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Abstract

The task of learning from only a few exam-
ples (called a few-shot setting) is of key im-
portance and relevance to a real-world set-
ting. For question answering (QA), the cur-
rent state-of-the-art pre-trained models typi-
cally need fine-tuning on tens of thousands of
examples to obtain good results. Their perfor-
mance degrades significantly in a few-shot set-
ting (< 100 examples). To address this, we
propose a simple fine-tuning framework that
leverages pre-trained text-to-text models and is
directly aligned with their pre-training frame-
work. Specifically, we construct the input as
a concatenation of the question, a mask token
representing the answer span and a context.
Given this input, the model is fine-tuned using
the same objective as that of its pre-training
objective. Through experimental studies on
various few-shot configurations, we show that
this formulation leads to significant gains on
multiple QA benchmarks (an absolute gain of
34.2 F1 points on average when there are only
16 training examples). The gains extend fur-
ther when used with larger models (Eg:- 72.3
F1 on SQuAD using BART-large with only
32 examples) and translate well to a multilin-
gual setting . On the multilingual TydiQA
benchmark, our model outperforms the XLM-
Roberta-large by an absolute margin of upto
40 F1 points and an average of 33 F1 points in
a few-shot setting (<= 64 training examples).
We conduct detailed ablation studies to ana-
lyze factors contributing to these gains.

1 Introduction

The task of question answering (QA) in Natural
Language Processing typically involves producing
an answer for a given question using a context that
contains evidence to support the answer. The latest
advances in pre-trained language models resulted
in performance close to (and sometimes exceeding)
a human performance when fine-tuned on several
QA benchmarks (Devlin et al., 2019), (Brown et al.,

2020), (Bao et al., 2020), (Raffel et al., 2020). How-
ever, to achieve this result, these models need to be
fine-tuned on tens of thousands of examples. In a
more realistic and practical scenario, where only a
handful of annotated training examples are avail-
able, their performance degrades significantly. For
instance, (Ram et al., 2021) show that, when only
16 training examples are available, the Roberta-
base (Liu et al., 2019) and SpanBERT-base (Joshi
et al., 2020) obtain a F1 score of 7.7 and 18.2
respectively on SQuAD (Rajpurkar et al., 2016).
This is far lower than the F1 score of 90.3 and
92.0 when using the full training set of >100000
examples. Through experimental analysis, we ob-
serve that this degradation is majorly attributed to
the disparities between fine-tuning and pre-training
frameworks (a combination of the input-output de-
sign and the training objective). And to address
this, we propose a fine-tuning framework (referred
to as FewshotQA hereby) that is directly aligned
with the pre-training framework, in terms of both
the input-output design and the training objective.
Specifically, we construct the input as a concatena-
tion of the question, a mask token and context (in
that order) and fine-tune a text-to-text pre-trained
model using the same objective used during its
pre-training to recover the answer. These text-to-
text pre-trained model(s) were originally trained to
recover missing spans of text in a given input se-
quence. And since our proposed fine-tuning setup
is very much identical to the pre-training setup,
this enables the model to make the best use of the
pre-training "knowledge" for the fine-tuning task
of question answering.

The effectiveness of our FewshotQA system is
shown in its strong results (an absolute average gain
of 34.2 F1 points) on multiple QA benchmarks in
a few-shot setting. We show that the gains extend
further when used with larger sized models. We
also test FewshotQA on a multilingual benchmark
by replacing the pre-trained model with its multi-
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(c) Our proposed FewshotQA fine-tuning framework. Note that the difference between this and the pre-training
framework above are the inputs and outputs.

Figure 1: Comparison of different pre-training and fine-tuning systems for QA tasks with our proposed system.
BERT∗ represents a class of BERT-like models that use the same pre-training objective.

lingual counterpart and observe significant gains in
comparison to a strong XLM-Roberta baseline (an
absolute gain of 40 F1 points when there are only
16 training examples).

2 Few-shot fine-tuning framework design

Our proposed few-shot fine-tuning framework de-
sign involves a different choice of input-output de-
sign and the training objective than the current stan-
dard for QA fine-tuning frameworks. We provide
a motivation for this design by comparison with
the existing frameworks. Figure 1 illustrates this
in detail. The pre-training framework is also pic-
tured for comparison. Note that we focus on the
bi-directional masked language models (MLMs) in-
stead of the auto-regressive language models (such
as GPT-2 (Radford et al., 2019)) as the MLMs typ-
ically are deemed superior for QA tasks (Devlin

et al., 2019), (Lewis et al., 2020).

2.1 Pre-training
Figure 1a illustrates the comparison between pre-
training setups for three types of models. Firstly,
there are BERT-style encoder-only models (re-
ferred to as BERT∗) (Devlin et al., 2019) that
are pre-trained with the standard masked language
modeling objective (also called a denoising objec-
tive) of predicting the masked tokens in an input
sequence I. The masked tokens here typically corre-
spond to a single word or a sub-word. Then, BART
(Lewis et al., 2020) uses a corrupted input recon-
struction objective to recover the original input.
The corruption involves replacing a span of multi-
ple tokens with a mask token and sentence shuffling.
Finally, T5 (Raffel et al., 2020) uses a masked span
generation objective to predict the masked spans in
an input. The input here is similar to that of BART
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where multiple spans are replaced with masked to-
kens. However, instead of generating the full input,
only the masked spans are generated.

2.2 Fine-tuning

Figure 1b illustrates the fine-tuning setups for each
of these models for the task of question answer-
ing. The input to both the BERT-style encoder-only
models and BART is a concatenation of the ques-
tion and the context. And both of them use a similar
objective that encourages the model to predict the
correct start and end positions of the answer in a
given input. This is referred to as a span-selection
objective. The input to T5 is also the concatena-
tion of the question and the context. However, T5
uses an answer span generation objective to let the
model directly generate the answer from scratch.

2.3 Aligning the fine-tuning with pre-training

The intuition behind aligning the fine-tuning and
pre-training frameworks is that the model can make
the best use of the "knowledge" obtained during
pre-training phase in the fine-tuning phase. For
question answering, the fine-tuning task involves
predicting an answer span that could contain
multiple tokens. This makes it non-trivial to align
BERT∗ models for QA task during fine-tuning as
their pre-training objectives let the model predict
only a single word (or a sub-word) for a mask
token. Similarly, it would require knowing the
answer length in advance to have SpanBERT
predict multi-masked tokens.
Given that their pre-training objectives naturally
involve multi-token span generation, BART and
T5 make good candidates for this alignment. We
further enhance the alignment by constructing the
inputs (and outputs) to be similar to that of what
the model sees during pre-training. This is done by
appending a mask token (that should correspond
to the answer in the target) as part of the input.
This framework is illustrated in Figure 1c. We test
the effectiveness of our formulation by putting it
to test in various few-shot scenarios and observe
significant gains.

Overall, we establish that the combination of
text-to-text models and fine-tuning framework that
is aligned with its pre-training counterpart makes a
strong few-shot QA system. We now describe our
experimental setup in Section 3.

3 Modeling details

3.1 Architecture
Our model follows the standard pre-trained text-
to-text model architecture. It consists of a
Transformer-based encoder and decoder models.
We default to the "base" versions of the BART and
T5 models as they contain a modest number of
parameters (140M and 220M respectively) in com-
parison to the larger sized ones. For T5, we use
the T5-V1.1 as the publicly released T5-V1.0 is
fine-tuned on downstream tasks including question
answering thereby contaminating it for our exper-
imentation. BART-base consists of 6 encoder, 6
decoder layers with a hidden dimension of 768 and
T5-base consists of 12 encoder, 12 decoder layers
with a hidden dimension of 768 and a feed-forward
hidden dimesion of 3072. We call the variants of
BART, T5 used with our fine-tuning framework as
FewshotBART and FewshotT5 respectively.

"Question: What form of cotton contains a genetically modified
gene? Answer: <mask>. Context: .....This program, along with
the introduction of genetically engineered Bt cotton has
allowed....."

"Question: What form of cotton contains a genetically modified
gene? Answer: Bt cotton. Context: .....This program, along with
the introduction of genetically engineered Bt cotton has
allowed....."

Example Input

Example Target

Figure 2: An example showing the input and target de-
sign for the FewshotQA model for BART.

3.2 Input-output design & fine-tuning
objective

The input (xM ) to the model consists of a concate-
nation of three text sequences. The first (xq) is a
set of question tokens (q) prefixed with the phrase
“Question:”, the second (xa) is a mask token (m)
prefixed with the phrase “Answer:” and the third
(xc) is a set of context tokens (c) prefixed with the
phrase “Context:”.

xq = Question: q

xa = Answer: m
xc = Context: c

xM = [xq;xa;xc]

The target for the BART model (yBART ) is a
concatenation of two text sequences, xq and ya
where ya is the set of answer tokens prefixed with
the phrase “Answer:”
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ya = Answer: a

yBART = [xq; ya]

The target for our T5 variant is a concatenation
of a mask token m and ya

yT5 = [m; ya]

An example of the input-target pairs from a
dataset is shown in Figure 2.

The choice of text-to-text models in our system
allows us to use to the standard encoder-decoder
objective that maximizes the log likelihood of the
text in the ground truth target from the output of
the model. Formally, given the input xM and the
target y (one of yBART and yT5), the loss function
L would now be:

L(θ) =
∑

(xM ,y)∈(XM ,Y )

log(
n∏

i=1

P (yi|y<i, xM ; θ))

Here, XM is the set of inputs, Y is the set of
targets, n is the number of tokens in the target se-
quence. yi is the target token at timestep i. y<i rep-
resents all the target tokens preceding the timestep
i. P (yi|y<i) represents the probability of the gener-
ating token yi given all the preceding ground truth
tokens y<i. And θ represents the parameters of the
model.

We chose the order of concatenation in the in-
put as question followed by a mask token followed
by context as it enables us to run the generation
process for a far fewer number of steps before an
answer is generated. (see Generation Strategy
section below). The context can be quite long so
generating the entire context auto-regressively be-
fore generating an answer would be inefficient and
cause a degradation in performance.

3.3 Generation strategy
During both validation and testing, the model is
provided the special start token as input and asked
to generate tokens in an auto-regressive manner
for a fixed number of steps. For BART, since the
question and answer tokens are at the beginning of
the sequence in the input and the model is trained
to reconstruct the input, we just need to generate
until the answer is generated. In practice, for the
datasets experimented, the generation length of
50 is sufficient to generate the answer. We stop
the generation once these 50 tokens are generated.

For T5, the generation length is set to 25 as only
the answer is generated. For both, we use greedy
decoding with a beam size = 1.

3.4 Answer extraction

Once the outputs are generated, the answers are
then extracted via a simple post-processing rule
that extracts the answer part of the generation. The
use of a fixed input pattern (Question: a Answer: a
Context: c) makes this step a simple deterministic
one without the need for additional heuristics.

3.5 Multilingual extension

Our fine-tuning framework can be extended to a
multilingual question answering setting by switch-
ing the pretrained model with its multilingual coun-
terpart. We experiment by replacing BART-base
model with mBART-50 model that was pre-trained
with the same objective as that of BART on a mul-
tilingual corpus. The rest of the components, fine-
tuning objective and the answer extraction, remain
the same as that of the FewshotBART. We call this
model FewshotmBART.

3.6 Hyperparameters

We use Adam optimizer with a learning rate of 2e-
5. We use a training batch size of 4. We don’t use
learning rate scheduling. For evaluation on the test
set, we pick the best model based off the develop-
ment set performance. The maximum sequence
length is set to the 99th percentile length of all se-
quence lengths in the development set. We train
for a total of 35 epochs or 1000 steps (whichever is
the maximum).

4 Experiments

4.1 Datasets

We follow (Ram et al., 2021) and choose the
datasets sampled from the MRQA shared task
(Fisch et al., 2019) for our few-shot experiments.
We also use the same train and test splits provided
in (Ram et al., 2021) for fine-tuning and evaluating
our models. However, instead of fine-tuning for a
fixed number of iterations, we use a development
set to determine the best checkpoint to use for
testing. These datasets contain 5000 to 17000 test
examples.

Development data split: To cater to a real-
istic and a practical setting for a few-shot scenario,
we pick the development set to be the same size
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TbQA

16 Examples

BART 10.44±5.9 2.5±2.1 13.3±2.4 2.9±1.4 5.3±2.4 5.6±2.4 10.3±2.9 1.7±1.2
FewshotBART 55.5±2.0 50.5±1.0 46.7±2.3 18.9±1.8 39.8±0.04 45.1±1.5 49.4±0.02 19.9±1.25

128 Examples

BART 42.2±3.4 11.1±0.9 24.6±1.9 18.1±1.3 17.8±2.3 23.0±2.5 39.1±2.8 9.2±0.7
FewshotBART 68.0±0.3 50.1±1.8 53.9±0.9 47.9±1.2 58.1±1.4 54.8±0.8 68.5±1.0 29.7±2.4

Table 1: Comparison of F1 scores across all datasets for the standard QA fine-tuning objective (BART) vs the
proposed aligned fine-tuning objective (FewshotBART). The value after ± indicates the standard deviation across
5 runs with different seeds. NQ stands for Natural Questions. TbQA stands for TextbookQA.

as of the training set. As reported in (Gao et al.,
2021), having access to the full development
set during training would create an unrealistic
few-shot setting. We also make sure there is no
overlap between training and development sets.

Below, we describe results for several experi-
ments conducted on MRQA few-shot datasets. We
run each experiment five times using five differ-
ent random seeds. And we report the mean and
standard deviation of the results for each run.

4.2 Comparing the standard vs aligned
fine-tuning framework

First, we present results comparing the standard
QA span-selection fine-tuning framework (BART)
and our proposed fine-tuning framework (Fewshot-
BART) that uses an input-output and an objective
that is aligned with pre-training framework. We
choose BART, two training set sizes (16, 128 ex-
amples) to illustrate this and present elaborate re-
sults across all configurations in a further section.
Both BART and FewshotBART use the base ver-
sion which contains 140M parameters. As seen in
Table 1, our proposed fine-tuning framework im-
proves the F1 score significantly across all datasets
in both the 16 example (an absolute gain of upto
48 F1 points and an average of 34.2 F1 points) and
128 example scenarios (an absolute gain of upto 39
F1 points and an average of 30.8 F1 points).

4.3 Few-shot results

Next, we present detailed experimental results (Ta-
ble 2) obtained with our FewshotBART, Fewshot-
BARTL, FewshotT5 models on several few-shot
configurations across multiple datasets. For Few-
shotBARTL, the base model in FewshotBART is re-
placed with the larger 406M parameter model. We
compare our models with RoBERTa, SpanBERT
baselines and the recently proposed Splinter (Ram

et al., 2021). The RoBERTa and SpanBERT are
fine-tuned with the span-selection objective and we
use the results for these models from (Ram et al.,
2021).
We can see that FewshotBART, FewshotBARTL
and FewshotT5 outperform the baselines by a big
margin on almost all datasets. A few highlights are
listed below:

• (a) Our best large model (FewshotBARTL)
outperforms all other models by a big mar-
gin. Specifically, in a 16 example setting, it
provides gains upto 61.2 F1 points in compar-
ison to a similar-sized RoBERTa model that
is fine-tuned with a span-selection objective.

• (b) Our best comparable model to Splinter
(in terms of model size) - FewshotBART out-
performs it by upto 31.6 F1 points in a 16
example setting and upto 10.9 F1 points in a
128 example setting. TextbookQA dataset is
one exception where Splinter is stronger.

• (c) FewshotBART is stronger in a 16 exam-
ple setting in comparison to FewshotT5. This
difference starts fading in 32, 64 and 128 ex-
ample settings. However, FewshotT5 still per-
forms better on most of the datasets in com-
parison to Splinter in 16, 32 and 64 example
settings.

4.4 Choice of input-outputs and fine-tuning
objectives

In this section, we investigate the impact of chang-
ing the input-output design and the fine-tuning
objective on the model performance (see Figure
3). Given a question q, answer a and context c, we
evaluate the following input-output choices and
objectives:
Span-selection: This is the standard extractive
question answering objective where the model
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TbQA

16 Examples

FewshotBART 55.5±2.0 50.5±1.0 46.7±2.3 38.9±0.7 39.8±0.04 45.1±1.5 49.4±0.02 19.9±1.25
FewshotBARTL 68.9±2.7 65.2±1.8 60.4±2.0 48.4±2.2 47.8±5.4 58.0±1.8 63.0±1.1 37.7±3.7
FewshotT5 47.8±6.9 50.6±4.9 28.5±14.5 26.8±2.7 37.0±3.3 44.9±3.5 46.3±5.9 25.9±5.0
RoBERTa 7.7±4.3 7.5±4.4 17.3±3.3 1.4±0.8 6.9±2.7 10.5±2.5 16.7±7.1 3.3±2.1
SpanBERT 18.2±6.7 11.6±2.1 19.6±3.0 7.6±4.1 13.3±6.0 12.5±5.5 15.9±4.4 7.5±2.9
Splinter 54.6±6.4 18.9±4.1 27.4±4.6 20.8±2.7 26.3±3.9 24.0±5.0 28.2±4.9 19.4±4.6

32 Examples

FewshotBART 56.8±2.1 52.5±0.7 50.1±1.1 40.4±1.5 41.8±0.02 47.9±1.4 52.3±0.02 22.7±2.3
FewshotBARTL 72.3±1.0 65.1±1.2 61.5±1.7 51.7±1.7 58.3±1.5 60.4±0.2 67.8±1.0 37.7±9.8
FewshotT5 56.6±1.5 50.2±9.0 37.5±12.5 33.2±4.6 48.4±5.6 53.6±1.4 57.7±4.2 29.8±2.6
RoBERTa 18.2±5.1 10.5±1.8 22.9±0.7 3.2±1.7 13.5±1.8 10.4±1.9 23.3±6.6 4.3±0.9
SpanBERT 25.8±7.7 15.1±6.4 25.1±1.6 7.2±4.6 14.6±8.5 13.2±3.5 25.1±3.3 7.6±2.3
Splinter 59.2±2.1 28.9±3.1 33.6±2.4 27.5±3.2 34.8±1.8 34.7±3.9 36.5±3.2 27.6±4.3

64 Examples

FewshotBART 61.5±2.3 50.8±2.2 53.0±0.5 42.7±2.2 46.1±2.9 51.2±1.0 61.8±2.8 27.6±1.8
FewshotBARTL 73.6±1.9 64.6±1.4 63.0±2.1 53.5±0.9 65.5±2.4 62.9±1.6 73.9±0.8 45.0±1.7
FewshotT5 57.2±5.6 52.4±5.9 48.6±2.1 40.2±4.1 54.4±3.0 56.3±2.9 63.8±2.5 32.1±2.7
RoBERTa 28.4±1.7 12.5±1.4 24.2±1.0 4.6±2.8 19.8±2.4 15.0±3.9 34.0±1.8 5.4±1.1
SpanBERT 45.8±3.3 15.9±6.4 29.7±1.5 12.5±4.3 18.0±4.6 23.3±1.1 35.3±3.1 13.0±6.9
Splinter 65.2±1.4 35.5±3.7 38.2±2.3 37.4±1.2 39.8±3.6 45.4±2.3 49.5±3.6 35.9±3.1

128 Examples

FewshotBART 68.0±0.3 50.1±1.8 53.9±0.9 47.9±1.2 58.1±1.4 54.8±0.8 68.5±1.0 29.7±2.4
FewshotBARTL 79.4±1.5 65.8±0.9 64.3±1.3 57.0±0.9 67.7±1.0 75.1±1.5 75.0±1.5 48.4±2.7
FewshotT5 64.6±6.1 51.7±3.1 47.0±4.6 40.0±1.9 57.0±4.5 56.1±3.7 68.2±3.6 33.6±2.1
RoBERTa 43.0±7.1 19.1±2.9 30.1±1.9 16.7±3.8 27.8±2.5 27.3±3.9 46.1±1.4 8.2±1.1
SpanBERT 55.8±3.7 26.3±2.1 36.0±1.9 29.5±7.3 26.3±4.3 36.6±3.4 52.2±3.2 20.9±5.1
Splinter 72.7±1.0 44.7±3.9 46.3±0.8 43.5±1.3 47.2±3.5 54.7±1.4 63.2±4.1 42.6±2.5

Table 2: F1 scores across all datasets and training set sizes. Bold indicates the best result. FewshotBARTL’s results
are colored blue as it has many more parameters (406M) than Splinter (110M). FewshotBART has a comparable
number of parameters (130M). FewshotT5 has 220M parameters.

is made to predict begin and end tokens cor-
responding to the answer in a given input I:
Question: q [S] Context: c

Full input generation: This is the objective
where the model is made to predict the entire input
including the masked answer span.
Input: Question: q Answer: <mask>. Context: c

Target: Question: q Answer: a. Context: c
Question->Answer generation: In this setting,
the model is asked to generate only the question
and the (masked) answer part of the input. The
question tokens are followed by the answer
tokens. The context tokens are not included in the
fine-tuning objective.
Input: Question: q Answer: <mask>. Context: c

Target: Question: q Answer: a.
Answer->Question generation: This is similar
to the Question->Answer generation objective
with the difference being that the answer tokens
are followed by the question tokens.
Input: Question: q Answer: <mask>. Context: c

Target: Question: q Answer: a.
Answer generation: This is the generation-based
objective equivalent of the standard span-selection
objective. The model is asked to generate the
answer given an input question and context.
Input: Question: q Context: c
Target T: a

The results are plotted in Figure 3. We choose
SQuAD and NewsQA datasets for illustration.
There are several key findings here, in the context
of a few-shot QA setting (upto 128 examples):

• (a) The fine-tuning objectives that are aligned
with their pre-training objective (red, green,
violet lines) show large gains over the stan-
dard span-selection fine-tuning objective (blue
line). The answer generation objective (or-
ange line) is superior to a span-selection based
objective (blue line) on both the datasets.

• (b) The sequencing of question and answer
tokens in the input-output has an impact on
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Figure 3: Comparison of fine-tuning objectives. The value on the markers indicates the mean. The beam width
indicates the standard deviation.

the performance with the specific sequencing
of question followed by the answer being su-
perior.

• (c) The Question->Answer generation and
Full input generation objectives show strong
performance even when there are 16 exam-
ples. The gap between the span-selection
and other objectives continue to be large even
when there are 128 training examples.

4.5 Multilingual results

Here, we describe the results of applying Few-
shotmBART described in Section to a multilin-
gual corpus TydiQA (Clark et al., 2020a). Ty-
diQA consists of question answering datasets from
9 languages (Arabic, Bengali, English, Finnish, In-
donesian, Korean, Russian, Swahili, Telugu). We
compare this to the results from applying XLM-
Roberta-large (Conneau et al., 2020) to the same
dataset. We fine-tune XLM-Roberta-large using
the standard span-selection objective used in ex-
tractive question answering tasks. The results are
shown in Figure 4.

FewshotmBART outperforms XLM-Roberta-
large by an average of 32.96 absolute F1 points

for training data sizes spanning from 2 to 64 exam-
ples.
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Figure 4: F1 comparison: XLM-Roberta vs Fewshotm-
BART
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5 Related Work

Question Answering (QA) is an active area of re-
search in Natural Language Processing and the
recent advances in pre-trained language models
enabled lots of rapid progress in the field ((De-
vlin et al., 2019), (Brown et al., 2020), (Bao et al.,
2020), (Raffel et al., 2020)). QA is also used as
a format to cast several NLP problems (McCann
et al., 2018), (Chada, 2019). A common way to
build a high performing question answering model
is to fine-tune these pre-trained models on the entire
training dataset - either via a span-extraction objec-
tive (Lan et al., 2020), (Clark et al., 2020b), (Bao
et al., 2020) or a span-generation objective (Raffel
et al., 2020). However, in this work, we explore
a more challenging and a practical setting where
only a handful of annotated training and develop-
ment samples are available. Related to this, (Ram
et al., 2021) develop a new pretrained model that
uses a recurring span selection objective suitable
for QA tasks. They then fine-tune this customized
pre-trained model on downstream QA tasks using
the standard span selection objective. They argue
that the existing strategy of fine-tuning large lan-
guage models fail in a few-shot QA setting. In
contrast, we take existing pre-trained text-to-text
models BART (Lewis et al., 2020), T5 (Raffel et al.,
2020) and simply modify their fine-tuning objec-
tive to build a stronger few-shot QA model. As our
solution only relies on fine-tuning modifications,
we are able to easily extend the framework to larger
sized models and multilingual settings without hav-
ing to build a new pre-trained model each time.
An alternative line of work that caters to building
question answering models in low-data settings
involves dataset synthesis (Lewis et al., 2019), (Al-
berti et al., 2019), (Puri et al., 2020). (Lewis
et al., 2019) generate pairs of synthetic context,
question and answer triples by sampling context
paragraphs from a large corpus of documents. Us-
ing these, they generate answer spans, mask the
answer and use this cloze-style text to generate nat-
ural questions. To do this, they assume access to
NLP tools such as named entity recognizer and part
of speech tagger. Puri et al. (2020) use a mix of
BERT-based answer generation, GPT-2 (Radford
et al., 2019) based question generation and and
roundtrip filtration to train an extractive QA model.
They show promising results with larger scale mod-
els. However, the QA model is still fine-tuned on
the entire dataset and this entire process including

synthetic data generation is computationally expen-
sive. Our work deviates from these by not relying
on additional synthetic data, not assuming access
to external NLP tools and using only a few training
examples for fine-tuning.
There is also a connection of our work to some
of the recent developments in few-shot learning
for classification tasks that cast the problem as a
mask-filling problem (Schick and Schütze, 2021),
(Gao et al., 2021), (Schick and Schutze, 2020).
However, these solutions are geared towards clas-
sification tasks with a fixed set of classes. That
assumption doesn’t hold true for QA tasks.

6 Conclusion

We present an effective few-shot question an-
swering (QA) system that combines the use of
pre-trained text-to-text models and a fine-tuning
framework aligned with their pre-training coun-
terpart. Through experimental studies on various
QA benchmarks and few-shot configurations, we
show that this system can produce significant gains
including in scenarios where the training data is
extremely scarce (an absolute gain of 34 F1 points
on average in comparison to the current standard
of the fine-tuning framework). We also present ex-
tensions to multilingual and larger model settings
and show that the gains translate well to these set-
tings (eg:- up to an absolute 40 F1 point gain in
comparison to XLM-Roberta + a span-selection
objective). Through ablation studies, we study the
impact of model size, fine-tuning objectives, input-
output design and illustrate the factors leading to
such strong gains. For future, as our framework
doesn’t explicitly enforce the answer to be a span
in the input text, it’d be interesting to consider its
applications to generative QA tasks.
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