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Abstract

Multi-task learning with transformer encoders
(MTL) has emerged as a powerful technique to
improve performance on closely-related tasks
for both accuracy and efficiency while a ques-
tion still remains whether or not it would per-
form as well on tasks that are distinct in nature.
We first present MTL results on five NLP tasks,
POS, NER, DEP, CON, and SRL, and depict its
deficiency over single-task learning. We then
conduct an extensive pruning analysis to show
that a certain set of attention heads get claimed
by most tasks during MTL, who interfere with
one another to fine-tune those heads for their
own objectives. Based on this finding, we pro-
pose the Stem Cell Hypothesis to reveal the ex-
istence of attention heads naturally talented for
many tasks that cannot be jointly trained to cre-
ate adequate embeddings for all of those tasks.
Finally, we design novel parameter-free probes
to justify our hypothesis and demonstrate how
attention heads are transformed across the five
tasks during MTL through label analysis.

1 Introduction

Transformer encoders (TEs) have established re-
cent state-of-the-art results on many core NLP tasks
(He and Choi, 2019; Yu et al., 2020; Zhang et al.,
2020). However, their architectures can be viewed
“over-parameterized” as downstream tasks may not
need all those parameters, prone to cause an over-
head in computation. One promising approach to
mitigate this overhead is multi-task learning (MTL)
where a TE is shared across multiple tasks; thus, it
needs to be run only once to generate final embed-
dings for all tasks (Clark et al., 2019b).

Despite the success in MTL on closely-related
tasks such as language understanding (Wang et al.,
2018) or relation extraction (Chen et al., 2020; Lin
et al., 2020), MTL on core NLP tasks (e.g., tagging,
parsing, labeling) whose decoders are very distinct
has not been well-studied. This work employs the
state-of-the-art decoders on five core tasks for MTL

and thoroughly analyzes interactions among those
tasks to explore a possibility of reducing the compu-
tation overhead from TEs. Surprisingly, our exper-
iments depict that models jointly trained by MTL
give lower accuracy than ones trained individually,
that is against findings from previous work. In fact,
models jointly trained with all five tasks perform
the worst among any other combination (Section 3).

These experimental results urge us to figure out
why MTL on core tasks with a shared TE leads to
worse performance than its single-task counterparts.
Our exploration begins by detecting essential heads
for each task by forcing the TE to use as few atten-
tion heads as possible while maintaining accuracy
similar to a fully-utilized encoder. Our experiments
reveal that all five tasks rely on almost the same set
of attention heads. Hence, they compete for those
heads during MTL, causing to blur out features ex-
tracted by individual tasks. Thus, we propose the
Stem Cell Hypothesis, likening these talented atten-
tion heads to stem cells, which cannot be fine-tuned
for multiple tasks that are very distinct (Section 4).

To validate this hypothesis, many parameter-free
probes are designed to observe how every attention
head is updated while trained individually or jointly.
Intriguingly, we find that heads not fine-tuned for
any task can still give remarkably high performance
to predict certain linguistic structures, confirming
the existence of stem cells inherently more talented;
it is consistent with previous work stating that TEs
carry on a good amount of syntactic and semantic
knowledge (Tenney et al., 2019; Liu et al., 2019a;
Jawahar et al., 2019; Hewitt and Manning, 2019).
After single-task learning, probing results typically
improve along with the task performance, illustrat-
ing that the stem cells are developed into more task-
specific experts. On the contrary, MTL often drops
both probing and task performance, supporting our
hypothesis that attention heads lose expertise when
exposed to multiple teaching signals that may con-
flict to one another (Section 5).
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The Stem Cell Hypothesis is proposed to shed light
on a possible direction to MTL research using TEs,
comprising an unbearable amount of parameters,
by wisely assigning attention heads to downstream
tasks. Although most analysis in this study is based
on BERT, we also provide extensive experimen-
tal results and visualization of other recent TEs
including RoBERTa (Liu et al., 2019c), ELECTRA
(Clark et al., 2020) and DeBERTa (He et al., 2020)
in §A.4 to further demonstrate the generality of our
hypothesis. To the best of knowledge, this is the
first time that a comprehensive analysis of attention
heads is made for MTL on those core tasks by in-
troducing novel parameter-free probing methods.1

2 Related Work

A small portion of our work overlaps with multi-
task learning. MTL with pre-trained transformers
specifically in NLP (Wang et al., 2018; Clark et al.,
2019b; Liu et al., 2019b; Kondratyuk and Straka,
2019; Chen et al., 2020; Lin et al., 2020) has been
widely studied. Most work focus on neural architec-
ture design to encourage beneficial message pass-
ing across tasks. Our MTL framework adopts con-
ventional architecture and applies tricks of batch
sampling (Wang et al., 2019) and loss balancing.

Most of our work falls into the analysis of BERT,
especially from a linguistic view. Since BERT was
introduced, studies on explaining why BERT works
have never stopped. The most related studies are
those trying to study the linguistic structures learnt
by BERT. Among them, Tenney et al. (2019) and
Liu et al. (2019a) showed part-of-speech, syntactic
chunks and roles can be discovered from BERT
embeddings. Using a supervised probe, Hewitt
and Manning (2019) successfully discover full de-
pendency parse trees. The encoded dependency
structure is also supported by Jawahar et al. (2019)
using probes on embeddings. Apart from these
parameterized probes, parameter-free approaches
(Clark et al., 2019a; Wu et al., 2020) also agree with
the existence of rich linguistic knowledge in BERT,
which is closely related to our probing methods.

What remains unclear is the impact of fine-
turning on TEs. Using supervised probes, Peters
et al. (2019) claim that fine-tuning adapts BERT
embeddings to downstream tasks, which is later
challenged by Hewitt and Liang (2019) since su-

1All our resources including source codes and models are
public available at https://github.com/emorynlp/
stem-cell-hypothesis.

pervised probe itself can encode knowledge. Then,
Zhao and Bethard (2020) propose a methodology
to test such encoding of a linguistic phenomenon
by comparing the probing performance before and
after fine-tuning. Our probing methods align with
these unsupervised probes while focus more on
explaining the impact of multi-task learning.

3 Multi-Task Learning

Our goal of MTL is to build a joint model sharing
the same encoder but using a distinct decoder for
each task that outperforms its single-task counter-
parts while being faster and more memory efficient.
Our model adapts hard parameter sharing (Caruana,
1993) such that all decoders take the same hidden
states generated by the shared encoder as input and
make task-specific predictions in parallel.

3.1 Shared Encoder
For main experiments, BERT (Devlin et al., 2019)
is used as the shared encoder although our approach
can be adapted to any transformer encoders (§A.4).
Every token gets split into subtokens by BERT;
eventually, the average of the last layer’s hidden
states generated for those subtokens is used as the
final embedding of that token. Additionally, word
dropout is applied for generalization by replacing
random subtokens with [MASK] during training.

3.2 Task-Specific Decoders
Five tasks are experimented, part-of-speech tagging
(POS), named entity recognition (NER), depen-
dency parsing (DEP), constituency parsing (CON),
and semantic role labeling (SRL). For each task, a
state-of-the-art decoder is adopted (except for POS)
to provide a modern benchmark for MTL on these
tasks, and simplified to build an efficient model.

POS A linear layer is used as a POS decoder that
takes the final embedding of each token from BERT
and generates the output vector where each dimen-
sion gives the score of a particular POS tag.

NER The biaffine decoder (Yu et al., 2020) is
used for NER. For simplification, document context,
fastText and character-level embeddings as well as
variational BiLSTM encoding from the original
approach are removed.

DEP The biaffine decoder (Dozat and Manning,
2017) is used for DEP as well. For simplification,
part-of-speech tags, character-level embeddings
and the variational BiLSTM are removed in our

https://github.com/emorynlp/stem-cell-hypothesis
https://github.com/emorynlp/stem-cell-hypothesis
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POS NER DEP CON SRL MTL-5
POS 98.32 ± 0.02 98.28 ± 0.01 98.28 ± 0.02 98.30 ± 0.02 98.27 ± 0.02 98.25 ± 0.01
NER 89.34 ± 0.24 89.04 ± 0.14 89.43 ± 0.14 88.38 ± 0.06 89.18 ± 0.25 88.94 ± 0.10
DEP 94.04 ± 0.02 94.06 ± 0.07 94.24 ± 0.03 94.12 ± 0.04 94.12 ± 0.03 93.84 ± 0.08
CON 94.23 ± 0.03 94.38 ± 0.04 94.33 ± 0.02 94.43 ± 0.03 94.25 ± 0.05 94.10 ± 0.05
SRL 82.92 ± 0.10 82.39 ± 0.07 82.05 ± 0.03 83.17 ± 0.02 82.93 ± 0.08 82.30 ± 0.13

Table 1: Performance of single-task learning (main diagonal highlighted in gray), multi-task learning on all 5 tasks
(MTL-5), and multi-task learning on every pair of the tasks (non-diagonal cells; e.g., DEP’th row in NER’th column
is the DEP result of the joint model between DEP and NER). See also Table 12 for similar results of other TEs.

approach. Also, the final embedding of [CLS]
from BERT is used to represent the root node.

CON The two-stage CRF decoder is used for CON
(Zhang et al., 2020). The unlabeled bracket scorer
is optimized using a tree-structure CRF objective
on unlabeled constituents. The encoding layer from
the original approach is substituted by BERT. Also,
[CLS] and [SEP] in BERT are used to represent
[BOS] and [EOS], respectively.

SRL The end-to-end span ranking decoder (He
et al., 2018) is used for SRL. The attention-based
span representations are replaced by the averaged
embeddings as suggested by Xia et al. (2019). For
simplification, a linear layer is used as the ranker in-
stead of the biaffine one since they have shown sim-
ilar performance in our preliminary experiments.

3.3 Data and Loss Balancing
During multi-task training, batches from different
tasks are shuffled together and randomly sampled
to optimize the shared encoder and the correspond-
ing decoder. Following Wang et al. (2019), a task is
sampled based on a probability proportional to its
dataset size raised to the power of 0.8. To balance
the losses of all tasks, a running average of every
task is monitored and its loss is updated as follow:

L′t =

∑
∀i L̄i
L̄t

· Lt

Lt is the current loss of the task t, L̄t is the running
average of the most recent 5 losses of t, and L′t is
the updated loss of t. This balancing method nor-
malizes the loss of each task to the same magnitude
and has shown to prevent MTL from being biased
to specific tasks in our preliminary experiments.

3.4 MTL Experiments
Our models are experimented on the OntoNotes 5
(Weischedel et al., 2013) using the data split sug-
gested by Pradhan et al. (2013). Table 1 illustrates
performance of all models using the following eval-
uation metrics - POS: accuracy, NER: span-level

labeled F1, DEP: labeled attachment score, CON:
constituent-level labeled F1, SRL: micro-averaged
F1 of (predicate, argument, label). Every model
is trained 3 times and their average score and stan-
dard deviation on the test set are reported. For DEP,
the gold trees from CON are converted into the Stan-
ford dependencies v3.3.0 (de Marneffe and Man-
ning, 2008). Detailed descriptions about the exper-
imental settings are provided in Appendix A.2.
Single-task learning models are first trained then
compared to the MTL model trained on all 5 tasks
(MTL-5). Interestingly, MTL-5 is outperformed by
its single-task counterparts for all tasks. Due to the
high complexity of MTL-5, it is hard to tell which
combinations of tasks introduce negative transfer.
Thus, we conduct MTL on every pair of the tasks to
observe if there is any task combination that yields
a positive result (non-diagonal cells in Table 1).

Among the 10 pairwise task combinations, none
of them derives a win-win situation. NER results
are generally improved with MTL although results
on the other tasks are degraded, implying that NER
takes advantage of the other tasks by hurting their
performance. SRL is also benefited from CON al-
though it is not the case for the other way around.
Results of other recent TEs reveal similar patterns
as shown in Appendix A.4.

4 Pruning Analysis

To answer why MTL leads to suboptimal results in
Section 3, pruning strategies are applied to BERT
such that only attention heads absolutely necessary
to get the best performance are kept for every task.
This allows us to see if there exists a common set of
heads that multiple tasks want to claim and train for
only their objectives, which can cause conflicts for
those heads to be shared across all tasks.

4.1 Pruning based on L0-Regularization

BERT is essentially a stack of multi-head attention
layers and there is a wide consensus that different
layers learn distinct knowledge (Lin et al., 2019;



5558

Performance % of Attention Heads Kept PS/S
STL STL-SP STL-DP MTL-DP STL-SP STL-DP MTL-DP STL STL-DP

POS 98.32±0.02 98.22±0.03 98.35±0.02 98.28±0.01 53.24±4.07 40.51±1.61 50.70±1.20 405 1,245
NER 89.04±0.14 88.87±0.10 89.05±0.08 88.78±0.13 57.87±2.63 49.77±7.13 50.70±1.20 661 700
DEP 94.24±0.03 94.08±0.10 94.22±0.06 93.92±0.06 63.66±5.02 50.00±2.08 50.70±1.20 241 601
CON 94.43±0.03 94.16±0.08 94.24±0.03 94.16±0.05 45.37±0.40 44.91±0.40 50.70±1.20 191 397
SRL 82.93±0.08 83.01±0.05 83.11±0.16 82.77±0.10 82.41±5.99 53.24±4.07 50.70±1.20 299 326

Table 2: Results of single-task learning (STL), STL with static pruning (STL-SP), STL with dynamic pruning
(STL-DP), and multi-task learning on the 5 tasks with dynamic pruning (MTL-DP). PS/S: processed samples per
second for speed comparison. The STL Performance column is equivalent to the main diagonal in Table 1. See
also Table 13 for pruning results of other recent TEs.

Hewitt and Manning, 2019; Jawahar et al., 2019;
Liu et al., 2019a; Tenney et al., 2019). Inspired by
this, we analyze if each head learns features unique
to process different tasks. First, L0-regularization
is applied (Louizos et al., 2018) to encourage BERT
to use as few heads as possible during training. In
particular, a binary variable zj is assigned to the
j’th head and multiplied to the output of that head
(see Vaswani et al. (2017) for Q,K,V, dk):

Attention(j)(Q,K,V) = zj · softmax(
QK>√

dk
)V

Unfortunately, these binary variables z = {zj :
∀j=[1,`]} (`: total # of heads) are discrete and non-
differentiable so cannot be directly learnt using
gradient based optimization. To allow for efficient
continuous optimization, each zj is then relaxed
as a random variable drawn independently from a
continuous random distribution. Specifically, the
relaxed z is re-parameterized by its inverse of the
cumulative density function (CDF) as Gα(u). It is
sampled as follows, where α is a learnable parame-
ter of the inverse CDF, U is the uniform distribution
over the interval [0, 1] and u = {uj : ∀j=[1,`]} de-
notes the iid samples from it:

u ∼ U(0, 1) ⇒ z = Gα(u)

Then, the Hard Concrete Distribution (Louizos
et al., 2018) is chosen for z, which gives the
following form of Gα(u) that is differentiable,
where (l, r) defines the interval that gα(u) can be
stretched into (l < 0, r > 1):

gα(u) = sigmoid(logu− log(1− u) +α)

Gα(u) = min(1,max(0, gα(u)× (r − l) + l))

By sampling u and applying the Monte Carlo ap-
proximation, the learnable L0-objective is obtained
in a closed form, which gets jointly optimized with

a task specific loss or the balanced MTL loss:

Eu∼U(0,1) [z] = sigmoid
(
α− log

−l
r

)
Eu∼U(0,1) [L0] =

n∑
j=1

E [zj ]
(1)

4.2 Pruning Strategies

Two types of pruning strategies, static and dynamic,
are applied for the attention head analysis:

Static Pruning We refer to the conventional two-
stage train-then-prune as static pruning (SP) since it
fine-tunes the encoder first then freezes the decoder
for pruning (Voita et al., 2019).

Dynamic Pruning Since SP requires twice the
efforts to obtain a pruned model, we propose a new
method that simultaneously fine-tunes and prunes.
This strategy is referred to as dynamic pruning
(DP) since the decoder dynamically adapts to the
encoder that is being pruned during training, as op-
posed to SP which instead freezes the decoder. DP
is found to be more effective in our experiments.

All pruning models are trained for 3 runs with
different random seeds and the best checkpoints by
scores on development sets are kept. Once trained,
Eu∼U(0,1) [z] ∈ (0, 1) is used as a measure of how
much each head is being utilized.

4.3 Pruning Experiments

Table 2 shows single-task learning (STL) results
using SP and DP on the 5 tasks. Our DP strategy
consistently performs better than the SP strategy as
it shows higher accuracy on all tasks and prunes sig-
nificantly greater numbers of heads except for CON.
Compared to the STL models without any pruning,
the STL-DP models perform well or slightly better
for POS/NER/SRL due to the L0-regularization, yet
use ≈50% fewer numbers of heads.
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(f) 3-run utilization of the MTL-DP model, where each run is
encoded in a RGB channel. Darker indicates higher utilization.
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(g) Average head utilization rates among the 5 tasks in 3 runs.
Darker cells indicate higher utilization rates.

Figure 1: Head utilization of the STL-DP models (a - e, g) and the MTL-DP model (f). The detailed quantification
of correlations is shown in Table 3. See also Figure 9,11 and 13 for similar visualization of other recent TEs.

Comparing the STL-DP models across different
tasks, SRL requires more heads than DEP and CON,
which require more than POS. This aligns with the
intuition behind their difficulty levels as semantic
> syntactic > lexical relations. On the other hand,
NER requires more heads than CON because of the
world knowledge it needs to capture from the data;
thus, this knowledge is more scattered.

Finally, DP is applied to MTL-5 (MTL-DP),
which shows slightly higher accuracy than MTL-5
in Table 1 except for NER by pruning 50% of the
heads. This might imply that all tasks want to claim
a similar set of heads even though about a half of
the heads are underutilized during MTL training.

4.4 Pruning Visualization
To visualize the utilization of heads across runs, the
utilization rate z

(r)
j,t of the j’th head in the r’th run

for the task t is encoded to the RGB channels:

R/G/Bj,t = 255× (1− z
(1/2/3)
j,t )

For instance, RGB of (0, 0, 0) is black indicating
that the head is 100% utilized in all 3 runs. Based

on this scheme, the head utilizations of all STL-DP
models as well as the MTL-DP model are plotted in
Figures 1a ∼ 1f. To depict the overlaps of utilized
heads across tasks, z’s are averaged over all STL-
DP models for all runs then plotted as a grayscale
heatmap (Figure 1g) using the following scheme:

Hj =
1

15

3∑
r=1

5∑
t=1

z
(r)
j,t

Consistent head utilization by runs As shown
in Figures 1a ∼ 1e and the main diagonal in Ta-
ble 3, the head utilization per task seems quite
similar across different runs, especially for syn-
tactic/semantic tasks such as DEP/CON/SRL. The
head utilization of POS seems to be random be-
cause it is a simple task so that high performance
can be achieved by a small set of the re-utilized
heads. This consistency across different runs is an
essential prerequisite for the following analyses.

Consistent head utilization across tasks Fig-
ures 1a ∼ 1e show that all of these tasks are mostly
utilizing heads from layers 5 to 8 (looking like M).
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POS NER DEP CON SRL MTL-5
POS 75.51 74.77 76.45 83.54 73.32 78.34
NER 74.77 73.28 73.57 75.23 74.44 66.99
DEP 76.45 73.57 89.89 89.27 91.20 84.39
CON 83.54 75.23 89.27 83.99 83.90 80.71
SRL 73.32 74.44 91.20 83.90 81.01 80.07

MTL-5 78.34 66.99 84.39 80.71 80.07 85.88

Table 3: Adjusted R-squared of 3-run head utilization
rates using the third run as the dependent variable (main
diagonal highlighted in gray) and Pearson Correlation
Coefficient of averaged head utilization rates between
each pair of models (non-diagonal cells).

In contrast to Jawahar et al. (2019) and Tenney et al.
(2019), our findings suggest that the middle layers
also provide rich surface and semantic features,
which are aligned with Liu et al. (2019a) showing
that both POS and chunking tasks perform the best
when heads from the middle layers are utilized.

Consistent head utilization by STL and MTL
Figures 1f and 1g illustrate almost the identical uti-
lization patterns, implying that the MTL-DP model
re-uses a very similar set of heads used by the STL-
DP models. According to Vaswani et al. (2017), the
representation capacity of every head is limited by
the design of multi-head attention. Since (1) a sim-
ilar set of heads are used across multiple tasks and
(2) the limited representation capacity of individual
heads confines them to only specific tasks, forcing
them for MTL leads to worse results. Given this
analogy, we propose the following hypothesis:
There exists a subset of attention heads in a trans-
former called “stem cells” that are commonly used
by many tasks, which cannot be jointly trained for
multiple tasks that are very different in nature.
We refer to this claim as the Stem Cell Hypothesis
and seek to test it through the probing analysis.

5 Probing Analysis

This paper hypothesizes the existence of stem cells,
which cannot be trained to create adequate embed-
dings to be shared by multiple tasks that are not so
similar. This section provides empirical evidence
to this hypothesis by probing what roles each atten-
tion head plays once fine-tuned for end tasks.

5.1 Probing Methods

Previous studies on probing transformer encoders
have focused on layer-level analysis limited to su-
pervised probing (Hewitt and Manning, 2019; Ten-
ney et al., 2019; Lin et al., 2019; Jawahar et al.,

2019; Zhao and Bethard, 2020). This section intro-
duces probes on the head-level instead to analyze
the impact of fine-tuning on every individual head.
Since developing supervised probes on hundreds of
heads requires extensive resource, parameter-free
probing methods are used in this study.

Attention Probes Attention between two words
often matches a certain linguistic relation that gives
a good indicator to knowledge encoded in the head.
Our decoders for DEP and SRL learn relationships
between head/dependent words and predicate/argu-
ment words respectively, which can be directly ben-
efited from these attentions. Thus, the attention ma-
trix from each head is used as the probe of that head.
Following Clark et al. (2019a), an undirected edge
is created between each word and its most attending
word. First, the subtoken-subtoken attention matrix
is converted into a word-word matrix by averaging
the attention probabilities of each multi-subtoken
word. The arg max of each row r in the attention
matrix is then calculated, denoted as gr, and evalu-
ated on the basis of each task.

For DEP, directions of the gold arcs are removed
and compared against the predicted arcs as follows
(h|d: the index of a head|dependent word, (h, d):
an undirected arc from the gold tree, n: # of arcs):

1

n

∑
∀(h,d)

1(gh = d ‖ gd = h)

For SRL, we design a new probing method to evalu-
ate how each word in the argument span is attended
to the head word in its predicate (p: the index of a
predicate head word, T p: word indices in the span
of p’s argument, m: # of predicate-argument pairs):

1

m

∑
∀p,∀T p

1(gp ∈ T p ‖ ∃ t ∈ T p : gt = p)

Only head words in the predicates are used for this
analysis, which affects verb-particle constructions
(e.g., only throw is used for throw away). Moreover,
not all words in an argument span are necessarily
important to add meaning to its predicate. We will
explore these aspects in the future.

Attended-Value Probes POS/NER/CON can be
viewed as tasks to find and label spans in a sentence,
where the span is a word for POS, a sequence of
consecutive words for NER and CON, where a span
can be overlapped with another span for CON. For
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these tasks, we again present a new probing method,
depicted in Algorithm 1, that predicts the label of
each span based on its representation:

Algorithm 1: Attended-Value Probing

Function PseudoCluster(H,S):
C← 0 ∈ Rm×d, n← 0 ∈ Rm×1

foreach (b, e, `) ∈ S do
C` ← C` + mean(Hb, . . . ,He)
n` ← n` + 1

return C/n

Function AVProbe(C,H):
return arg max(cossim(C,H))

The attended-value matrix H ∈ Rn×d is created
by multiplying the attention matrix A ∈ Rn×n to
the value matrix V ∈ Rn×d (Section 4.1) such
that H = AV (n: sentence length, d: embedding
size, abbreviated dk). S is the set of gold spans, m
is the total number of labels, (b, e, `) denotes the
indices of the beginning word, the ending word,
and the label respectively, and cossim is a cosine
similarity function with broadcasting enabled.

With Algorithm 1, the centroid of each label is
obtained through PseudoCluster then used to
predict labels of all spans. Note that for CON, only
constituents on the height-3 (right above the POS-
level) are used for this analysis. We experimented
with constituents on higher levels, which did not
show good correlation with model performance as
the spans got longer and noisy. We plan to design
another probing method for deeper analysis in CON.

5.2 Probing Experiments
Probing experiments are conducted on all attention
heads in the pre-trained BERT (Devlin et al., 2019)
and fine-tuned models trained by single-task learn-
ing (STL; diagonal in Table 1), pairwise multi-task
learning (MTL; other cells in Table 1), and 5-task
multitask learning (MTL-5; last column in Table 1)
using the two probing methods, attention probes
and attended-value probes (Section 5.1). For each
model, the head with the highest probing accuracy
among 144 heads (12 heads per layer, 12 layers) is
selected per label. Since every model is developed
3 times using different random seeds for better gen-
eralization (Section 3.4), 3 heads are selected per
label, which are averaged to get the final probing
score for that label. The full probing results with
respect to all labels are described in Appendix A.3.

Two important observations are found from these
experiments. (1) Even without fine-tuning, certain
heads perform remarkably well on particular labels,
confirming the existence of stem cells (Sec. 5.2.1).
(2) Most heads show higher performance once fine-
tuned; nonetheless, MTL does not always enhance
them for all tasks. In fact, MTL models show im-
provement on only a few labels (Sec. 5.2.2), while
MTL-5 models show no benefit for most labels.2

5.2.1 Pluripotent Stem Cells
The probing results of pre-trained attention heads
from BERT (before fine-tuning) are visualized
to verify the existence and pluripotency of stem
cells. These results show very high accuracies
for many labels, confirming the existence of stem
cells. As they reside in the same pre-trained model,
their pluripotency is therefore implied. Specifi-
cally, the number of probing tasks is 203 (POS:49,
NER:19, SRL:67, DEP:45, CON:23 as shown in Ap-
pendix A.3.3) which is larger than the number of
heads (144) in BERT-base by itself. Not all of them
provide task specific knowledge as shown in our
pruning experiments (Section 4), so the number of
utilized heads is even smaller. As a result, some
heads must play multiple roles in different tasks.

Dependency Parsing For DEP, probing results
from the best performing heads with respect to their
layers for all labels are plotted in Figure 2, some of
which are even comparable to supervised results.
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Figure 2: DEP layer analysis of pre-trained heads.

The best performing head of BERT finds the ROOT
of a sentence with a 96.25% accuracy without any
supervision, demonstrating its ability to convey the
concept. Furthermore, the identification of ROOT
2The probing results for DEP and SRL are omitted here due
to the space limit but explained in Appendix A.3.
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happens mostly at the early stage of inference, i.e.
in layers 2 and 3. This finding may conflict with the
idea of syntactic features getting learned in middle
layers (Jawahar et al., 2019). It takes the argument
from Tenney et al. (2019) a step further suggesting
that syntax can be encoded in early layers of TEs.

Semantic Role Labeling As shown in Figure 3,
probing shows promising results on many semantic
roles. Specifically, numbered arguments (ARG0-4)
are recognized in layers 5 to 7, while modifiers are
identified in layers 8 to 10 with > 80% accuracies,
including ARGM-MOD (modals), ARGM-DIR (di-
rectional), ARGM-EXT (extent), ARGM-LVB (light-
verb), and ARGM-COM (comitative). Unlike DEP
that most labels are learned within the first 7 layers,
SRL requires 7+ layers to be learned such that no
role reaches the peak before layer 5. This implies
that semantic roles take more efforts to be learned
than syntactic dependencies.
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Figure 3: SRL layer analysis of pre-trained heads.

5.2.2 Stem Cells Specialization
Though stem cells are pluripotent, they develop
into specialized ones in STL and lose specialities
in MTL according to the following comparisons
of best performing heads across BERT, STL and
MTL models.

Part-of-Speech Tagging Figure 4 compares the
heads in the STL model against the other models;
the y-axis shows the probing results from the model
in the x-axis subtracted by the results of the STL
model. Labels (sorted by frequency) with negative
scores for BERT imply that STL performs better
on those labels than BERT (without getting fine-
tuned), whereas negative labels with the other mod-
els (e.g., NER, DEP) imply that the joint models

perform worse than the STL model on those labels.
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Figure 4: POS probing results comparison.

For POS, MTL degrades performance for most la-
bels compared to STL. Even without getting fine-
tuned, the pre-trained BERT model performs very
well on punctuation labels, which is expected. The
performance on WP$ (possessive wh-pronoun) is
significantly improved with NER, DEP, and SRL
as a possessive wh-pronoun (e.g., whose) often fol-
lows a name or is used in a relative clause that plays
an important role in DEP and SRL.

Named Entity Recognition For NER, BERT de-
tects PERCENT, MONEY, LAW, LANGUAGE, NORP
(national|religious|political groups) and PRODUCT
with over 90% probing accuracy, probably due to
the rich set of those entities present in pre-training
data. Although most joint models degrade probing
results for nearly every entity type, POS and DEP
improve upon more entity types than the other tasks
(Figure 5), which is consistent with the results il-
lustrated in Table 1.
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Figure 5: NER probing results comparison.
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Constituency Parsing As shown in Figure 6,
POS improves the most number of constituent
types but also causes the largest drop among the
MTL models for the most frequent type, NP (noun
phrase). This contributes to related constituent
types such as RB (adverb) in ADVP (RB phrase),
WRB (wh-adverb) in WHADVP (WRB phrase), and
UH (interjection) in INTJ (UH phrase). Its dramatic
decrease on the NP performance might be due to
the internal lexical complexity in NP.
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Figure 6: CON probing results comparison.

Regarding NER, its boost on ADVP can be due
to temporal entities (TIME, DATE) nested within
ADVP such as (ADVP (NP one year) ago), where
one year ago is a DATE entity. As for PP (preposi-
tion phrase), it usually follows the induction rule
of PP → IN/TO + NP, where the NP is often an
named entity (e.g., (PP (TO to) (NP Mary))). Re-
garding DEP, it mainly improves wh-phrases like
WHNP and WHADVP, which correspond to nsubj
and advmod dependency relations, respectively.
Regarding SRL, it slightly improves NML (nominal
modifiers) and FRAG (fragment), which may be
ascribed to the strength of the span-based SRL not
requiring constituency structures for decoding.

Note that in these probing analyses, we selected
the best performing heads from each model inde-
pendently as their locations are not regular any-
more. Without the pruning objective (Equation 1),
the locations of the best performing heads are non-
regular possibly due to the knowledge transfer be-
tween stem cells and non-stem cells. Thus, knowl-
edge transferring from stem cells to non-stem cells
becomes much easier when the models are free to
use as many heads as they want. In fact, when fine-
tuned without the pruning objective, many stem
cell attention heads transfer their knowledge to
non-stem cell heads to get specialized. It is a phe-

nomenon frequently observed in many previous
works (Tenney et al., 2019; Liu et al., 2019a; Jawa-
har et al., 2019) and this work (Section 5.2.2) that
certain layers achieve best performance of certain
tasks. Given that the stem cells of BERT are mostly
in middle layers (Section 4.4), we believe that the
best performing layers or heads in lower or higher
layers are the results of transfer learning on stem
cells. In reality, a stem cell also moves from its
original area (e.g., bone marrow) to another area
(e.g., bone surface) to get specialized.

6 Conclusion

This study analyzes interference on the 5 core tasks
by highlighting naturally talented attention heads,
whose importance turns out to be invariant for many
downstream tasks. The Stem Cell Hypothesis states
that these talented heads are like stem cells that
can develop into experts but not all-rounders. Our
hypothesis is validated by several novel parameter-
free probes, revealing the interfered representations
of stem cells. We will adapt this work to more tasks
and languages for broader generality in the future.
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A Appendix

A.1 Corpus Statistics

Table 4 and 5 describes statistics of the POS, NER,
DEP, CON, SRL datasets used in our experiments.

Sentences Tokens
TRN 75,187 1,299,312
DEV 9,603 163,104
TST 9,479 169,579

Table 4: POS, DEP, CON, SRL statistics of OntoNotes 5.
TRN/DEV/TST: training/development/evaluation set.

Sentences Tokens
TRN 59,924 1,088,503
DEV 8,528 147,724
TST 8,262 152,728

Table 5: NER statistics of OntoNotes 5. TRN/DEV/TST:
training/development/evaluation set.

A.2 Hyper-Parameter Configuration

The hyper-parameters used in our models are de-
scribed in Table 6.

BERT Encoder
name bert-base-cased
layers tag 12
hidden size 768
subword dropout 0.2
Adam Optimizer
encoder lr 5e-5
decoder lr 1e-3
ε 1e-8
epochs 30
warm up 10
NER Decoder
MLP size 150
dropout 0.5
DEP Decoder
arc MLP size 500
rel MLP size 100
dropout 0.33
CON Decoder
span MLP size 500
label MLP size 100
dropout 0.33
SRL Decoder
argument ratio 0.8
predicate ratio 0.4
span width size 20
max Span width 30
label MLP size 100
dropout 0.2

Table 6: Hyper-parameters settings.

A.3 Extra BERT Probing Results

A.3.1 Dependency Parsing
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Figure 7: DEP probing results comparison.

Compared to STL, a similar trending with POS and
NER can be observed that MTL improves only cer-
tain relations as shown in Figure 7. Among the 4
tasks, POS improves the least tags in terms of both
overall accuracy and probing accuracy. It improves
dobj (direct object) and expl (expletive) possi-
bly due to that its decoder needs to assign a verb
tag to the ROOT verb and EX (existential there) to
“there”, enhancing the representations of these two.
Regarding NER, it mainly improves modifiers that
modify nouns which comprises named entities. In
the case of CON, modifiers and complement argu-
ments are improved, most of which usually reside
in NP (Noun Phrase) or VP (Verb Phrase) phrases,
placing upper bounds on the distance of dependen-
cies. As regards SRL, it improves subjects and
clausal relations.

A.3.2 Semantic Role Labeling
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Figure 8: SRL probing results comparison.
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In comparison to STL illustrated in Figure 8, POS
and CON mainly improves ARG0-3 (agent, patient,
instrument, benefactive, attribute and starting point)
and some modifiers including ARGM-TMP (tempo-
ral), ARGM-CAU (cause), ARGM-PRD (secondary
predication), ARGM-EXT (extent), ARGM-PNC
(purpose) and ARGM-REC (reciprocals). Both POS
and CON reveal syntactic functions which appear to
coordinate attentions on semantic roles in a similar
way. Regarding NER and DEP, they improve argu-
ments that include referent or pronouns (R-ARG1,
R-ARG0) and modifiers (ARGM-NEG which is
negation, ARGM-CAU, ARGM-PRD, ARGM-EXT),
possibly due to the biaffine decoders they employ
analogously enhance the heads.

A.3.3 Detailed Probing Results
With STL as the baseline, probing results for each
task are recorded in Table 7 to 11 respectively. In
each table, the first column shows the labels sorted
by their frequencies in the test set, the second col-
umn shows the mean probing results over 3 runs
for STL which is the baseline, other columns show
the probing results for BERT and MTL models
with their differences against the STL baseline (in
parentheses, green indicates improvements and red
indicates decreases). BERT probing scores are usu-
ally much lower than STL, which is expected as
it is not fine-tuned on the task data. MTL probing
scores are also generally lower than STL, implying
interference with other joint tasks.
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STL BERT NER DEP CON SRL MTL-5
NN 91.44 44.11(–47.33) 78.22(–13.22) 75.61(–15.83) 75.88(–15.56) 76.80(–14.64) 54.75(–36.69)

IN 89.79 53.45(–36.34) 88.46(–1.33) 82.43(–7.36) 71.27(–18.52) 65.22(–24.57) 53.86(–35.93)

DT 93.93 65.15(–28.78) 73.36(–20.57) 74.13(–19.80) 81.62(–12.31) 75.69(–18.24) 64.11(–29.82)

NNP 90.21 67.16(–23.05) 81.29(–8.92) 71.09(–19.12) 73.17(–17.04) 80.42(–9.79) 62.11(–28.10)

JJ 83.59 37.96(–45.63) 71.73(–11.86) 71.10(–12.49) 70.09(–13.50) 77.91(–5.68) 63.35(–20.24)

. 95.02 91.03(–3.99) 95.36(+0.34) 95.82(+0.80) 95.91(+0.89) 95.99(+0.97) 94.61(–0.41)

NNS 91.75 66.19(–25.56) 80.43(–11.32) 76.77(–14.98) 77.16(–14.59) 84.17(–7.58) 63.66(–28.09)

PRP 93.76 65.69(–28.07) 91.17(–2.59) 82.31(–11.45) 84.87(–8.89) 87.68(–6.08) 74.13(–19.63)

RB 83.33 28.92(–54.41) 75.44(–7.89) 67.30(–16.03) 63.78(–19.55) 67.86(–15.47) 54.27(–29.06)

, 95.23 86.94(–8.29) 89.07(–6.16) 78.15(–17.08) 70.08(–25.15) 93.50(–1.73) 69.87(–25.36)

VB 90.17 69.52(–20.65) 84.21(–5.96) 73.87(–16.30) 76.77(–13.40) 80.49(–9.68) 68.76(–21.41)

VBD 90.97 56.33(–34.64) 85.68(–5.29) 70.51(–20.46) 71.36(–19.61) 70.25(–20.72) 60.42(–30.55)

CC 91.40 68.26(–23.14) 90.09(–1.31) 71.91(–19.49) 68.02(–23.38) 83.39(–8.01) 67.49(–23.91)

VBZ 92.44 74.91(–17.53) 90.40(–2.04) 78.07(–14.37) 80.85(–11.59) 77.62(–14.82) 66.56(–25.88)

VBP 90.02 56.63(–33.39) 84.35(–5.67) 72.21(–17.81) 73.85(–16.17) 71.60(–18.42) 60.45(–29.57)

VBN 88.81 53.78(–35.03) 74.71(–14.10) 67.99(–20.82) 70.24(–18.57) 76.35(–12.46) 55.83(–32.98)

CD 93.10 61.67(–31.43) 74.84(–18.26) 88.25(–4.85) 89.97(–3.13) 89.95(–3.15) 66.87(–26.23)

VBG 92.63 65.44(–27.19) 85.51(–7.12) 78.36(–14.27) 82.53(–10.10) 82.19(–10.44) 66.12(–26.51)

TO 92.38 85.24(–7.14) 87.95(–4.43) 83.07(–9.31) 79.26(–13.12) 78.24(–14.14) 74.63(–17.75)

MD 92.70 65.72(–26.98) 91.93(–0.77) 90.69(–2.01) 90.29(–2.41) 89.55(–3.15) 89.29(–3.41)

PRP$ 92.33 76.90(–15.43) 89.37(–2.96) 88.84(–3.49) 86.96(–5.37) 86.48(–5.85) 80.86(–11.47)

UH 93.66 75.95(–17.71) 87.03(–6.63) 76.42(–17.24) 83.97(–9.69) 85.52(–8.14) 73.79(–19.87)

HYPH 91.98 90.15(–1.83) 92.01(+0.03) 89.90(–2.08) 88.20(–3.78) 92.47(+0.49) 91.23(–0.75)

POS 98.85 93.01(–5.84) 90.80(–8.05) 98.21(–0.64) 97.86(–0.99) 98.37(–0.48) 92.02(–6.83)

’ 89.05 76.84(–12.21) 74.25(–14.80) 77.14(–11.91) 71.12(–17.93) 85.48(–3.57) 70.51(–18.54)

“ 89.54 76.98(–12.56) 79.12(–10.42) 81.55(–7.99) 68.74(–20.80) 87.44(–2.10) 69.67(–19.87)

WDT 87.26 68.74(–18.52) 85.27(–1.99) 82.54(–4.72) 83.23(–4.03) 80.71(–6.55) 80.34(–6.92)

WP 90.19 76.18(–14.01) 86.99(–3.20) 81.88(–8.31) 83.79(–6.40) 77.35(–12.84) 75.89(–14.30)

WRB 89.15 72.35(–16.80) 87.38(–1.77) 86.68(–2.47) 83.99(–5.16) 79.75(–9.40) 78.44(–10.71)

RP 82.13 74.33(–7.80) 72.20(–9.93) 79.06(–3.07) 82.93(+0.80) 76.13(–6.00) 71.68(–10.45)

: 84.58 66.48(–18.10) 76.22(–8.36) 85.89(+1.31) 80.03(–4.55) 85.33(+0.75) 84.02(–0.56)

JJR 87.18 56.62(–30.56) 71.87(–15.31) 73.65(–13.53) 72.29(–14.89) 72.22(–14.96) 58.62(–28.56)

NNPS 84.39 72.11(–12.28) 75.45(–8.94) 71.02(–13.37) 79.74(–4.65) 79.81(–4.58) 79.96(–4.43)

EX 95.33 89.25(–6.08) 92.18(–3.15) 90.55(–4.78) 90.56(–4.77) 90.77(–4.56) 88.49(–6.84)

JJS 83.41 58.95(–24.46) 77.58(–5.83) 80.64(–2.77) 76.57(–6.84) 79.33(–4.08) 69.87(–13.54)

RBR 87.29 67.71(–19.58) 66.07(–21.22) 66.07(–21.22) 69.96(–17.33) 65.17(–22.12) 58.00(–29.29)

-LRB- 91.54 83.76(–7.78) 89.68(–1.86) 89.51(–2.03) 88.83(–2.71) 88.66(–2.88) 85.96(–5.58)

-RRB- 92.18 83.67(–8.51) 88.78(–3.40) 88.78(–3.40) 87.07(–5.11) 89.97(–2.21) 86.22(–5.96)

$ 97.30 95.38(–1.92) 95.38(–1.92) 94.99(–2.31) 94.80(–2.50) 96.92(–0.38) 94.99(–2.31)

PDT 87.15 84.94(–2.21) 83.54(–3.61) 82.73(–4.42) 81.12(–6.03) 84.74(–2.41) 82.53(–4.62)

RBS 86.31 72.32(–13.99) 72.62(–13.69) 77.68(–8.63) 71.73(–14.58) 77.98(–8.33) 74.41(–11.90)

FW 72.51 64.95(–7.56) 65.98(–6.53) 69.07(–3.44) 76.97(+4.46) 68.04(–4.47) 70.79(–1.72)

NFP 90.56 86.67(–3.89) 88.89(–1.67) 93.33(+2.77) 90.00(–0.56) 92.22(+1.66) 86.67(–3.89)

WP$ 92.99 89.47(–3.52) 95.62(+2.63) 94.74(+1.75) 92.11(–0.88) 94.74(+1.75) 92.98(–0.01)

XX 83.34 81.25(–2.09) 82.29(–1.05) 86.46(+3.12) 83.33(–0.01) 82.29(–1.05) 81.25(–2.09)

SYM 91.11 86.67(–4.44) 88.89(–2.22) 94.45(+3.34) 88.89(–2.22) 93.33(+2.22) 91.11(-0.00)

ADD 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

LS 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

AFX 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

Table 7: Probing results for POS. STL: the basline, BERT:pre-trained BERT before fine-tuning.
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STL BERT POS DEP CON SRL MTL-5
GPE 91.40 76.43(–14.97) 82.02(–9.38) 74.70(–16.70) 79.97(–11.43) 84.97(–6.43) 79.73(–11.67)

PERSON 85.90 85.51(–0.39) 85.38(–0.52) 86.67(+0.77) 83.65(–2.25) 83.96(–1.94) 83.60(–2.30)

ORG 73.81 67.80(–6.01) 74.95(+1.14) 69.01(–4.80) 68.04(–5.77) 72.09(–1.72) 69.99(–3.82)

DATE 87.39 63.17(–24.22) 62.51(–24.88) 78.49(–8.90) 73.53(–13.86) 82.25(–5.14) 83.37(–4.02)

CARDINAL 76.33 66.63(–9.70) 66.41(–9.92) 64.81(–11.52) 79.22(+2.89) 73.05(–3.28) 67.06(–9.27)

NORP 93.34 82.28(–11.06) 89.57(–3.77) 88.47(–4.87) 82.72(–10.62) 89.58(–3.76) 90.37(–2.97)

PERCENT 99.81 99.71(–0.10) 98.95(–0.86) 99.71(–0.10) 99.43(–0.38) 99.90(+0.09) 99.71(–0.10)

MONEY 98.30 97.77(–0.53) 96.60(–1.70) 97.98(–0.32) 96.60(–1.70) 97.13(–1.17) 96.07(–2.23)

TIME 79.25 77.36(–1.89) 78.14(–1.11) 72.48(–6.77) 78.77(–0.48) 77.51(–1.74) 77.05(–2.20)

ORDINAL 90.94 89.74(–1.20) 90.26(–0.68) 92.65(+1.71) 90.43(–0.51) 88.03(–2.91) 84.61(–6.33)

LOC 74.86 69.83(–5.03) 76.35(+1.49) 72.81(–2.05) 82.87(+8.01) 74.68(–0.18) 76.91(+2.05)

WORK_OF_ART 78.11 76.51(–1.60) 74.50(–3.61) 76.31(–1.80) 74.50(–3.61) 79.52(+1.41) 67.87(–10.24)

FAC 82.96 77.78(–5.18) 86.42(+3.46) 81.73(–1.23) 74.07(–8.89) 85.43(+2.47) 86.67(+3.71)

QUANTITY 95.55 83.81(–11.74) 95.56(+0.01) 92.70(–2.85) 87.62(–7.93) 94.92(–0.63) 89.84(–5.71)

PRODUCT 85.09 81.58(–3.51) 86.84(+1.75) 88.60(+3.51) 76.75(–8.34) 84.65(–0.44) 78.95(–6.14)

EVENT 77.25 68.25(–9.00) 74.60(–2.65) 71.43(–5.82) 66.14(–11.11) 71.43(–5.82) 70.37(–6.88)

LAW 91.67 92.50(+0.83) 87.50(–4.17) 90.83(–0.84) 86.67(–5.00) 90.00(–1.67) 87.50(–4.17)

LANGUAGE 98.48 95.45(–3.03) 100.00(+1.52) 98.48(-0.00) 98.48(-0.00) 98.48(-0.00) 98.48(-0.00)

Table 8: Probing results for NER. STL: the basline, BERT:pre-trained BERT before fine-tuning.
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STL BERT POS NER CON SRL MTL-5
prep 72.80 72.62(–0.18) 69.98(–2.82) 70.90(–1.90) 73.11(+0.31) 76.60(+3.80) 78.02(+5.22)

pobj 95.64 96.35(+0.71) 95.01(–0.63) 91.70(–3.94) 94.67(–0.97) 93.45(–2.19) 88.59(–7.05)

nsubj 76.92 76.36(–0.56) 66.45(–10.47) 73.78(–3.14) 73.75(–3.17) 85.61(+8.69) 70.69(–6.23)

det 94.07 93.70(–0.37) 93.22(–0.85) 93.87(–0.20) 95.68(+1.61) 95.72(+1.65) 91.66(–2.41)

root 96.28 96.25(–0.03) 95.83(–0.45) 96.49(+0.21) 95.10(–1.18) 97.77(+1.49) 95.18(–1.10)

nn 89.08 89.47(+0.39) 84.77(–4.31) 86.99(–2.09) 92.59(+3.51) 89.99(+0.91) 89.98(+0.90)

amod 92.76 93.33(+0.57) 91.38(–1.38) 91.63(–1.13) 95.36(+2.60) 92.70(–0.06) 93.50(+0.74)

dobj 93.76 94.55(+0.79) 94.88(+1.12) 93.60(–0.16) 93.46(–0.30) 92.95(–0.81) 89.07(–4.69)

advmod 70.58 69.12(–1.46) 66.11(–4.47) 71.85(+1.27) 69.23(–1.35) 68.96(–1.62) 67.92(–2.66)

aux 84.70 84.53(–0.17) 84.03(–0.67) 85.78(+1.08) 84.22(–0.48) 86.06(+1.36) 84.02(–0.68)

cc 59.17 57.86(–1.31) 58.10(–1.07) 58.73(–0.44) 57.11(–2.06) 54.40(–4.77) 64.18(+5.01)

conj 66.66 64.82(–1.84) 43.20(–23.46) 50.76(–15.90) 65.78(–0.88) 48.50(–18.16) 43.52(–23.14)

dep 41.44 42.77(+1.33) 32.82(–8.62) 41.88(+0.44) 41.22(–0.22) 42.01(+0.57) 38.78(–2.66)

poss 78.20 77.96(–0.24) 79.99(+1.79) 81.39(+3.19) 77.72(–0.48) 72.42(–5.78) 79.02(+0.82)

ccomp 71.24 71.47(+0.23) 50.24(–21.00) 69.80(–1.44) 65.29(–5.95) 66.38(–4.86) 61.40(–9.84)

cop 88.80 87.09(–1.71) 87.47(–1.33) 89.91(+1.11) 88.74(–0.06) 88.04(–0.76) 85.88(–2.92)

mark 89.78 90.88(+1.10) 89.44(–0.34) 91.01(+1.23) 90.29(+0.51) 87.65(–2.13) 89.75(–0.03)

xcomp 68.11 70.53(+2.42) 65.81(–2.30) 72.80(+4.69) 73.20(+5.09) 73.33(+5.22) 71.54(+3.43)

num 84.94 87.61(+2.67) 83.58(–1.36) 87.48(+2.54) 91.50(+6.56) 88.02(+3.08) 90.49(+5.55)

rcmod 51.72 52.62(+0.90) 41.62(–10.10) 41.96(–9.76) 52.22(+0.50) 59.36(+7.64) 51.52(–0.20)

advcl 52.26 54.93(+2.67) 41.78(–10.48) 53.70(+1.44) 49.97(–2.29) 42.06(–10.20) 48.50(–3.76)

neg 82.06 83.40(+1.34) 81.66(–0.40) 82.67(+0.61) 84.82(+2.76) 81.09(–0.97) 78.43(–3.63)

auxpass 97.37 97.51(+0.14) 97.18(–0.19) 97.26(–0.11) 95.74(–1.63) 95.66(–1.71) 96.24(–1.13)

nsubjpass 79.34 83.76(+4.42) 73.26(–6.08) 79.43(+0.09) 73.45(–5.89) 77.24(–2.10) 74.59(–4.75)

possessive 99.23 99.23(-0.00) 99.23(-0.00) 99.20(–0.03) 99.26(+0.03) 99.20(–0.03) 99.33(+0.10)

pcomp 87.55 90.06(+2.51) 83.03(–4.52) 86.95(–0.60) 85.11(–2.44) 84.57(–2.98) 80.15(–7.40)

discourse 74.04 73.80(–0.24) 50.24(–23.80) 62.18(–11.86) 56.72(–17.32) 73.14(–0.90) 52.05(–21.99)

partmod 60.08 59.47(–0.61) 59.52(–0.56) 60.49(+0.41) 63.14(+3.06) 64.85(+4.77) 62.58(+2.50)

appos 54.16 47.88(–6.28) 41.85(–12.31) 47.30(–6.86) 54.65(+0.49) 50.12(–4.04) 43.55(–10.61)

prt 96.44 95.99(–0.45) 96.39(–0.05) 96.69(+0.25) 96.83(+0.39) 95.30(–1.14) 96.09(–0.35)

number 80.75 78.43(–2.32) 77.71(–3.04) 82.86(+2.11) 81.12(+0.37) 81.41(+0.66) 82.57(+1.82)

quantmod 75.49 73.06(–2.43) 72.65(–2.84) 78.32(+2.83) 80.18(+4.69) 73.06(–2.43) 75.41(–0.08)

parataxis 46.48 43.92(–2.56) 30.69(–15.79) 45.24(–1.24) 43.30(–3.18) 47.79(+1.31) 33.69(–12.79)

infmod 71.38 71.20(–0.18) 68.35(–3.03) 70.13(–1.25) 70.49(–0.89) 73.24(+1.86) 68.18(–3.20)

tmod 84.89 87.64(+2.75) 69.23(–15.66) 78.02(–6.87) 76.01(–8.88) 80.31(–4.58) 62.64(–22.25)

expl 85.73 86.27(+0.54) 86.93(+1.20) 86.82(+1.09) 84.75(–0.98) 84.75(–0.98) 84.10(–1.63)

mwe 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

npadvmod 86.24 87.16(+0.92) 88.07(+1.83) 82.42(–3.82) 84.25(–1.99) 83.03(–3.21) 81.19(–5.05)

iobj 93.30 94.02(+0.72) 91.12(–2.18) 89.67(–3.63) 91.85(–1.45) 93.66(+0.36) 88.95(–4.35)

predet 91.72 91.30(–0.42) 91.93(+0.21) 93.17(+1.45) 92.34(+0.62) 87.78(–3.94) 90.47(–1.25)

acomp 89.60 89.17(–0.43) 88.33(–1.27) 89.60(-0.00) 89.81(+0.21) 87.05(–2.55) 89.17(–0.43)

csubj 56.90 57.76(+0.86) 57.19(+0.29) 59.48(+2.58) 53.45(–3.45) 51.72(–5.18) 55.17(–1.73)

preconj 76.81 78.26(+1.45) 65.22(–11.59) 72.46(–4.35) 82.61(+5.80) 83.33(+6.52) 75.36(–1.45)

csubjpass 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 77.78(–22.22) 66.67(–33.33)

Table 9: Probing results for DEP. STL: the basline, BERT:pre-trained BERT before fine-tuning.
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STL BERT POS NER DEP SRL MTL-5
NP 85.72 55.97(–29.75) 65.53(–20.19) 72.55(–13.17) 67.25(–18.47) 71.80(–13.92) 57.58(–28.14)

ADVP 68.61 68.61(-0.00) 70.25(+1.64) 77.86(+9.25) 70.47(+1.86) 61.15(–7.46) 66.59(–2.02)

ADJP 67.83 53.25(–14.58) 69.33(+1.50) 65.40(–2.43) 57.69(–10.14) 64.42(–3.41) 63.43(–4.40)

VP 79.29 62.83(–16.46) 66.39(–12.90) 70.30(–8.99) 78.07(–1.22) 54.85(–24.44) 69.70(–9.59)

NML 82.92 74.89(–8.03) 81.51(–1.41) 82.17(–0.75) 81.66(–1.26) 84.24(+1.32) 76.02(–6.90)

WHNP 77.87 62.26(–15.61) 75.12(–2.75) 73.27(–4.60) 78.82(+0.95) 70.63(–7.24) 71.14(–6.73)

INTJ 76.61 72.67(–3.94) 84.84(+8.23) 78.11(+1.50) 68.79(–7.82) 73.13(–3.48) 74.11(–2.50)

QP 94.55 90.45(–4.10) 93.49(–1.06) 93.73(–0.82) 91.70(–2.85) 91.65(–2.90) 88.28(–6.27)

WHADVP 78.99 69.43(–9.56) 80.16(+1.17) 75.84(–3.15) 84.04(+5.05) 72.63(–6.36) 76.95(–2.04)

PRT 80.85 79.46(–1.39) 80.90(+0.05) 81.20(+0.35) 83.63(+2.78) 73.71(–7.14) 76.34(–4.51)

PP 73.52 69.86(–3.66) 79.00(+5.48) 78.31(+4.79) 72.83(–0.69) 69.86(–3.66) 71.00(–2.52)

CONJP 90.87 91.78(+0.91) 90.41(–0.46) 85.84(–5.03) 88.58(–2.29) 88.13(–2.74) 87.67(–3.20)

X 59.35 60.98(+1.63) 52.85(–6.50) 53.66(–5.69) 57.73(–1.62) 55.29(–4.06) 56.91(–2.44)

WHADJP 95.37 91.67(–3.70) 93.52(–1.85) 96.29(+0.92) 94.44(–0.93) 94.44(–0.93) 91.67(–3.70)

META 98.61 95.83(–2.78) 97.22(–1.39) 95.83(–2.78) 97.22(–1.39) 97.22(–1.39) 98.61(-0.00)

UCP 100.00 100.00(-0.00) 98.25(–1.75) 100.00(-0.00) 98.25(–1.75) 100.00(-0.00) 100.00(-0.00)

S 96.29 94.44(–1.85) 96.29(-0.00) 94.44(–1.85) 96.29(-0.00) 98.15(+1.86) 94.44(–1.85)

LST 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

FRAG 83.33 100.00(+16.67) 100.00(+16.67) 94.44(+11.11) 94.44(+11.11) 88.89(+5.56) 100.00(+16.67)

SBAR 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

SQ 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

WHPP 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

TOP 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

Table 10: Probing results for CON. STL: the basline, BERT:pre-trained BERT before fine-tuning.
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STL BERT POS NER DEP CON MTL-5
ARG1 77.75 71.88(–5.87) 78.78(+1.03) 77.86(+0.11) 77.08(–0.67) 79.58(+1.83) 74.58(–3.17)

ARG0 73.24 74.46(+1.22) 75.95(+2.71) 71.61(–1.63) 71.17(–2.07) 74.16(+0.92) 70.13(–3.11)

ARG2 89.69 80.43(–9.26) 89.81(+0.12) 89.65(–0.04) 90.15(+0.46) 89.86(+0.17) 87.36(–2.33)

ARGM-TMP 73.24 60.55(–12.69) 74.48(+1.24) 70.57(–2.67) 76.58(+3.34) 75.59(+2.35) 68.55(–4.69)

ARGM-DIS 70.40 50.18(–20.22) 69.56(–0.84) 75.67(+5.27) 69.58(–0.82) 77.51(+7.11) 60.41(–9.99)

ARGM-ADV 59.01 40.28(–18.73) 61.31(+2.30) 64.83(+5.82) 56.48(–2.53) 63.88(+4.87) 54.36(–4.65)

ARGM-MOD 82.53 80.46(–2.07) 81.77(–0.76) 84.41(+1.88) 82.29(–0.24) 81.59(–0.94) 78.54(–3.99)

ARGM-LOC 79.45 58.99(–20.46) 78.24(–1.21) 80.68(+1.23) 72.88(–6.57) 79.35(–0.10) 74.22(–5.23)

ARGM-MNR 80.67 69.91(–10.76) 79.33(–1.34) 80.52(–0.15) 80.20(–0.47) 80.89(+0.22) 77.23(–3.44)

ARGM-NEG 86.47 79.39(–7.08) 85.51(–0.96) 90.54(+4.07) 90.81(+4.34) 84.75(–1.72) 88.40(+1.93)

R-ARG1 69.92 67.43(–2.49) 64.77(–5.15) 71.28(+1.36) 74.75(+4.83) 72.09(+2.17) 75.41(+5.49)

R-ARG0 81.20 75.64(–5.56) 76.89(–4.31) 81.71(+0.51) 83.36(+2.16) 80.30(–0.90) 78.36(–2.84)

C-ARG1 51.72 47.46(–4.26) 51.25(–0.47) 46.86(–4.86) 45.51(–6.21) 45.84(–5.88) 46.11(–5.61)

ARGM-PRP 80.48 69.05(–11.43) 78.81(–1.67) 82.06(+1.58) 77.38(–3.10) 83.49(+3.01) 80.16(–0.32)

ARGM-DIR 93.89 89.29(–4.60) 93.73(–0.16) 95.16(+1.27) 92.86(–1.03) 94.92(+1.03) 94.76(+0.87)

ARG3 91.00 82.89(–8.11) 91.98(+0.98) 90.91(–0.09) 87.34(–3.66) 90.91(–0.09) 89.04(–1.96)

ARG4 94.78 93.96(–0.82) 95.51(+0.73) 95.05(+0.27) 94.32(–0.46) 94.32(–0.46) 93.96(–0.82)

ARGM-CAU 62.34 55.37(–6.97) 63.37(+1.03) 66.76(+4.42) 68.74(+6.40) 67.98(+5.64) 65.73(+3.39)

ARGM-PRD 57.72 52.14(–5.58) 61.87(+4.15) 59.66(+1.94) 61.35(+3.63) 59.40(+1.68) 57.85(+0.13)

ARGM-ADJ 85.07 76.00(–9.07) 82.53(–2.54) 82.80(–2.27) 82.67(–2.40) 84.40(–0.67) 82.93(–2.14)

ARGM-EXT 87.37 86.93(–0.44) 90.85(+3.48) 87.80(+0.43) 89.32(+1.95) 88.89(+1.52) 83.44(–3.93)

ARGM-PNC 82.89 69.74(–13.15) 84.21(+1.32) 84.21(+1.32) 82.89(-0.00) 83.77(+0.88) 79.82(–3.07)

ARGM-GOL 86.76 76.71(–10.05) 89.95(+3.19) 88.58(+1.82) 78.54(–8.22) 85.84(–0.92) 84.93(–1.83)

ARGM-LVB 98.59 97.18(–1.41) 98.12(–0.47) 98.12(–0.47) 98.12(–0.47) 97.18(–1.41) 97.18(–1.41)

R-ARGM-LOC 82.05 84.62(+2.57) 78.97(–3.08) 86.16(+4.11) 74.36(–7.69) 73.85(–8.20) 79.49(–2.56)

R-ARGM-TMP 74.08 71.43(–2.65) 69.84(–4.24) 82.01(+7.93) 80.42(+6.34) 75.66(+1.58) 77.25(+3.17)

R-ARG2 73.12 70.97(–2.15) 77.96(+4.84) 77.42(+4.30) 74.19(+1.07) 69.89(–3.23) 74.73(+1.61)

C-ARG2 44.90 36.73(–8.17) 45.58(+0.68) 43.54(–1.36) 43.54(–1.36) 44.22(–0.68) 45.58(+0.68)

C-ARG0 59.80 47.06(–12.74) 61.76(+1.96) 56.86(–2.94) 51.96(–7.84) 53.92(–5.88) 54.90(–4.90)

ARGM-REC 84.31 70.59(–13.72) 85.29(+0.98) 78.43(–5.88) 80.39(–3.92) 85.29(+0.98) 80.39(–3.92)

ARGM-COM 88.89 81.48(–7.41) 90.12(+1.23) 92.59(+3.70) 87.66(–1.23) 87.66(–1.23) 87.66(–1.23)

C-ARGM-ADV 54.55 54.55(-0.00) 48.48(–6.07) 54.55(-0.00) 54.55(-0.00) 51.52(–3.03) 57.58(+3.03)

R-ARGM-MNR 72.73 63.64(–9.09) 63.64(–9.09) 81.82(+9.09) 69.70(–3.03) 78.79(+6.06) 66.67(–6.06)

ARG5 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

C-ARGM-TMP 71.43 42.86(–28.57) 61.90(–9.53) 71.43(-0.00) 57.14(–14.29) 61.90(–9.53) 66.67(–4.76)

R-ARGM-CAU 91.67 75.00(–16.67) 83.33(–8.34) 100.00(+8.33) 100.00(+8.33) 91.67(-0.00) 91.67(-0.00)

C-ARGM-CAU 66.67 66.67(-0.00) 66.67(-0.00) 77.78(+11.11) 66.67(-0.00) 66.67(-0.00) 77.78(+11.11)

C-ARG3 100.00 100.00(-0.00) 88.89(–11.11) 88.89(–11.11) 88.89(–11.11) 88.89(–11.11) 100.00(-0.00)

R-ARG4 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

C-ARGM-EXT 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

R-ARGM-ADV 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

C-ARGM-LOC 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

C-ARGM-MNR 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

C-ARGM-MOD 100.00 50.00(–50.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

R-ARGM-PRP 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

ARGM-PRX 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

ARGA 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

R-ARGM-DIR 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

R-ARGM-PRD 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

C-ARGM-PRD 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

R-ARGM-EXT 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

C-ARGM-PRP 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

R-ARG3 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

ARGM-PRR 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

ARGM-DSP 100.00 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00) 100.00(-0.00)

Table 11: Probing results for SRL. STL: the basline, BERT:pre-trained BERT before fine-tuning.
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A.4 Results for Other Transformers
We also applied our pruning and probing methods
on 3 recent transformer encoders, RoBERTa (Liu
et al., 2019c), ELECTRA (Clark et al., 2020) and
DeBERTa (He et al., 2020), to further demonstrate
the generality of our hypothesis. For all of them,
we use the base size version which has 12 layers
with 144 attention heads in total. Although we did
not tune hyper-parameters specifically for any of
them and re-used the same hyper-parameters of
BERT, their results turned out to be as interesting
as BERT results.

Their STL and MTL results are shown in Ta-
ble 12. Unsurprisingly, MTL-5 is outperformed by
its single-task counterparts for all tasks and for all
transformer encoders, raising the dilemma behind
transformer-based MTL.

Their pruning results are shown in Table 13. Al-
though the results could be better tuned for each
transformer encoder, our DP strategy is still able to
prune roughly 50% heads while keeping compara-
ble performance.

Their visualization of head utilization is illus-
trated in Figure 9, 11 and 13. Similar patterns
among each transformer encoder can be observed,
supporting our claim that the MTL-DP model re-
uses a very similar set of heads used by the STL-DP
models.

Their probing results are illustrated in Figure 10,
12 and 14, which also align with our findings.
Specifically, the DEP probing results on trans-
former encoders are already very high even without
fine-tuning on actual dependency treebanks (Fig-
ure 10f, 12f and 14f), demonstrating the pluripo-
tency of stem cells. Other figures show similar
patterns that stem cell heads get specialized during
STL but lose specialities in MTL, supporting our
Stem Cell Hypothesis.
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POS NER DEP CON SRL MTL-5
POS 98.33 ± 0.01 98.30 ± 0.01 98.34 ± 0.00 98.33 ± 0.02 98.31 ± 0.02 98.29 ± 0.02
NER 89.44 ± 0.04 88.93 ± 0.16 89.84 ± 0.14 89.65 ± 0.02 89.37 ± 0.19 89.66 ± 0.17
DEP 94.48 ± 0.05 94.46 ± 0.04 94.56 ± 0.05 94.55 ± 0.02 94.44 ± 0.02 94.38 ± 0.03
CON 94.82 ± 0.01 94.76 ± 0.04 94.88 ± 0.03 94.89 ± 0.05 94.88 ± 0.01 94.75 ± 0.01
SRL 84.04 ± 0.05 83.31 ± 0.11 84.13 ± 0.08 84.14 ± 0.02 83.52 ± 0.07 83.56 ± 0.10

(a) RoBERTa (Liu et al., 2019c) performance.
POS NER DEP CON SRL MTL-5

POS 97.94 ± 0.04 97.97 ± 0.02 97.94 ± 0.01 97.95 ± 0.01 97.96 ± 0.05 97.93 ± 0.01
NER 88.62 ± 0.03 88.22 ± 0.05 88.46 ± 0.20 88.82 ± 0.14 88.25 ± 0.11 88.38 ± 0.04
DEP 94.52 ± 0.08 94.47 ± 0.08 94.61 ± 0.01 94.65 ± 0.03 94.53 ± 0.07 94.39 ± 0.04
CON 95.01 ± 0.01 95.04 ± 0.02 95.10 ± 0.06 95.14 ± 0.03 95.08 ± 0.07 94.91 ± 0.04
SRL 84.35 ± 0.07 83.44 ± 0.05 84.55 ± 0.06 84.61 ± 0.11 83.81 ± 0.11 84.09 ± 0.06

(b) ELECTRA (Clark et al., 2020) performance.
POS NER DEP CON SRL MTL-5

POS 98.33 ± 0.02 98.26 ± 0.02 98.32 ± 0.01 98.32 ± 0.01 98.31 ± 0.02 98.30 ± 0.02
NER 89.29 ± 0.18 89.02 ± 0.21 89.67 ± 0.09 89.65 ± 0.25 89.29 ± 0.36 89.28 ± 0.18
DEP 94.50 ± 0.04 94.54 ± 0.02 94.64 ± 0.03 94.61 ± 0.07 94.56 ± 0.04 94.42 ± 0.03
CON 94.91 ± 0.04 94.94 ± 0.02 94.96 ± 0.01 95.06 ± 0.01 94.98 ± 0.03 94.82 ± 0.03
SRL 84.26 ± 0.05 83.42 ± 0.15 84.34 ± 0.04 84.36 ± 0.09 83.62 ± 0.06 83.37 ± 0.01

(c) DeBERTa (He et al., 2020) performance.

Table 12: Performance of single-task learning (main diagonal highlighted in gray), multi-task learning on all 5
tasks (MTL-5), and multi-task learning on every pair of the tasks (non-diagonal cells; e.g., DEP’th row in NER’th
column is the DEP result of the joint model between DEP and NER).

Performance % of Attention Heads Kept
STL STL-DP MTL MTL-DP STL-DP MTL-DP

POS 98.33 ± 0.01 98.35 ± 0.02 98.29 ± 0.02 98.38 ± 0.01 41.90 ± 0.40 53.47 ± 1.39
NER 88.93 ± 0.16 89.08 ± 0.16 89.66 ± 0.17 89.52 ± 0.05 58.33 ± 3.48 53.47 ± 1.39
DEP 94.56 ± 0.05 94.29 ± 0.01 94.38 ± 0.03 94.48 ± 0.03 64.58 ± 1.21 53.47 ± 1.39
CON 94.89 ± 0.05 94.59 ± 0.05 94.75 ± 0.01 94.78 ± 0.06 55.33 ± 2.00 53.47 ± 1.39
SRL 83.52 ± 0.07 83.53 ± 0.06 83.56 ± 0.10 83.57 ± 0.14 45.14 ± 0.70 53.47 ± 1.39

(a) RoBERTa (Liu et al., 2019c) pruning results.
Performance % of Attention Heads Kept

STL STL-DP MTL MTL-DP STL-DP MTL-DP
POS 97.94 ± 0.04 98.01 ± 0.01 97.93 ± 0.01 98.03 ± 0.02 35.88 ± 2.12 44.67 ± 2.44
NER 88.22 ± 0.05 88.04 ± 0.24 88.38 ± 0.04 88.11 ± 0.22 58.33 ± 2.78 44.67 ± 2.44
DEP 94.61 ± 0.01 94.36 ± 0.04 94.39 ± 0.04 94.40 ± 0.01 58.80 ± 1.06 44.67 ± 2.44
CON 95.14 ± 0.03 94.82 ± 0.02 94.91 ± 0.04 94.86 ± 0.07 52.78 ± 2.50 44.67 ± 2.44
SRL 83.81 ± 0.11 83.71 ± 0.10 84.09 ± 0.06 84.07 ± 0.06 41.20 ± 0.40 44.67 ± 2.44

(b) ELECTRA (Clark et al., 2020) pruning results.
Performance % of Attention Heads Kept

STL STL-DP MTL MTL-DP STL-DP MTL-DP
POS 98.33 ± 0.02 98.37 ± 0.01 98.30 ± 0.02 98.39 ± 0.01 50.93 ± 3.13 66.67 ± 1.84
NER 89.02 ± 0.21 88.72 ± 0.18 89.28 ± 0.18 89.08 ± 0.07 66.67 ± 3.67 66.67 ± 1.84
DEP 94.64 ± 0.03 94.42 ± 0.02 94.42 ± 0.03 94.60 ± 0.01 54.63 ± 2.00 66.67 ± 1.84
CON 95.06 ± 0.01 94.93 ± 0.03 94.82 ± 0.03 94.94 ± 0.13 61.11 ± 1.20 66.67 ± 1.84
SRL 83.62 ± 0.06 83.78 ± 0.13 83.37 ± 0.01 83.37 ± 0.00 55.09 ± 0.40 66.67 ± 1.84

(c) DeBERTa (He et al., 2020) pruning results.

Table 13: Results of single-task learning (STL), STL with static pruning (STL-SP) and multi-task learning on the
5 tasks with/without dynamic pruning (MTL/MTL-DP). The STL Performance column is equivalent to the main
diagonal in Table 12.
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(f) 3-run utilization of the MTL-DP model, where each run is
encoded in a RGB channel. Darker indicates higher utilization.
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(g) Average head utilization rates among the 5 tasks in 3 runs.
Darker cells indicate higher utilization rates.

Figure 9: Head utilization of the RoBERTa (Liu et al., 2019c) STL-DP models (a - e, g) and the MTL-DP model
(f).
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(f) DEP layer analysis.

Figure 10: The RoBERTa (Liu et al., 2019c) probing results comparison (a - e) and layer analysis of pre-trained
heads (g).
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(f) 3-run utilization of the MTL-DP model, where each run is
encoded in a RGB channel. Darker indicates higher utilization.
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(g) Average head utilization rates among the 5 tasks in 3 runs.
Darker cells indicate higher utilization rates.

Figure 11: Head utilization of the ELECTRA (Clark et al., 2020) STL-DP models (a - e, g) and the MTL-DP
model (f).
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(f) DEP layer analysis.

Figure 12: The ELECTRA (Clark et al., 2020) probing results comparison (a - e) and layer analysis of pre-trained
heads (g).
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(f) 3-run utilization of the MTL-DP model, where each run is
encoded in a RGB channel. Darker indicates higher utilization.
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(g) Average head utilization rates among the 5 tasks in 3 runs.
Darker cells indicate higher utilization rates.

Figure 13: Head utilization of the DeBERTa (He et al., 2020) STL-DP models (a - e, g) and the MTL-DP model
(f).
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(f) DEP layer analysis.

Figure 14: The DeBERTa (He et al., 2020) probing results comparison (a - e) and layer analysis of pre-trained
heads (g).


