E
(

max
Ŷ ′ij∼PCi,Sk∼S

〈
∇yiESo∼S l(Yi, So, d), ŷ′ij − yi

〉)
=ci||∇yiESo∼S l(Yi, So, d)||2

always hold given an appropriate constant ci, PET
can be viewed as introducing a barrier, where the
representation of the profanity seeds will be re-
stricted to be beyond specific distance from the
output Yi, with a gradient-norm regularization.


