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Abstract

Existing work on Fine-grained Entity Typing
(FET) typically trains automatic models on the
datasets obtained by using Knowledge Bases
(KB) as distant supervision. However, the re-
liance on KB means this training setting can
be hampered by the lack of or the incom-
pleteness of the KB. To alleviate this limi-
tation, we propose a novel setting for train-
ing FET models: FET without accessing any
knowledge base. Under this setting, we pro-
pose a two-step framework to train FET mod-
els. In the first step, we automatically cre-
ate pseudo data with fine-grained labels from
a large unlabeled dataset. Then a neural net-
work model is trained based on the pseudo
data, either in an unsupervised way or using
self-training under the weak guidance from
a coarse-grained Named Entity Recognition
(NER) model. Experimental results show that
our method achieves competitive performance
with respect to the models trained on the origi-
nal KB-supervised datasets.

1 Introduction

Entity Typing is a fundamental task in Natural
Language Processing. Traditional entity typing re-
search focuses on a limited number of entity types
while recent studies strive for finer granularity. A
major challenge in fine-grained entity typing (FET)
is the absence of human-annotated data. To ad-
dress this problem, a common practice is to seek
distant supervision from knowledge bases. Typi-
cally, the training data is obtained by linking entity
mentions and drawing their types from knowledge
bases. For example, Ling and Weld (2012) uti-
lize the information encoded in anchor links from
Wikipedia text along with the type information in
Freebase (Bollacker et al., 2008). After that, classi-
fication models are trained using the resultant FET
dataset, as illustrated in the left part of Figure 1.

∗The first two authors (Jing and Yibin) contributed equally
to this work during the internships at Tencent AI Lab.

Figure 1: A comparison between the previous FET
framework (left) and our proposed FET framework
(right). In the previous one, the type ontology is cou-
pled with KB whereas it is not in ours.

Despite its success, this framework has one limi-
tation: The type ontology for training and testing
is strongly restricted by the underlying KB. As a
result, the application of the trained models under
this framework can be hampered by the lack or
the incompleteness of the KB (Choi et al., 2018).
In real-world applications of FET, the ontology of
the fine-grained types depends on the applications
instead of the KB. Typically, there may not exist
a one-to-one mapping from the ontology of appli-
cations to that of the existing KB. For example,
a game-related application may need to identify
the named entities of some specific video games,
such as the heroes and items in DOTA 2. However,
there are no knowledge bases covering these named
entities. The existing FET framework can not be
used when the desired type topology is not com-
patible with any KB. Worse than this, large-scale
knowledge bases are even not available in some
languages. As a result, the trained FET classifiers
under this framework cannot be effectively applied
to real-word applications.

To lift this limitation, we study a novel FET set-
ting, fine-grained entity typing without a knowl-
edge base, which is a common setting in real-world
applications. Given a fine-grained type ontology
defined by an application, we aim to assign a list of
labels for each mention within an input sentence,
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yet without accessing any knowledge base. Under
this setting, we propose a novel FET framework
by leveraging a large unlabeled dataset, as illus-
trated in the right part of Figure 1. Our proposed
framework disentangles the type ontology from the
KB and thus the given ontology can be an arbitrary
one, defined by a practical application that does not
correspond to any KB or by a specific KB as the
conventional FET setting. Therefore, our proposed
framework is more flexible than the previous one.

Our framework consists of two steps: creating
pseudo data from an unlabeled dataset and (it-
eratively) training the FET model based on the
pseudo dataset. In the first step, we aim to cre-
ate a large pseudo dataset with fine-grained type
labels. We propose an automatic method using
Hearst patterns (Hearst, 1992) to achieve this goal.
There exists a difference between the pseudo data
and the testing data in that each sentence in the
pseudo data satisfies a (relaxed) Hearst pattern
while few testing data do. Consequently, directly
training a FET model on the pseudo data may limit
its generalization ability. We thereby propose a
self-training method with weak supervision from
a coarse-grained NER model in the second step to
alleviate this issue. We do not focus on designing
novel models under the conventional FET setting in
this work. Actually, our proposed two-step frame-
work does not set a limit on the backbone FET mod-
els and existing FET models can be freely migrated
to our framework. Experimental results show that
without utilizing any KB in the conventional frame-
work, our proposed framework achieves compara-
ble results to the conventional framework using the
same backbone FET model.

Main contributions of our work are:

• We study fine-grained entity typing based on
a new setting: FET without a knowledge base.

• Under the new setting, we propose a two-step
approach (pseudo data generation and model
training) to tackle the FET task.

• Compared with training on KB-supervised
datasets, our proposed approach achieves com-
petitive performance on two popular FET test-
ing datasets.

• To facilitate future research under this new set-
ting, we make the created data publicly avail-
able. 1

1The dataset will be available at https://github.

2 Related Work

2.1 Fine-grained Entity Typing

Starting from hand-crafted features (Ling and Weld,
2012; Yosef et al., 2013; Gillick et al., 2014), re-
search on FET has moved to distributed represen-
tations (Yogatama et al., 2015; Ren et al., 2016a,b;
Zhang et al., 2018) and more advanced neural net-
work models (Dong et al., 2015; Shimaoka et al.,
2016a,b; Murty et al., 2018). Shimaoka et al.
(2016a) propose the first attentive neural model
that outperforms feature-based methods with a sim-
ple cross-entropy loss. They use LSTM (Hochre-
iter and Schmidhuber, 1997) for context encoding.
Murty et al. (2018) employ Convolutional Neural
Networks to encode the entity mention and context.
More recently, pretrained language models, such
as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019), have been employed to achieve better
performance (Lin and Ji, 2019; Chen et al., 2020;
Onoe et al., 2021). This research line relies on a
knowledge base to automatically create training
data, since it is challenging to build the human-
annotated data (Ling and Weld, 2012; Gillick et al.,
2014; Li et al., 2021a)

Our contributions in this work are orthogonal to
the above research line. As stated in Section 1, the
focus of this work is not to develop more advanced
models under the conventional FET framework.
Actually, these models can be freely migrated to
our proposed framework. It is worth noting that
using Hearst patterns for FET was pioneered by
Del Corro et al. (2015). However, they employed
Hearst patterns as well as a knowledge base to build
an FET system. Hence they did not prove that it
is feasible to address FET without any knowledge
bases as we do.

2.2 Fine-grained Type Ontology

Recent work introduced fine-grained type ontolo-
gies based on knowledge bases. Ling and Weld
(2012) derive the type ontology consisting of 122
types from Freebase types. Later work (Murty
et al., 2017) introduces a even more fine-grained on-
tology, which consists of over 1,941 types, obtained
by manually annotating a mapping from 1,081 Free-
base types to WordNet. Rabinovich and Klein
(2017) derive the ontology from the Wikipedia cate-
gories and WordNet graphs. Del Corro et al. (2015)

com/lemaoliu/fet-data. Part of this work is im-
plemented in the public system TexSmart at https://
texsmart.qq.com.
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use the ontology derived from the entire WordNet
hierarchy. Although driving an ontology from the
type hierarchy of a knowledge base is an efficient
way to build type ontology, it is not practical in real-
world application. Instead, the desired types and
ontology depend on the specific application and
usually there does not exist a one-to-one mapping
from the desired types to KB types.

2.3 Free-form Entity Typing

Choi et al. (2018) propose an alternative to the con-
ventional FET framework. Their proposed ultra-
fine entity typing task aims to predict free-form
types such as noun phrases that describe appro-
priate types for the role the target entity plays in
the sentence. To address this free-form typing task,
they automatically create a large dataset using some
heuristic methods. In addition, Dai et al. (2021)
extend the dataset in Choi et al. (2018) with pre-
trained langauge models and then train the typing
task on the extended dataset. Since the entity types
are replaced by free-form noun phrases, there is
no a unified type ontology in their task. However,
a formal, explicit specification of the target types
plays an important role in the downstream tasks
of fine-grained entity typing. Different from their
work, our proposed task retains the type ontology
as an input for the task, but disentangles it from the
knowledge base so as to provide larger flexibility.

3 Problem Statement for FETw/oKB

SupposeL is a fine-grained entity type ontology for
a real-world application as illustrated in Figure 2,
which consists of a set of formal types organized as
hierarchical trees, and a dictionary used to explain
each node in the trees. Each node in a tree is a
formal entity type l and each directed edge (l1, l2)
in the tree indicates that l2 is a subtype of l1. Each
element in the dictionary consists of a formal type
(i.e., a node) and a list of informal type names
explaining the meaning of the formal type. Figure 2
shows an example, where the type names of the
type “/organization/company” is the list “[company,
enterprises, companies, enterprise]” and the type
names of “/disease" is the list “[disease, illnesses]”.

The generic FET task aims to predict the type set
T whose element is in the given ontology L. Note
that T may be a set with one or more type labels,
so this task is characterized as a multi-class multi-
label classification task. Formally, the FET task is
modeled by a probabilistic model P (l | x, c). A

common practice is to parameterize the probabilis-
tic model by a binary classifier Pθ(l | x, c), which
indicates whether l is a type label of the mention
x. During inference, the classifier outputs all the
labels l satisfying the condition Pθ(l | x, c) > 0.5.

In the conventional framework, θ is trained on
a distantly supervised dataset, which is dependent
on a knowledge base. As a result, the trained clas-
sifier can only predict the types corresponding to
the types in that knowledge base, limiting its appli-
cation in practice.

Problem Statement In this paper, we focus on
FET under a more practical setting, i.e. Fine-
grained Entity Typing without Knowledge Base
(FETw/oKB). That is, given an ontology L, we aim
to infer the type set T for the mention x within a
sentence c when there are no KBs available.

Relation to Zero-shot FET Suppose the type
ontology L is divided into two disjoint sub-
ontology L1 and L2, and there is a labeled training
dataset where the labels are all from L1. Zero-shot
FET aims to make a prediction on testing mentions
whose labels are within L2. A surge of efforts have
been devoted to zero-shot FET (Ma et al., 2016;
Xian et al., 2019; Ren et al., 2020; Chen et al.,
2021), but all of them assume that training data is
obtained from knowledge bases by distant super-
vision, similar to the conventional FET. Therefore,
the proposed FETw/oKB is clearly different from
zero-shot FET.

Road Map Generally, it is challenging to train
θ under the FETw/oKB setting. In the next sec-
tions, we propose a new framework to address
FETw/oKB. Its key idea is a two-step approach:

• We propose an automatic method to create
pseudo data from a large-scale unlabeled cor-
pus (§4).

• We propose a method to train the classifier by
leveraging the pseudo data (§5).

4 Pseudo Data from Scratch

We start from the ontology L given by a real-world
application, and our purpose is to create a large
pseudo dataset with fine-grained labels from mas-
sive unstructured data. To this end, we propose
an automatic method to achieve this goal without
manual labor. At a high level, the key idea of our
method is illustrated in Figure 2. In the next, we
describe the key steps within our method.
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Figure 2: The process of generating pseudo data. It could be divided into several parts: extracting pairs from the
unstructured corpus, clustering the extracted pairs, and matching corpus with clusters to get the pseudo data. See
section 4 for a detailed explanation.

4.1 Dictionary Generation

Extraction First, we use Hearst patterns (Hearst,
1992) to generate a mapping dictionary between
mentions and type names. Each pattern corre-
sponds to a relationship between a hypernym and a
hyponym. For example, the patterns include “NP
such as NP” and “NP is a NP”. Using these pat-
terns to filter the unstructured data, we collect a
large-scale text corpus consisting of sentences such
as “An apple is an edible fruit.” and “Apple is
a high-tech company.”. Along with the corpus,
we also collect a large number of (mention, type
name) pairs such as (apple, fruit), (Apple, com-
pany), (banana, fruit), and (Microsoft, company). 2

We denote this set of (mention, type name) as S.

Clustering There might be some pairs in S,
which share the same mention but have different
type names. Such a mention is an ambiguous men-
tion. For example, “apple” is an ambiguous men-
tion, because both of the type names, “company”
and “fruit”, can be mapped to it. To resolve this
problem, we cluster all mentions in M by an over-
lapping clustering algorithm and then assign a type
name to each mention cluster, whose meaning may
be less ambiguous. Standard overlapping cluster-

2We implement an in-house extraction algorithm similar
to that in NLTK (Loper and Bird, 2002).

ing algorithms either need to pre-define the number
of clusters or are inefficient (Jain et al., 1999). In-
stead, we design a new algorithm whose basic idea
includes three steps: for each mention, it computes
its neighbor set consisting of its top k mentions
according to a term similarity score; then a hier-
archical clustering algorithm (Brown et al., 1992)
is applied to each neighbor set, leading to many
small subsets in total; then it repeatedly merges
a pair of subsets to a larger subset according to a
pre-defined threshold and finally take all subsets as
clusters. Since one neighbor set may overlap with
another one, the resulted clusters can be overlap-
ping. According to the clusters, we create a map
from mention clusters to type names. For example,
the cluster “[Apple, Microsoft, Google, Facebook,
...]” is mapped to “company”. There are unambigu-
ous mentions such as “Google” and “Microsoft” in
this cluster, so the ambiguity of “Apple” can be
reduced.

It is worth mentioning that Zhang et al. (2020);
Liu et al. (2021) adopt a similar method to obtain
a mention cluster map for fine-grained entity clas-
sification where entity mentions are unknown. In
their work, the map is employed to infer the labels
by exact matching during inference. Consequently,
their work can not address those mentions which
are not covered in the map. Instead of directly us-
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ing the map for inference, we employ the map to
generate pseudo data for training a typing model,
as will be described later. In this way, the model is
able to generalize on unseen mentions.

4.2 Pseudo Data Generation by Matching &
Mapping

By using the cluster dictionary to match the corpus,
we get our pseudo data. Take the sentence “Re-
cently Google has signed a contract with a popular
company in Korea.” as an example. The men-
tion “Google” appears in the cluster [Microsoft,
Apple, Google, ...] and this cluster is mapped to
the type name “company” by the dictionary. To
further preserve high precision in the pseudo data,
we perform a calibration strategy when matching:
only if we find type name “company” in the con-
text of “Google”, the example ([Recently, Google,
has signed a contract with a popular company in
Korea.], company) will be accepted. In this step,
the type name “company” will be used as a calibra-
tion to reduce ambiguity. The final step is to map
the informal type name “company” to the formal
type “/organization/company” in L according to
the ontology dictionary within L. Finally, we ob-
tain pseudo examples such as ([Recently, Google,
has signed a contract with a popular company in
Korea.], /organization/company).

Due to the calibration strategy, each sentence in
the pseudo data has some type name in it, such as
“company” in the example above, which is strongly
associated with the ground truth type label of the
mention, such as “/organization/company” in the
example above. Therefore, training models directly
on the pseudo data can not result in an effective
FET model. Instead, we mask the type name in
the pseudo data when using it for training, which
leads to about +1 F1 gains in our preliminary ex-
periments.

It is worth mentioning that it is possible to gen-
erate pseudo data by only using Hearst patterns
along with the ontology dictionary within L, which
is much simpler than our proposed generation
method. However, this simple generation method
leads to limited data compared with ours, because
it only extracts those sentences that strictly sat-
isfy a Hearst pattern but ignores some high-quality
sentences. Take “Recently Google has signed a
contract with a popular company in Korea.” as an
example, our method can match this sentence and
identify an entity “Google” with labeled as “/orga-

nization/company” even if this sentence does not
satisfy any Hearst patterns at all. In this sense, our
generation method can be considered as a relaxed
version of the Hearst pattern method.

5 Self-Training via Weak Guidance

Note that each sentence in the above pseudo data
satisfies a relaxed Hearst pattern while few in the
test dataset do. In other words, there exists a
gap between the pseudo dataset and the testing
dataset.Therefore, directly using the pseudo data
for training may not result in a typing model with
good generalization ability.

To alleviate this problem, one may try to apply
self-training, where the typing model is used to
expand the pseudo dataset iteratively during train-
ing. However, the typing model can only do part
of the job because it is trained to predict the en-
tity type given an entity mention but not to predict
the boundary of an entity mention given an input
sentence.

We use an off-the-shelf coarse-grained NER
model to fill the gap and propose a weakly-guided
self-training method. The basic idea is to use the
coarse-grained NER model to identify the entity
mentions in an input sentence, which are then fed
into the fine-grained typing model for self-training.
Typically, a coarse-grained NER model can achieve
both high precision and high recall on the task
of identifying mention boundaries, so the miss-
ing mentions in the pseudo data can be found by
it. Besides the boundaries of entity mentions, the
coarse-grained NER model also predicts a coarse-
grained entity type for each mention, which is used
as weak supervision in our method to improve the
performance of the fine-grained typing model.

Specifically, the process of the weakly-guided
self-training is shown in Algorithm 1. Given the
pseudo data U l obtained from Section 4, an unla-
beled dataset U , the fine-grained typing model P eθ ,
and the off-the-shelf coarse-grained NER model
P o, the training process is as follows:

For each sentence ci in U :

• Step 1: Extract entity mentions and their
coarse-grained types from ci using the coarse-
grained NER model. The output Eo is a set of
〈xo, to〉 pairs, where xo is an entity mention
and to is a coarse-grained type. (Line 5)

• Step 2: Feed each extracted mention into the
current fine-grained typing model and get the
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Algorithm 1 Weakly-Guided Self-Training

1: function TRAIN(U l, U ,P eθ , P o)
2: while P eθ does not converge do
3: Initialize U ′ = {}
4: for ci in U do
5: Eo = P o(ci)
6: for 〈xo, to〉 in Eo do
7: Te = P eθ (ci, xo)
8: Initialize T ′e = {}
9: for te in Te do

10: if If te is a subtype of to then
11: Add te to T ′e;
12: end if
13: end for
14: Add 〈ci, xo, T ′e〉 to U ′;
15: end for
16: end for
17: Update θ for P e on U ′ and U l;
18: end while
19: end function

fine-grained type prediction Te. (Line 6-7)

• Step 3: Compare each predicted type te ∈ Te
with to and consider all the subtypes of to in
Te as the fine-grained labels of xo. Then we
merge the new training example 〈ci, xo, T ′

e〉
into U . (Line 8-15)

• Step 4: Update the fine-grained typing model
using the expanded pseudo data. (Line 17)

6 Experiments

The experiments are conducted on two publicly
available fine-grained typing tasks: FIGER (Ling
and Weld, 2012) and OntoNotes Gillick et al.
(2014). We evaluate our model with the follow-
ing three metrics: strict accuracy, loose macro, and
loose micro F-1 scores following Ling and Weld
(2012).

6.1 Typing Tasks
FIGER It is sampled from Wikipedia articles
and news reports (Ling and Weld, 2012). It in-
cludes about two parts: the first part used for train-
ing and development is automatically labeled from
Wikipedia whereas the second part used for testing
is manually labeled from news reports. For the
automatically labeled data, entities are indicated by
the anchor links in Wikipedia and their types are
obtained by the distant supervision from Freebase.
The type ontology for FIGER is extracted from
Freebase and it contains two levels and 112 types
in total.

OntoNotes It is obtained from Wikipedia in a
similar way as FIGER dataset Gillick et al. (2014).

That is, the automatically labeled data is created by
distant supervision via Freebase, and manually la-
beled data is used as the test set. However, FIGER
is overly dependent on types in the knowledge base
and its types include some noise because an entity
in Freebase may include multiple types but only a
few of them can be inferrable from a given mention
text. As a result, the automatically labeled data is
further cleaned by some heuristics to filter some
incorrect types which may not be deducible from
the context of a given mention. Its type ontology
contains three levels and 89 types in total.

6.2 Our Approach for FETw/oKB

Model Architecture Since the goal in this work
is to investigate whether it is feasible to conduct
FET without knowledge bases, we use the At-
tentiveNER model proposed by (Shimaoka et al.,
2016a) and LatentNER model proposed by (Lin
and Ji, 2019) as the backbone FET classifiers. In
both AttentiveNER and LatentNER, the representa-
tions of the entity mention and the context are gen-
erated separately and then concatenated for final
prediction. In AttentiveNER, the mention represen-
tation is the average of the embedding vectors of
all the mention words. The context representation
is computed by an LSTM encoder with an attention
mechanism to catch the long-term dependencies.
In LatentNER model, ELMo is employed as the
sentence encoder. The mention representation is
a weighted sum with attention. The context repre-
sentation is generated from its contextualized word
vectors with a mention-aware attention mechanism.

Settings Following (Shimaoka et al., 2016a), we
train AttentiveNER model with the following hy-
perparameters: the dimension of the word embed-
dings Dm = 300; the hidden-size of the LSTM is
Dh = 100, and the hidden-layer size of the atten-
tion module is Da = 1. The optimization method
is Adam(Kingma and Ba, 2014) with a learning rate
of 0.005. The batch size is 1000. The context win-
dow size isC = 15 and the mention window size is
M = 10. We use freely available 300-dimensional
word embeddings which are trained on 840 billion
tokens from the Common Crawl created by (Pen-
nington et al., 2014) to be the only feature in our
model. Following (Lin and Ji, 2019), the hyperpa-
rameters of the LatentNER model are as follows:
the optimization method is Adam(Kingma and Ba,
2014) with a learning rate of 5e-5, an L2 weight
decay of 0.01, a warmup rate of 0.1, and a linear
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learning rate decay. The batch size is 400. We
use the original pretrained ELMo model (5.5B) to
be the only feature in our model and its weights
are frozen during training. Both the AttentiveNER
model and the LatentNER model are implemented
in Python using PyTorch (Paszke et al., 2019).

KB Approach Acc Ma-F1 Mi-F1

No
Ours-Att 46.62 56.71 60.04
Ours-Att+ST 54.98 69.83 69.03
Ours-Lat 61.39 75.84 72.17
Ours-Lat+ST 62.28 77.78 74.73

Yes
AttentiveNER 54.53 74.76 71.58
LatentNER 62.90 83.00 79.80

Table 1: The fair comparison between approaches with
and without KB on FIGER. Ours-Att and Ours-Att+ST
use the same model architecture as AttentiveNER (Shi-
maoka et al., 2016a). Ours-Lat and Ours-Lat+ST use
the same model architecture as LatentNER (Lin and
Ji, 2019). Ours: trained only on pseudo data without
self-training. Ours+ST: trained on pseudo data using
self-training. The pseudo data is created without KB.

KB Approach Acc Ma-F1 Mi-F1

No
Ours-Att 50.03 64.87 57.86
Ours-Att+ST 52.20 68.40 61.05
Ours-Lat 56.86 72.06 64.88
Ours-Lat+ST 56.63 74.38 67.87

Yes
AttentiveNER 50.32 67.95 61.65
LatentNER 54.14 73.59 67.58

Table 2: The fair comparison between approaches
with and without KB on Ontonotes. Ours-Att and
Ours-Att+ST use the same model architecture as At-
tentiveNER (Shimaoka et al., 2016a). Ours-Lat and
Ours-Lat+ST use the same model architecture as La-
tentNER (Lin and Ji, 2019).

Implementations To implement our approaches,
the pseudo data is created from a large subset of
Wikipedia text, which is fully unstructured and
includes about 100M sentences. Note that we do
not use the anchor linking information from the
original Wikipedia at all to ensure the generality of
our proposed approach. For the FIGER ontology,
there are 112 elements and each type corresponds
to 3.98 type names on average. Then we obtain
the pseudo data following the steps as described in
section 4. Since the ontology in FIGER task is very
similar to that in Ontonotes, the collected pseudo
data can actually be re-used for the Ontonotes task

by using an additional mapping from the types in
FIGER ontology to the types in Ontonotes ontology.
The final pseudo data contains 5.6M sentences and
7.5M mentions in total. Using the pseudo data,
We train an AttentiveNER model and a LatentNER
model following our proposed framework, where
a coarse-grained NER model is used for weakly
guided self-training, as mentioned in Section 4.
Here we use a tagging model in Li et al. (2021b)
for the coarse-grained NER. It is trained on the
public dataset (Weischedel et al., 2013) consisting
of 18 coarse types. The resultant FET models are
denoted as Ours+ST in the following tables.

6.3 Baseline for FETw/oKB
To ensure a fair comparison, we train AttentiveNER
and LatentNER on the (distantly) supervised train-
ing data provided in FIGER and Ontonotes tasks
as our baseline. The hyperparameters for the base-
line are exactly the same as those for our approach.
This baseline is naturally served as an upper bound
to some extent. In addition, we also report state-
of-the-art systems on FIGER and Ontonotes tasks
for reference (Ren et al., 2016a,b; Lin and Ji, 2019;
Zhang et al., 2018; Chen et al., 2020; Onoe et al.,
2021). Note that all these systems are trained on
the supervised data as the baseline and they differ
from the baseline in its sophisticated model archi-
tectures.

6.4 Experimental Results
Table 1 and Table 2 show the performance of the
backbone FET models trained using our proposed
approaches and those trained using the conven-
tional framework. The approaches in the two tables
are evaluated using the testing dataset of FIGER
and Ontonotes, separately. Under the conventional
framework (AttentiveNER and LatentNER in Ta-
ble 1, 2), the FET models are trained using the orig-
inal training dataset of FIGER, or Ontonotes while
our approaches (Ours and Ours+ST in Table 1, 2
only use pseudo data for training. The results show
that our method can be freely applied to different
backbone FET models, and more advanced FET
model architectures result in better performance.
The performance of the self-training version of our
approach (Ours-Att+ST, Ours-Lat+ST) is compara-
ble to that of AttentiveNER or LatentNER. In addi-
tion, Ours+ST achieves a significant improvement
over Ours, showing the effectiveness of the pro-
posed self-training method. We find Ours-Lat+ST
significantly outperforms LatentNER on two en-
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KB ELMo/BERT Model Acc Ma-F1 Mi-F1
No Yes Ours+ST 62.28 77.78 74.73

Yes

No Zhang et al. (2018) 60.2 78.7 75.5

Yes

Lin and Ji (2019) 62.9 83.0 79.8
Chen et al. (2020)(Exclusive) 69.1 82.6 80.8
Chen et al. (2020)(Undefined) 65.5 80.5 78.1
Onoe et al. (2021) - 81.6 77.0

Table 3: The comparison between our approach in line 1 to the SOTA approaches on the FIGER dataset. Note that
ours+ST is based on LatentNER while other SOTA approaches are with more sophisticated models.

KB ELMo/BERT Model Acc Ma-F1 Mi-F1
No Yes Ours+ST 56.63 74.38 67.87

Yes

No
Ren et al. (2016a) 55.1 71.1 64.7
Ren et al. (2016b) 57.2 71.5 66.1
Zhang et al. (2018) 55.52 73.33 67.61

Yes

Lin and Ji (2019) 54.14 73.59 67.58
Chen et al. (2020)(Undefined) 58.3 72.4 67.2
Chen et al. (2020)(Exclusive) 58.7 73.0 68.1
Onoe et al. (2021) - 76.2 68.9

Table 4: The comparison between our approach in line 1 to the SOTA approaches on the Ontonotes dataset. Note
that ours+ST is based on LatentNER while other SOTA approaches are with more sophisticated models.

tity types in OntoNotes: /organization/company
and /location/transit/road. The average F1 scores
of Ours-Lat+ST on these two types are 0.571 and
0.5 respectively while LatentNER achieves 0.443
and 0.4 respectively. The reason might be that
these two types cover a relatively large part of the
pseudo data (2.45% and 0.15% respectively) and
meanwhile, the pseudo data of these two types ex-
hibit high quality. Therefore, our FET models learn
better on these two types.

As shown in the results, there is still a perfor-
mance gap between ours and AttentiveNER or La-
tentNER. This may be mainly due to the quality of
the pseudo data. The pseudo data is created from
the unlabeled corpus in an automatic way without
using the distant supervision from knowledge bases.
Compared with the training dataset of FIGER, or
Ontonotes, the pseudo data exhibits lower recall
as mentioned in Section 4. In addition, there are
false labels in the pseudo data. For example, in the
sentence “Travel bans imposed by the European
Union have been lifted in the past in order to allow
Lukashenko to attend diplomatic meetings and also
to engage his government and opposition groups
in dialogue.”, Lukashenko is mistakenly labeled
as /organization/government. Although using type
names for calibration when creating type labels

can preserve high precision in general, this strat-
egy fails on this example because the type name
“government” appears together with the president
“Lukashenko”. Therefore, the quality of the pseudo
data is not as good as that of the original training
dataset of FIGER or Ontonotes.

Table 3 and Table 4 report the SOTA results on
these evaluation datasets. We list the SOTA results
here for readers’ reference.

6.5 Discussion on Complementarity

We find that the supervised training data of
Ontonotes have a long-tail distribution and the
LatentNER model trained under the conventional
framework does not perform well on the types
with a relatively small number of training exam-
ples. Table 5 shows three examples: /organiza-
tion/government, /other/event, and /other/product.
Luckily, our collected pseudo data have the poten-
tial to alleviate the problem of insufficient super-
vised data. We select the types with less than 10
examples in the training dataset of Ontonotes. The
Ontonotes training dataset only contains 112 ex-
amples of the selected types while there are 1,000
times more in our pseudo data. For each of the
selected types, we randomly sample 100 exam-
ples from the pseudo data and manually annotate
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Supervised Data Pseudo Data
type avg. F1 prop. # of ex. acc.
/org./gov. 0.176 1.02% 22,680 95%
/other/event 0.286 1.68% 348,623 84%
/other/product 0.349 1.37% 80148 83%

Table 5: Analysis of the pseudo data. /org./gov.: /or-
ganization/government. prop.: proportion of the data
in the KB-supervised training dataset of Ontonotes. #
of ex.: the number of the examples in pseudo data.
acc: accuracy. avg. F1: the average of the strict,
loose-macro, loose-micro F1 scores achieved by the La-
tentNER model trained on the KB-supervised training
dataset of Ontonotes.

if the example is correct. Using the annotations,
we calculate the accuracy of the pseudo examples.
The overall accuracy is 89%. Table 5 shows the
accuracy of the pseudo data on the three types men-
tioned above. Since the collection of pseudo data
is automatic and the created data exhibits high ac-
curacy, using our method to expand the long-tailed
training dataset might be an efficient way to im-
prove the model performance.

7 Conclusion

In this work, we study a novel setting of fine-
grained entity typing that disentangles type ontol-
ogy from knowledge bases. This setting is more
practical and provides larger flexibility for real-
world applications. Under this setting, we make an
initial attempt and propose a two-step framework
to address FET. Experimental results show that our
proposed method can achieve competitive results
without accessing any KB compared to using the
KB-supervised dataset for training as in the conven-
tional framework. Although we use Shimaoka et al.
(2016a) and Lin and Ji (2019) as the backbone
models in our experiments, our proposed frame-
work does not set a limit on the backbone classifier.
The more advanced FET model architectures men-
tioned in Section 2 can be freely mitigated to our
framework to achieve better performance under our
setting. We leave this to future work.
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