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Abstract

Although recent developments in neural archi-
tectures and pre-trained representations have
greatly increased state-of-the-art model perfor-
mance on fully-supervised semantic role la-
beling (SRL), the task remains challenging
for languages where supervised SRL training
data are not abundant. Cross-lingual learn-
ing can improve performance in this setting
by transferring knowledge from high-resource
languages to low-resource ones. Moreover,
we hypothesize that annotations of syntactic
dependencies can be leveraged to further fa-
cilitate cross-lingual transfer. In this work,
we perform an empirical exploration of the
helpfulness of syntactic supervision for cross-
lingual SRL within a simple multitask learn-
ing scheme. With comprehensive evaluations
across ten languages (in addition to English)
and three SRL benchmark datasets, including
both dependency- and span-based SRL, we
show the effectiveness of syntactic supervision
in low-resource scenarios.

1 Introduction

The task of semantic role labeling (SRL) annotates
predicate-argument structures in text and is thus
a desirable output of natural language processing
(NLP) pipelines designed to extract information
from text (Gildea and Jurafsky, 2002; Palmer et al.,
2010). Recent developments in neural architectures
(Vaswani et al., 2017) and pre-trained contextual-
ized representations (Devlin et al., 2019; Liu et al.,
2019) have greatly improved the performance of
SRL systems (Zhou and Xu, 2015; He et al., 2017;
Tan et al., 2018; Shi and Lin, 2019). However,
most previous work focuses on high-resource En-
glish SRL scenarios, and it remains a challenge
to extend these approaches, which require plenti-
ful supervised examples, to other languages where
training resources may be limited.

A popular approach addressing this challenge is
cross-lingual learning: leveraging the shared struc-

tures across human languages to transfer knowl-
edge from high-resource languages to low-resource
ones. Model transfer, where an SRL model is di-
rectly transferred across languages using shared
representations (Kozhevnikov and Titov, 2013,
2014; Fei et al., 2020b), is a particularly promising
approach thanks to recent developments in multi-
lingual contextualized representations (Lample and
Conneau, 2019; Conneau et al., 2020), which have
proven effective for cross-lingual transfer (Wu and
Dredze, 2019; Pires et al., 2019).

Another common strategy for improving SRL
model performance in both high- and low-resource
scenarios is incorporating syntactic information.
Syntactic analysis was until recently considered
a prerequisite for most SRL systems (Gildea and
Palmer, 2002; Punyakanok et al., 2008) and has
been shown to benefit recent neural models as well
(Marcheggiani and Titov, 2017; He et al., 2018;
Swayamdipta et al., 2018; Strubell et al., 2018).
Despite much work exploring cross-lingual learn-
ing and incorporating syntactic information into
SRL systems, most such previous work explores
these two avenues separately, though there are nu-
merous reasons that carefully incorporating syntax
into a cross-lingual system for SRL could provide
further benefits: First, whereas SRL annotations
are limited to only about a dozen languages, much
richer resources are available for syntax, thanks
to the development of the Universal Dependencies
(UD) framework and accompanying corpora (Nivre
et al., 2016b, 2020), which defines syntactic anno-
tations that are consistent across languages, with
treebanks in over 100 languages to date. Second,
UD treebanks in particular have the potential to
increase beneficial sharing of information across
languages by providing a unified syntactic structure
to ground cross-lingual representations.

Most previous work utilizing syntax for cross-
lingual SRL have incorporated syntactic informa-
tion only as an input to the model, either as sparse
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features (Kozhevnikov and Titov, 2013; Pražák
and Konopík, 2017) or as structures for tree en-
coders (Fei et al., 2020b). These strategies re-
quire syntactic pre-processing by an additional
model and can suffer from error propagation. In
this work, we explore an alternative approach that
has yet to be explored in the cross-lingual setting:
adopting syntactic annotations as auxiliary supervi-
sion and performing multitask learning (Caruana,
1997) together with SRL (Swayamdipta et al., 2018;
Strubell et al., 2018; Cai and Lapata, 2019).

To evaluate the extent to which syntactic super-
vision can help facilitate cross-lingual transfer in
SRL, we perform a comprehensive empirical analy-
sis on three SRL benchmark datasets, covering ten
languages (in addition to English). We evaluate our
models in both zero-shot and semi-supervised sce-
narios, and on both dependency- and span-based
SRL. Highlights of our findings include:

• Training SRL models with syntactic supervision
is consistently helpful in low-resource SRL sce-
narios. (§3.2, §3.3, §3.4, §3.5)

• When lacking direct syntactic annotations for the
target language, available treebanks from related
languages can be used instead to improve SRL
performance (§3.4)

• For span-based SRL, a syntax-aware SRL de-
coder out-performs BIO-tagging when combined
with syntactic training. (§3.5)

Our implementation is available at https://
github.com/zzsfornlp/zmsp/.

2 Model

We adopt the typical encoder-decoder paradigm
for multi-task learning to perform syntactic depen-
dency parsing and SRL together in one model. A
shared encoder gives the hidden representations for
the input words and each task has its own decoder
that takes those shared representations as inputs
and predicts task-specific labels. We hypothesize
that syntactic training can provide helpful signals
for SRL through the shared encoder.

2.1 Encoder

We adopt multilingual pre-trained contextualized
models as our encoder, following previous work
reporting strong performance for SRL (Shi and Lin,
2019; He et al., 2019; Conia and Navigli, 2020)
and cross-lingual learning (Wu and Dredze, 2019;
Pires et al., 2019). For an input sequence of words

w1, . . . , wn, the encoder produces their contextual-
ized representations h1, . . . , hn. These pre-trained
models take sub-word tokens as input, but our SRL
and syntactic data have word-level annotations, so
we take the first sub-token of a word as its repre-
sentation. These representations are then provided
to task-specific decoders.

2.2 Syntax Decoder

For the syntactic (dependency) parsing task, we
ignore the single-head constraints in training and
view it as a pairwise labeling task into the space of
dependency labelsRd:

p(rd|wH , wM ) =
escorerd (hH ,hM )∑

r′∈Rd∪{ε} e
scorer′ (hH ,hM )

where p(rd|wH , wM ) denotes the probability that
the head wH has a dependency relation rd to the
modifier wM (or ε, which means no syntactic re-
lation). Following Dozat and Manning (2017),
we use biaffine modules for the scoring (scorerd),
which take the encoder representations and produce
relation scores. For training, we use cross-entropy
as the objective. Notice that although this type of
pairwise formulation is not widely used for syntac-
tic dependencies, it has been shown effective for
semantic dependency parsing (Dozat and Manning,
2018). Our main motivation1 to utilize it here is
to make the syntactic task more similar to SRL. In
our syntactic parsing evaluation, we find that this
method obtains similar results to the head-selection
method.

2.3 SRL Decoder

We focus on the end-to-end SRL task, which ex-
tracts both the predicates and their arguments (i.e.
we do not assume gold predicates unless otherwise
noted). For argument extraction, we explore two
categories of SRL formalism: dependency-based
SRL, which only requires labeling the syntactic
head word of an argument, and span-based SRL,
which requires labeling full argument spans.

2.3.1 Predicate Identification
Predicate identification is cast as a binary classifica-
tion task. We use a linear scorer over each word’s

1Another potential benefit is that certain parameters of the
output layers may be shareable between syntactic and SRL
decoders. Though in preliminary experiments we did not find
obvious improvements with a simple method of stacking an-
other task-specific classification layer and sharing the middle
biaffine layers, this could be an interesting direction to explore
with better parameter-sharing schemes.

https://github.com/zzsfornlp/zmsp/
https://github.com/zzsfornlp/zmsp/


6231

Experiments Target Languages SRL Style Same Frames? Compatible Roles? Main SRL Setting

EWT/UPB† (§3.2) de,fr,it,es,pt,fi Dependency-based Yes Yes Zero-shot
EWT/FiPB (§3.3) fi Dependency-based No Yes Semi-supervised

CoNLL-2009 (§3.4) cs,zh,es,ca Dependency-based No No Semi-supervised
OntoNotes (§3.5) zh,ar Span-based No Yes Semi-supervised

Table 1: An overview of our experiments. Here “Same Frames?” denotes whether different languages utilize the
same semantic frames, and “Compatible Roles?” denotes whether the roles labels are the same. (†UPB is created
semi-automatically, while other datasets use directly or are converted from manual annotations.)

encoded representations to judge whether it triggers
a semantic frame.

2.3.2 Dependency-based SRL
For dependency-based SRL, the problem can be
again formalized as a pairwise labeling task, and
we treat it in a similar way as in the syntax decoder:

p(rs|wP , wA) =
escorers (hP ,hA)∑

r′∈Rs∪{ε} e
scorer′ (hP ,hA)

Here p(rs|wP , wA) denotes the probability that a
predicate wP takes wA as an argument with the
semantic role rs (or ε, which denotes no semantic
relation). Again we use biaffine modules for scor-
ing and cross-entropy as the objective function.

2.3.3 Span-based SRL
Predicting argument spans is usually cast as a se-
quence labeling problem, with most recent neural
SRL models adopting a simple BIO-tagging de-
coder (Zhou and Xu, 2015; He et al., 2017; Tan
et al., 2018; Shi and Lin, 2019). In this work, we
further consider a two-step syntax-aware approach
(Zhang et al., 2021), where the first step identi-
fies the argument head and a second step decides
span boundaries given the head identified in the
first step. Here, the first step is exactly the task
of dependency-based SRL and we use the same
decoder. For the second step, we adopt the span se-
lection method from extractive question answering
(Wang and Jiang, 2016; Devlin et al., 2019) and
use two classifiers to decide the start and end of the
span given the head word.

2.4 Training Scheme
To deal with the multi-task and multilingual sce-
narios, we adopt a simple training scheme. For
each training step, we first sample a task (parsing
or SRL), and then a language (source or target).
Based on these, we sample a batch of instances
from the corresponding dataset and train the model
on the selected task. In our experiments, we apply
fixed sampling rates for the selection of tasks and

languages (1:2 for parsing vs. SRL and 1:1 for
source vs. target). In preliminary experiments, we
also tried varying sampling rates, but did not find
obvious improvements. Exploration of more so-
phisticated training schemes is left to future work.

3 Experimental Results

3.1 General Settings

We conduct comprehensive experiments with three
groups of datasets:2 1) English Web Treebank
(EWT) (Silveira et al., 2014), Universal Proposi-
tion Banks (UPB v1.0) (Akbik et al., 2015, 2016b)
and Finnish PropBank (FiPB) (Haverinen et al.,
2015); 2) CoNLL-2009 (Hajič et al., 2009); and
3) OntoNotes v5.0 (Hovy et al., 2006; Weischedel
et al., 2011). Table 1 gives an overview of the ex-
perimental settings for each dataset; please refer to
Appendix A for more details.

We take English as the source language3 and
transfer to other target languages. For experiments
on UPB and FiPB, we assemble the English SRL
dataset with EWT and its SRL annotations from
PropBank v3. For CoNLL-2009 and OntoNotes,
we utilize the corresponding English sets. For eval-
uation, we calculate labeled F1 score for arguments.
Conventionally, predicate senses are also evaluated
for dependency-based SRL. However, cross-lingual
transfer of sense disambiguation provides a non-
trivial challenge (Akbik et al., 2016a), since it is
lexicon-based and language-dependent. Moreover,
argument labeling can be more related with de-
pendency syntax, while sense disambiguation is
more on the semantic side and semantic-oriented
signals (like bilingual dictionaries or parallel cor-
pora) may be more directly effective to enhance
cross-lingual transfer. Therefore, in this work we

2We focus on PropBank-style SRL annotations since there
are more annotations available across different languages than
in other formalisms. The explored method can be extended to
other formalisms which we leave to future exploration.

3Please refer to Appendix C.3 for experiments taking other
languages as the source.
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Method DE FR IT ES PT FI AVG

NoSyn 57.85±0.34 51.41±0.18 55.79±0.42 50.08±0.16 52.53±0.40 43.78±0.57 51.91±0.17
EnSyn 57.78±0.43 51.64±0.16 54.90±0.68 50.15±0.36 52.65±0.22 44.41±0.76 51.92±0.31
TargetSyn 56.84±1.42 57.55±1.01 55.78±2.04 52.40±1.20 56.32±1.54 52.32±1.20 55.20±1.20
FullSyn 59.70±0.61 59.38±0.37 60.75±0.28 55.57±0.36 59.78±0.28 55.94±0.56 58.52±0.20

SEQ(MLM) 57.52±0.67 52.09±0.77 56.56±0.55 50.60±0.47 53.34±0.47 44.56±0.80 52.45±0.29
SEQ(Syn) 59.73±0.39 56.05±0.44 61.11±0.29 55.32±0.29 58.15±0.21 55.23±0.49 57.60±0.15

GCN(Gold) 63.78±0.50 56.44±0.40 61.96±0.73 56.77±0.36 59.79±0.28 55.29±0.33 59.01±0.30
GCN(Pred) 61.15±0.37 55.44±0.36 60.69±0.65 54.49±0.37 58.09±0.27 53.75±0.32 57.27±0.29

Table 2: UPB development Arg-F1(%) scores in the English-to-others zero-shot setting (with mBERT).

focus on arguments and do not perform or evaluate
sense disambiguation, following the conventions
of span-based SRL.

For syntactic resources, we use either UD tree-
banks or convert constituency trees to dependencies
using Stanford CoreNLP (Manning et al., 2014).
In most of our settings, we assume access to mul-
tilingual syntax annotations for both source and
target languages. We regard this as a practical set-
ting since UD treebanks are available for a wide
range of languages and syntactic annotations may
be easier to obtain than semantic ones.

We adopt pre-trained multilingual language mod-
els (multilingual BERT (Devlin et al., 2019) or
XLM-R (Conneau et al., 2020)) to initialize our
encoders and fine-tune the full models. We use the
Adam optimizer (Kingma and Ba, 2014) with an
initial learning rate of 2e-5. We train the models for
100K steps with a batch size around 1024 tokens
for each step. All models are trained and evaluated
on one GTX 1080 Ti GPU, and training one model
usually takes around half a day.

3.2 UPB

UPB annotates4 target languages with English
PropBank frames, which allows us to explore zero-
shot experiments without any target SRL training
resources. We follow the setting of (Fei et al.,
2020a): training the models with English SRL an-
notations (EWT) and directly applying them to the
target languages. In this experiment only we as-
sume predicates are given since UPB is limited to
verbal predicates, which leads to discrepancies be-
tween source and target predicate annotations. For
the syntactic resources, we take the corresponding
treebanks (upon which UPB is annotated) from UD
v1.4 (Nivre et al., 2016a) and simply include them

4Notice that UPB is created in a semi-automatic way with-
out fully manually validated test sets, but it provides a test-bed
for evaluating zero-shot cross-lingual transfer.

as additional training data for syntactic supervision.

3.2.1 Comparisons
We first compare several strategies on the usage
of syntax, and results on the development set are
shown in Table 2. Here we utilize multilingual
BERT (mBERT) for the basic encoder. The table
is split into three groups:

• Syn varies which syntactic resources are used.
The four rows denote no syntax (NoSyn), only
source (English; EnSyn), only targets (other
six languages; TargetSyn) and full syntactic re-
sources (English plus other six; FullSyn). Here,
only adding source syntax is not helpful, but tar-
get syntax information is generally beneficial.
Furthermore, combining both source and target
syntax leads to the best results.

• SEQ explores a sequential two-stage fine-tuning
scheme (Phang et al., 2018; Wang et al., 2019):
first training the model with an auxiliary task
(syntax or others) and then with the target task
(SRL). Using syntactic parsing as the intermedi-
ate task can bring clear improvements, but it is
slightly worse than the MTL scheme. Here, we
also explore a masked language model (MLM)
intermediate objective (Devlin et al., 2019) as a
baseline, using the raw texts of the UD treebanks.
Though it can slightly improve the results, the
gains are much smaller than those due to syntax.

• GCN uses syntax as inputs. We stack a graph
convolutional network (GCN) (Kipf and Welling,
2017) between the encoder and decoders to en-
code input dependency trees. Specifically, we
adopt the architecture of (Marcheggiani and
Titov, 2017). Using gold trees in this setting
out-performs the MTL strategy. However, when
using predicted syntax,5 error propagation re-

5We obtain predicted syntax trees with our own BERT-
based parsers, which achieve strong results (dev-LAS%):
89.6(de), 91.6(fr), 93.7(it), 89.7(es), 92.1(pt) and 93.2(fi).
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EnSRL Syntax 0.1K 1K 10K
Dev Test Dev Test Dev Test

No No 43.25±0.50 44.76±0.82 69.02±0.32 70.29±0.54 82.51±0.40 82.91±0.35
No Yes 58.75±0.49 58.32±0.80 73.91±0.33 74.06±0.30 82.71±0.13 83.24±0.17
Yes No 60.76±0.56 60.42±0.89 73.23±0.37 73.67±0.68 82.92±0.30 83.35±0.27
Yes Yes 68.36±0.17 67.22±0.39 75.98±0.14 76.13±0.18 82.73±0.18 83.34±0.22

Table 3: FiPB Arg-F1(%) scores in English/Finnish settings (with different numbers of Finnish SRL sentences).
“EnSRL” indicates whether using English SRL, and “Syntax” denotes whether using syntactic annotations.

Method DE FR IT ES PT FI

mBERT/NoSyn 55.0 49.9 53.1 49.7 51.0 44.7
mBERT/FullSyn 57.5 56.8 58.3 56.2 58.9 54.4

XLM-R/NoSyn 57.5 50.8 54.3 51.5 53.1 51.8
XLM-R/FullSyn 60.2 56.6 60.6 57.3 59.5 59.9

Fei et al. (2020a) 65.0 64.8 58.7 62.5 56.0 54.5

Table 4: UPB test Arg-F1(%) scores in the English-to-
others zero-shot setting (averaged over five runs).

duces the observed benefit. The MTL scheme is
an attractive alternative strategy considering its
competitive performance and model simplicity.

3.2.2 Main Results
The test results are listed in Table 4. Similar to the
trends in the development sets, including syntactic
signals brings clear improvements, especially for
the more distant Finnish language. Using XLM-R,
which is pre-trained on more data than mBERT, is
also helpful,6 upon which syntax can still bring
further benefits. We also compare with the re-
sults from (Fei et al., 2020a), which translates
and projects source SRL instances to target lan-
guages for training. The translation-based method
performs strongly for German, French and Span-
ish. Considering that German and French are com-
monly used languages in machine translation re-
search, availability of high-quality translation sys-
tems may be one of the contributing factors. Our
syntax-enhanced models are generally competitive
for other languages. It would be interesting to fur-
ther explore the combination of translation and syn-
tax in future work.

3.2.3 Varying Treebank Sizes
We further vary the number of available syntax
trees for the auxiliary parsing task, for which Fig-
ure 1 shows the results. We randomly sample a
fixed number of trees for each of the languages

6Due to better performance, XLM-R is used in the remain-
ing experiments.
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Figure 1: Averaged UPB development results versus
number of trees (in log scale) used per language.

(both source and target) and again include them in
training. The results indicate that we do not need
the full treebanks to obtain good results. Especially
with XLM-R, 1K trees from each language can
already lead to gains comparable to the 10K case.

3.3 FiPB7

Similar to the experiments on UPB, we take En-
glish SRL annotations from EWT as the source.
FiPB adopts (almost) the same argument role set8

as the English ones and we use a shared SRL de-
coder for both languages. In preliminary experi-
ments, we find that this sharing strategy performs
better than using separate, language-specific de-
coders. For syntax, we again take corresponding
English and Finnish treebanks from UD v1.4.

3.3.1 Results
The main results on FiPB are listed in Table 3. In
the lowest-resource scenario (0.1K Finnish SRL
sentences), both English SRL and syntax are quite
helpful, and combining them leads to further im-
provements. The trend is similar if given 1K target
SRL annotations, but the gaps decrease. Finally,

7Starting from this experiment, we focus on the semi-
supervised setting where varying amounts of target SRL anno-
tations are used during training.

8Except for two Finnish specific roles (ArgM-CSQ and
ArgM-PRT) which only account for around 2% of labels.
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+0.20 +0.27 +0.15 +0.32

Figure 2: Improvements (F1 scores on FiPB develop-
ment set) over no-syntax baselines (shown in parenthe-
ses at the y-axis) with various training sizes.

when given enough target training instances as in
the 10K scenario, the gains due to extra resources
(either English SRL or syntax) are negligible. In
this case, the model may have already learned most
of the patterns from rich target SRL annotations.

3.3.2 Varying Training Sizes
We further vary both syntax and target-SRL train-
ing sizes, and the influence on model performance
is shown in Figure 2. Here, all the models are
trained using all English SRL and varying amounts
of Finnish SRL sentences. The numbers in paren-
theses at y-axis show the F1 scores of baseline
models without syntax. As expected, syntax is
more helpful when we have less target-SRL and
more syntactic resources (towards the right corner
in the figure). When we have more target SRL an-
notations, syntactic resources become less helpful.
Nevertheless, in low-resource scenarios, even small
quantities of syntactic annotation can bring clear
improvements.

3.3.3 Analysis
We further perform analysis on the development
results in the 1K case, as shown in Table 5. In the
first group of role label breakdowns, adding syn-
tax particularly helps core arguments while adding
English SRL helps more on non-core arguments.
Finally, combining both leads to the best results
overall. In the second group, we break down argu-
ments by their syntactic distance to the predicates.
The results show that syntactic supervision is still
beneficial when the predicate and the argument
are two edges away (d=2). However, when syn-
tax distance is larger, direct syntactic supervision
becomes less helpful.

Base +Syntax +EnSRL +Both

ARG0 (12%) 75.72 81.08 80.11 82.94
ARG1 (36%) 77.21 83.26 81.29 84.24
ARG2 (14%) 65.85 70.41 69.93 71.84
ARGM (35%) 60.76 64.73 65.46 68.33

d=1 (84%) 75.62 78.45 78.05 80.35
d=2 (15%) 58.41 63.26 61.31 64.22
d>2 (1%) 24.07 25.84 28.61 25.39

nmod←−−− (23%) 61.01 62.95 64.69 66.80
nsubj←−− (14%) 85.72 88.15 85.35 87.89
dobj←−− (13%) 90.10 93.37 91.20 93.25

advmod←−−−− (9%) 64.40 65.17 68.18 69.04
acl−→ (4%) 83.44 85.17 86.20 87.13
cop−−→ (4%) 91.63 97.79 94.24 96.63

xcomp←−−− (3%) 70.83 75.21 73.01 77.29
aux←−− (3%) 95.21 97.53 95.67 97.97

nsubj←−− cop−−→ (3%) 95.75 98.37 94.94 98.60
advcl←−− (3%) 51.80 57.83 68.64 70.31

Table 5: Analysis (F1% breakdown) on the FiPB devel-
opment set (1K setting). The first block denotes break-
downs on argument roles, the second denotes syntactic
distance between predicate and argument words, and
the third denotes the syntactic path between them. The
numbers in parentheses denote percentages. Bold and
underlined numbers indicate the best and second-best
results respectively.

In the third group, we look at the labeled syntac-
tic paths between the arguments and the predicates.
For example, “ nmod←−−−” denotes that the argument
is a syntactic modifier of the predicate and the de-
pendency relation is “nmod”, while “ acl−→” denotes
the argument is the syntactic head of the predicate
with the dependency relation of “acl”. We show
the results on top-ten frequent paths, which cover
around 80% of all the arguments. According to
the breakdown results, the syntactic supervision
helps more on the edges of subject, direct object
and some functional relations (like copula), while
English SRL is more beneficial on the more seman-
tic links, such as adverbial words and clauses. This
agrees with our analysis on the argument roles: the
syntax helps more on the core arguments, which
are usually directly connected as subjects or ob-
jects, while English SRL helps more on “ArgM”s,
which tends to be adverbial.

3.4 CoNLL-2009

The original SRL annotations of CoNLL-2009 are
based on language-specific syntax, causing the
argument head words to disagree with UD con-
ventions. We thus follow Pražák and Konopík
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Figure 3: Test results of CoNLL-2009 semi-supervised experiments. Here the x-axis denotes the number (in log
scale) of target-SRL annotated sentences available for training. The results are averaged over three runs, and the
shaded areas indicate the ranges of standard deviations.

(2017) and convert9 them to UD-based argument
heads. We take five languages from CoNLL-2009
where we can obtain corresponding UD trees for
the source sentences. For English and Chinese, we
use Stanford CoreNLP to convert the constituency
trees to dependencies, while for Czech, Spanish
and Catalan, we assign dependency trees from
corresponding UD v2.7 (Zeman et al., 2020) tree-
banks.10 Moreover, since role labels are not com-
patible across languages in CoNLL-2009, we uti-
lize separate SRL decoders for source and target
languages. In preliminary experiments, we tried
several parameter-sharing strategies but did not find
obvious improvements. Explorations on more com-
plex sharing and regularization methods (Jindal
et al., 2020) are left to future work.

3.4.1 Results
We again take English as the resource-rich source
language and the other four as lower-resource tar-
gets. We run experiments separately for each target
language, which means all experiments are bilin-
gual (with the exception of XLM-R pretraining).
For syntax, since different languages have differ-
ent treebank sizes, we randomly sample 10K trees
for both source and target languages. The results

9Please refer to Appendix B for the conversion details.
10PDT for Czech and AnCora for Spanish and Catalan.

Syntax Spanish Catalan
LAS% ArgF1% LAS% ArgF1%

NoSyntax - 54.6±1.2 - 54.0±0.9

Spanish 86.9±0.1 63.6±0.7 67.9±7.1 59.0±0.9
Catalan 77.0±1.0 61.0±0.9 85.7±0.4 63.9±0.2

French 64.2±9.1 57.9±0.8 58.7±2.0 55.4±0.8
Italian 66.1±3.6 58.1±0.5 56.4±6.4 57.0±0.9

Portuguese 69.5±3.0 57.6±1.7 58.6±5.7 56.8±0.8

Table 6: Development results of Spanish and Cata-
lan CoNLL-2009 semi-supervised experiments (0.1K
target-SRL) using syntax from different languages.

are shown in Figure 3. The patterns are consis-
tent among all languages and similar to previous
experiments on FiPB: syntax is clearly helpful in
low-resource scenarios, but as we have access to
more target SRL annotations, the gaps decrease
and finally diminish in the high-resource scenarios.

3.4.2 Using Other Treebanks
We further explore the scenarios where we do not
directly have syntactic annotations for the target
language. Considering that the parsing task can
also benefit from cross-lingual transfer, we can
utilize treebanks from nearby languages for syn-
tactic supervision. We take Spanish and Catalan
(the 0.1K target SRL case) for this analysis and
the results are shown in Table 6. We further ex-
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Method Syntax 0.1K 1K 10K
Dev Test Dev Test Dev Test

Chinese

BIO No 50.59±0.38 49.67±0.28 62.81±0.15 62.58±0.24 70.04±0.18 70.37±0.08
TwoStep No 49.26±0.44 48.53±0.67 63.08±0.05 63.22±0.12 70.43±0.12 70.80±0.12
BIO Yes 53.47±0.24 52.81±0.20 64.55±0.21 64.49±0.11 70.26±0.18 70.58±0.22
TwoStep Yes 56.16±0.14 55.52±0.23 65.36±0.22 65.65±0.15 70.66±0.13 71.04±0.12

Arabic

BIO No 46.14±0.73 44.87±1.10 59.72±0.51 58.80±0.26 69.67±0.12 67.87±0.42
TwoStep No 46.33±0.26 45.28±0.48 59.91±0.39 59.53±0.62 70.17±0.25 68.46±0.30
BIO Yes 49.23±0.27 49.13±0.31 61.36±0.23 60.89±0.21 70.02±0.25 67.92±0.22
TwoStep Yes 51.68±0.33 51.50±0.50 61.81±0.45 61.70±0.61 70.19±0.16 68.28±0.31

Table 7: OntoNotes Arg-F1(%) scores in English-sourced semi-supervised settings (with different numbers of
target SRL training sentences). “BIO” indicates using a BIO-based sequence labeling decoder and “TwoStep”
denotes the syntactically-aware decoding method which first extracts head words then decides span boundaries.

plore three Romance languages: French, Italian
and Portuguese. As expected, directly using target-
language syntax obtains the best results. Spanish
and Catalan, which are closely related languages,
benefit each other the most. Nevertheless, com-
pared with the NoSyntax baseline, syntactic infor-
mation from all these languages are helpful. This
result is of practical interest when transferring to
a truly low-resource language where syntactic an-
notations may also be limited. Finding a related
language with rich syntactic resources for auxil-
iary training signals is a promising way to improve
performance.

3.5 OntoNotes

Finally, we turn to span-based SRL where the ex-
traction of full argument spans is required. Utiliz-
ing OntoNotes annotations, we still take English
as the source and Chinese or Arabic as the target.
Similar to FiPB, the argument roles are compatible
with PropBank-style English roles and we use a
shared SRL decoder for both the source and target
languages. We adopt data splits from the CoNLL12
shared task (Pradhan et al., 2012). Similar to those
of CoNLL-2009, for English and Chinese, we con-
vert constituencies to dependencies with Stanford
CoreNLP. For Arabic, we assign dependency trees
from Arabic-NYUAD (Taji et al., 2017) treebank
of UD v2.7.

3.5.1 Results
In this experiment, we specifically compare two
SRL decoders. The first one casts the task as a
BIO-based sequence labeling problem. We fur-
ther add a standard linear-chain conditional ran-
dom field (CRF) (Lafferty et al., 2001), which we

found consistently helpful in preliminary experi-
ments. The other one is the two-step decoder de-
scribed in §2.3. As shown in Table 7, the trends are
similar for both Chinese and Arabic. With regard
to auxiliary syntactic supervision, we find similar
trends to previous experiments: in low-resource
scenarios, syntactic supervision is beneficial for
both decoders, but as the availability of target SRL
resources increases, the gaps become smaller un-
til diminished. The more interesting comparisons
are between the two decoders: when not using
syntactic supervision, their performances are com-
parable; but when trained with auxiliary signals
from syntax, the syntax-aware two-step decoder
performs better than the BIO tagger, especially in
low-resource cases. Please refer to Appendix C.4
for more detailed error analysis.

3.5.2 Syntax with Genre Mismatches

Since English and Chinese OntoNotes also anno-
tate six different genres of text, we further explore
scenarios where the syntax and SRL datasets have
genre mismatches. We still take all English in-
stances for multilingual training, but split the Chi-
nese corpus according to genres, including broad-
cast conversation (bc), broadcast news (bn), maga-
zine (mz), newswire (nw), telephone conversation
(tc) and web (wb). We focus on the low-resource
scenario where 0.1K Chinese SRL sentences on
the target genre are available. The development
results are shown in Figure 4. When the genre of
syntactic supervision matches the target SRL, the
improvements are the largest. Nevertheless, even
in the case of genre mismatches, syntax can still
be beneficial, especially within similar genres. We
further find a positive correlation (Pearson corre-
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+4.21
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+3.28

+5.74

Figure 4: Improvements (F1 scores on Chinese
OntoNotes development set) over no-syntax baselines
(shown in parentheses at the y-axis) with syntactic su-
pervision of different genres.

lation is 0.73; Spearman is 0.78) between these
improvements and genre similarities calculated by
the centroids of mBERT representations (Aharoni
and Goldberg, 2020). This may provide a mecha-
nism for selecting the most beneficial syntactically
annotated instances.

4 Related Work

4.1 Cross-lingual SRL

Recently there have been increasing interests in
cross-lingual SRL, where SRL annotations from
high-resource languages are utilized to help low-
resource ones. One straightforward method is
data transfer, using either annotation projection
(Yarowsky and Ngai, 2001) or translation (Tiede-
mann and Agić, 2016) to create SRL instances
for target languages (Padó and Lapata, 2009; Ak-
bik et al., 2015; Aminian et al., 2019; Fei et al.,
2020a). A related idea is to utilize parallel cor-
pus to introduce cross-lingual signals (Daza and
Frank, 2019, 2020; Cai and Lapata, 2020). An-
other method is model transfer which we focus in
this work: directly applying the model trained with
source languages to target ones (Kozhevnikov and
Titov, 2013, 2014; Fei et al., 2020b). This method
requires shared representations for different lan-
guages, which recent multilingual pre-trained en-
coders (Devlin et al., 2019; Conneau et al., 2020)
are good at (Wu and Dredze, 2019; Pires et al.,
2019). We take these multilingual encoders as
the backbone of our models, since they have been
shown effective for SRL across multiple languages
(He et al., 2019; Conia and Navigli, 2020). In

the semi-supervised settings where some target
SRL annotations are available, the models are ac-
tually trained in a polyglot way (Mulcaire et al.,
2018, 2019). Our work differs in the focus on low-
resource scenarios.

Cross-lingual SRL still remains challenging due
to data scarcity and annotation heterogeneity. To
create multilingual SRL data, Akbik et al. (2015)
utilize parallel corpus to create target SRL annota-
tions with filtered projection, and Daza and Frank
(2020) create the X-SRL dataset through translation
and projection with multilingual contextualized rep-
resentations, offering a multilingual parallel SRL
corpus. To deal with heterogeneous SRL formal-
ism, Jindal et al. (2020) adopt an argument regular-
izer to encourage cross-lingual argument matching,
and Conia et al. (2021) introduce a unified model,
which may implicitly learn to align heterogeneous
linguistic resources.

4.2 Syntax and SRL
Even with recent developments in neural network
modeling, with which syntax-agnostic models have
been shown to match linguistically-informed coun-
terparts (Marcheggiani et al., 2017; Cai et al.,
2018), syntax has also been found helpful for SRL
(Marcheggiani and Titov, 2017; Swayamdipta et al.,
2018; Strubell et al., 2018; He et al., 2018; Cai and
Lapata, 2019; Shi et al., 2020; Fei et al., 2021).
In this work, we further explore the helpfulness
of syntax for cross-lingual SRL. While previous
work on this topic mainly uses syntax as input
features (Kozhevnikov and Titov, 2013; Pražák
and Konopík, 2017; Fei et al., 2020b), we adopt
a simpler strategy utilizing it as an auxiliary train-
ing signal via multitask learning (Caruana, 1997;
Ruder, 2017), which has also been found beneficial
for monolingual SRL (Swayamdipta et al., 2018;
Strubell et al., 2018; Cai and Lapata, 2019).

5 Conclusion

In this work, we provide a comprehensive empiri-
cal exploration of the helpfulness of syntactic su-
pervision for cross-lingual SRL. With extensive
evaluations across a variety of datasets and settings,
we show that auxiliary syntactic signals are gen-
erally beneficial, especially in low-resource SRL
cases. We hope that this work can shed some light
on the relations between syntax and SRL in the
cross-lingual scenarios.
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Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2009): Shared
Task, pages 1–18, Boulder, Colorado. Association
for Computational Linguistics.

Katri Haverinen, Jenna Kanerva, Samuel Kohonen,
Anna Missilä, Stina Ojala, Timo Viljanen, Veronika
Laippala, and Filip Ginter. 2015. The finnish propo-
sition bank. Language Resources and Evaluation,
49(4):907–926.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
473–483, Vancouver, Canada. Association for Com-
putational Linguistics.

Shexia He, Zuchao Li, and Hai Zhao. 2019. Syntax-
aware multilingual semantic role labeling. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5350–5359,
Hong Kong, China. Association for Computational
Linguistics.

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao Bai.
2018. Syntax for semantic role labeling, to be, or not
to be. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2061–2071, Melbourne,
Australia. Association for Computational Linguis-
tics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57–60,
New York City, USA. Association for Computa-
tional Linguistics.

Ishan Jindal, Yunyao Li, Siddhartha Brahma, and
Huaiyu Zhu. 2020. CLAR: A cross-lingual argu-
ment regularizer for semantic role labeling. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 3113–3125, Online. As-
sociation for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Mikhail Kozhevnikov and Ivan Titov. 2013. Cross-
lingual transfer of semantic role labeling models.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1190–1200, Sofia, Bulgaria.
Association for Computational Linguistics.

Mikhail Kozhevnikov and Ivan Titov. 2014. Cross-
lingual model transfer using feature representation
projection. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 579–585, Balti-
more, Maryland. Association for Computational Lin-
guistics.

John D Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282–289.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.

https://doi.org/10.18653/v1/2021.findings-acl.49
https://doi.org/10.18653/v1/2021.findings-acl.49
https://doi.org/10.18653/v1/2021.findings-acl.49
https://doi.org/10.18653/v1/2020.acl-main.627
https://doi.org/10.18653/v1/2020.acl-main.627
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1162/089120102760275983
https://doi.org/10.3115/1073083.1073124
https://doi.org/10.3115/1073083.1073124
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/D19-1538
https://doi.org/10.18653/v1/D19-1538
https://doi.org/10.18653/v1/P18-1192
https://doi.org/10.18653/v1/P18-1192
https://www.aclweb.org/anthology/N06-2015
https://www.aclweb.org/anthology/N06-2015
https://doi.org/10.18653/v1/2020.findings-emnlp.279
https://doi.org/10.18653/v1/2020.findings-emnlp.279
https://www.aclweb.org/anthology/P13-1117
https://www.aclweb.org/anthology/P13-1117
https://doi.org/10.3115/v1/P14-2095
https://doi.org/10.3115/v1/P14-2095
https://doi.org/10.3115/v1/P14-2095


6240

2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
In Proceedings of the 21st Conference on Compu-
tational Natural Language Learning (CoNLL 2017),
pages 411–420, Vancouver, Canada. Association for
Computational Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Phoebe Mulcaire, Jungo Kasai, and Noah A. Smith.
2019. Polyglot contextual representations improve
crosslingual transfer. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3912–3918, Minneapolis, Minnesota.
Association for Computational Linguistics.

Phoebe Mulcaire, Swabha Swayamdipta, and Noah A.
Smith. 2018. Polyglot semantic role labeling. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 667–672, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Joakim Nivre, Željko Agić, Lars Ahrenberg, and
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Appendices

A Detailed Experiment Settings

A.1 Datasets
Table 8 presents the statistics of the datasets that
we utilize. The details of each (group of) dataset
are described in the following.

EWT/UPB/FiPB is the group where we assem-
ble the English SRL dataset with English Web Tree-
bank11 (EWT) and PropBank v312, and utilize it as
the source annotations. We take Universal Propo-
sition Banks13 (UPB v1.0) (Akbik et al., 2015,
2016b) and Finnish PropBank14 (FiPB) (Haveri-
nen et al., 2015) for the targets. UPB annotates
target langauges with English PropBank frames
and role labels. This allows zero-shot cross-lingual
learning, which is our main setting for experiments
with UPB. In the UPB experiment only we assume
predicates are given since there are discrepancies
between source and target predicate annotations.
In experiments with FiPB (as well as CoNLL-2009
and OntoNotes), we focus on semi-supervised mul-
tilingual scenarios with end-to-end models that per-
form both predicate identification and argument
labeling. FiPB is a collection of semantic frames
built on top of the Turku Dependency Treebank
(TDT). The frames are Finnish specific, but the
role labels are (almost) the same as the PropBank
ones (Arg0, Arg1, ..., ArgM-*). FiPB defines only
two additional ArgMs: CSQ (consequence) and
PRT (phrasal marker).

CoNLL-2009 shared task15 (Hajič et al., 2009)
provides SRL resources for a variety of lan-
guages16,17. Since they are built from different
language-specific datasets, there are no consis-
tent predicate and argument role labels across
all languages (though there are shared ones be-
tween certain language pairs, like English-Chinese
and Spanish-Catalan). Moreover, the dependency-

11https://catalog.ldc.upenn.edu/
LDC2012T13

12https://github.com/propbank/
propbank-release

13https://github.com/System-T/
UniversalPropositions

14https://github.com/TurkuNLP/Finnish_
PropBank/tree/data

15https://ufal.mff.cuni.cz/
conll2009-st/

16https://catalog.ldc.upenn.edu/
LDC2012T03

17https://catalog.ldc.upenn.edu/
LDC2012T04

based SRL annotations are based on language-
specific dependencies. To further encourage shared
structures, we convert them to the ones based on
UD. Details of the conversion are described in the
next section.

OntoNotes annotates a large corpus18 in three
languages (English, Chinese and Arabic) with var-
ious layers of structural information. We take the
SRL annotations from it for our experiments. For
English, we utilize the data19 from (Pradhan et al.,
2013), while for Chinese and Arabic, we directly
use those provided by CoNLL1220. For all the
languages, we also follow the data splittings of
CoNLL12. Similar to FiPB, the SRL annotations
in OntoNotes utilize language-specific frames but
compatible argument role sets.

A.2 Hyper-parameters
Without specifications, we use pre-trained multi-
lingual language models (mBERT or XLM-R) to
initialize the encoders and fine-tune the full mod-
els in our experiments. The parameter numbers
of the full models are 185M and 285M, for those
with mBERT and XLM-R respectively. For the
hyper-parameter settings, we mainly follow com-
mon practice, and only slightly tune them in pre-
liminary experiments21. We apply dropout rates
of 0.1 to the encoder and 0.2 to the decoders. We
use Adam as the optimizer with an initial learning
rate of 2e-5. The learning rate is linearly decayed
towards 2e-6 through the training process. The
models are trained for 100K steps, where each step
contains a batch of around 1024 tokens. We eval-
uate the model on the development set every 1K
steps and the best model is selected by validation
results. For zero-shot experiments, we simply val-
idate with the source development set. For semi-
supervised experiments, we use the target language,
but down-sample the original development set to
10% of the target training size. All the training
and evaluations are performed on one GTX 1080
Ti GPU. Training one model takes around half a

18https://catalog.ldc.upenn.edu/
LDC2013T19

19https://cemantix.org/data/ontonotes.
html

20https://conll.cemantix.org/2012/data.
html

21The ranges are: learning rate ∈ {1e-5, 2e-5, 4e-5},
dropout ∈ {0.1, 0.2}, batch-size ∈ {512, 1024, 2048}, steps
∈ {100K, 150K, 200K}. We do not try all combinations but
decide by random sampling as well as heuristics, due to com-
putation limitations. We find that the hyper-parameters do not
influence the results much if set in reasonable ranges.

https://catalog.ldc.upenn.edu/LDC2012T13
https://catalog.ldc.upenn.edu/LDC2012T13
https://github.com/propbank/propbank-release
https://github.com/propbank/propbank-release
https://github.com/System-T/UniversalPropositions
https://github.com/System-T/UniversalPropositions
https://github.com/TurkuNLP/Finnish_PropBank/tree/data
https://github.com/TurkuNLP/Finnish_PropBank/tree/data
https://ufal.mff.cuni.cz/conll2009-st/
https://ufal.mff.cuni.cz/conll2009-st/
https://catalog.ldc.upenn.edu/LDC2012T03
https://catalog.ldc.upenn.edu/LDC2012T03
https://catalog.ldc.upenn.edu/LDC2012T04
https://catalog.ldc.upenn.edu/LDC2012T04
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://cemantix.org/data/ontonotes.html
https://cemantix.org/data/ontonotes.html
https://conll.cemantix.org/2012/data.html
https://conll.cemantix.org/2012/data.html
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Train Development Test

Sent. Pred. Arg. Sent. Pred. Arg. Sent. Pred. Arg.

EWT

English (EN) 12.5K 40.5K 122.0K 2.0K 5.0K 14.6K 2.1K 4.8K 14.1K

UPB

German (DE) 14.1K 21.3K 52.2K 0.8K 1.2K 2.8K 1.0K 1.3K 3.3K
French (FR) 14.6K 29.3K 39.0K 1.6K 3.0K 4.1K 0.3K 0.6K 0.9K
Italian (IT) 12.8K 25.6K 52.7K 0.5K 1.0K 2.1K 0.5K 1.0K 2.2K
Spanish (ES) 28.5K 73.3K 149.6K 3.2K 8.3K 16.9K 2.0K 5.4K 11.4K
Portuguese (PT) 7.5K 16.8K 33.1K 0.9K 2.1K 4.2K 0.9K 2.1K 4.2K
Finnish (FI) 12.2K 25.6K 54.3K 0.7K 1.5K 3.1K 0.6K 1.5K 3.1K

FiPB

Finnish (FI) 12.2K 27.4K 72.1K 0.7K 1.6K 4.1K 0.6K 1.5K 4.1K

CoNLL-2009

English (EN) 39.3K 179.0K 393.7K 1.3K 6.4K 13.9K 2.4K 10.5K 23.3K
Czech (CS) 38.7K 414.2K 365.9K 5.2K 55.5K 49.2K 4.2K 44.6K 39.3K
Chinese (ZH) 22.3K 102.8K 231.9K 1.8K 8.1K 18.6K 2.6K 12.3K 27.7K
Spanish (ES) 14.3K 43.8K 99.1K 1.7K 5.1K 11.6K 1.7K 5.2K 11.8K
Catalan (CA) 13.2K 37.4K 84.4K 1.7K 5.1K 11.5K 1.9K 5.0K 11.3K

OntoNotes

English (EN) 75.2K 188.9K 622.5K 9.6K 23.9K 78.1K 9.5K 24.5K 80.2K
Chinese (ZH) 36.5K 117.1K 365.3K 6.1K 16.6K 51.0K 4.5K 15.0K 46.6K
Arabic (AR) 7.4K 20.0K 65.8K 0.9K 2.5K 8.0K 1.0K 2.3K 7.6K

Table 8: Statistics of the datasets. The entries denote numbers of sentences (Sent.), predicates (Pred.) and argu-
ments (Arg.).

day while decoding is fast with several hundreds
of sentences processed per second. All the results
reported in this work are averaged over three (for
most ablation studies) or five (for most test results)
runs. The evaluation of arguments follows the stan-
dard evaluation script of srl-eval.pl 22.

B UD-based Conversion for CoNLL-2009

The SRL annotations of argument heads in CoNLL-
2009 are based on Language-Specific Dependency
(LSD) trees rather than Universal Dependencies
(UD). To convert argument heads between different
syntactic formalism, we adopt a simple path-based
method. Assuming that for a predicate p, it has an
argument whose head is a according to the orig-
inal tree, the conversion aims to find a new head
according to the new tree:

1. In the new tree, find the lowest common an-
cestor c of the predicate p and the original
argument head a.

2. Go down from c to a in the new tree, locate
the first word (except for the predicate p) that

22https://www.cs.upc.edu/~srlconll/soft.
html

is a descendant of a (or a itself) in the original
tree and make it the new head.

We will illustrate this procedure with the example
in Figure 5. Here, the predicate is the verb “ran”
and it has an “ArgM-LOC” argument, whose full
span is “in the park”. According to the language-
specific dependency tree, the word “in” is the direct
child of the verb and thus becomes the argument
head. Nevertheless, according to UD, the content
word “park” is the direct child and we want to
convert the argument head to it. Firstly, we find the
lowest common ancestor of “ran” (the predicate)
and “in” (the old argument head) in the UD tree,
which is “ran” itself. Then we go down from this
ancestor (“ran”) towards the old argument head
(“in”): the visiting path should be ran→ park →
in. We find that “park” is the first word that is a
descendant of “in” in the original tree and therefore
“park” is assigned as the new argument head.

In this work, we take five languages from
CoNLL-2009: English, Czech, Chinese, Spanish,
Catalan, for which we can obtain or convert to
gold UD trees23. Table 9 gives some results on the

23For Chinese and English, we use CoreNLP to convert
from constituencies to UD. For Czech, we use UD_PDT, while

https://www.cs.upc.edu/~srlconll/soft.html
https://www.cs.upc.edu/~srlconll/soft.html


6244

He     ran       in      the      park    .

LOC

LSD

CASE

UD

PMOD

He     ran       in      the      park    .

OBL

P      ArgM-LOC

P                                        ArgM-LOC

Figure 5: An example for the conversion between
language-specific dependencies (LSD) and universal
dependencies (UD). For brevity, we only show the im-
portant dependency edges. Here, “ran” is the predicate
(P) and the argument head is “in” with LSD and “park”
with UD. The conversion between these two can be
done by comparing the syntactic paths and descendants
with the old and new trees.

Language UAS% Arg-Agree% Roundtrip-Agree%

English 50.88 72.27 99.05
Czech* 46.36 97.00 73.38
Chinese 60.02 81.94 99.87
Spanish 58.01 69.92 100.00
Catalan 58.99 72.61 100.00

Table 9: Agreements between Language-Specific De-
pendencies (LSD) and Universal Dependencies (UD).
Here, “UAS” denotes the unlabeled attachment scores
when comparing LSD and UD trees, “Arg-Agree” de-
notes the agreement rates on argument heads between
original argument heads and those converted to UD,
while “Roundtrip-Agree” denotes the agreement rates
with round-trip styled conversions: first converting
from LSD to UD and then converting back to LSD.
(* Czech is a special case where the original argument
heads seem to mostly agree with UD.)

agreements between different syntactic formalism.
Although on overall syntactic attachments, LSD
disagrees much with UD (the highest UAS is 60%
for Chinese), the argument head agreement rates
are much higher (the lowest argument agreement
rate is around 70% for Spanish). If adopting our
converting method, a round-trip styled conversion
(converting from LSD to UD and then back to LSD)
can almost recover all the arguments, showing the
effectiveness of our method. Notice that Czech is
an exception where the original argument heads
seem to already mostly follow the UD trees.

We further perform SRL experiments with dif-
ferent syntactic formalism. The settings are the

for Spanish and Catalan, we use UD_AnCora.

Syntax SRL Czech Chinese Spanish Catalan

No Orig. 77.51 72.05 77.42 77.57
No UD - 71.79 76.83 76.88
UD Orig. 78.48 74.75 78.22 78.89
UD UD - 75.02 78.47 78.64
LSD Orig. 78.94 75.11 79.52 80.02
LSD UD - 74.45 78.13 78.78

Table 10: CoNLL-2009 development Arg-F1(%)
scores (on original argument heads) with different train-
ing resources. For syntax, we have the options of “No”
(no auxiliary syntactic supervision), “LSD” (original
language-specific dependencies) and “UD” (universal
dependencies). For SRL, we have the options of “Orig.”
(original argument heads) and “UD” (argument heads
converted according to UD trees). If training with UD-
SRL, we adopt a post-processing step and convert the
argument heads back to original ones with LSD for fair
comparisons. Notice that for Czech, we do not have
results for UD-SRL since there are no easy ways to
convert arguments back to the original ones (which dis-
agree much with LSD and slightly disagree with UD).

same as our main experiments on CoNLL-2009.
Here, we take full English SRL and 1K target SRL
sentences. Table 10 lists the target development
SRL results. Similar to the results in our main ex-
periments, syntactic supervision is beneficial for all
languages, and this holds true for both the original
language-specific dependencies and the universal
dependencies. Interestingly, using original syn-
tax trees and argument heads performs the best,
especially for Spanish and Catalan. Through er-
ror analysis, we find that for these two languages,
the “LSD+Orig.” model is much better than the
“UD+UD” model mainly on arguments whose orig-
inal head word is preposition (5 F1 points better
for Catalan and 3 points better for Spanish). The
reason might be that prepositional word types ap-
pear more frequently than content words like nouns
and proper nouns, and might be easier to extract if
adopting LSD and using prepositions as argument
heads, especially at low-resource scenarios.

Though UD seems slightly less effective than
the original LSD in this experiment, we still utilize
UD-based ones (both syntax and SRL) in our main
experiments, considering the potential to extend
to more languages. It would also be interesting
to explore the combination of different syntactic
formalism, which we leave to future work.
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Figure 6: Averaged UPB development results versus
number of SRL target sentences (in log scale) utilized
per target language (using XLM-R for encoder).

EnSRL Syntax 0.1K 1K 10K

No No 3.03±0.82 13.58±0.59 44.11±0.40
No Yes 28.54±1.35 41.50±0.68 56.14±0.29
Yes No 5.81±0.18 20.29±0.42 48.57±0.21
Yes Yes 39.06±0.40 46.05±0.75 58.05±0.34

Table 11: FiPB development Arg-F1(%) scores in En-
glish/Finnish settings (with different number of Finnish
SRL sentences) with randomly initialized encoders.
“EnSRL” indicates whether using English SRL, and
“Syntax” denotes whether using syntax.

C Extra Results

C.1 Semi-supervised Results on UPB
We also experiment with semi-supervised settings
on the UPB datasets. We still take English as
the source and randomly sample SRL training in-
stances for target languages and train the models
alongside all these source examples. The results
are shown in Figure 6, where adding target SRL
annotations can bring obvious improvements. Nev-
ertheless, including syntactic supervision is still
helpful, particularly in low-resource scenarios.

C.2 No Pre-trained Initialization
In the main experiments, we utilize pre-trained mul-
tilingual language models to initialize the encoders.
Here, we explore the case where no such initial-
ization is performed (taking FiPB as an example).
All other settings are the same as previous, except
that the models are all randomly initialized. The
training scheme is slightly modified: we perform
learning rate warmup for the first 10K steps and
increase the maximum learning rate to 1e-4. The
results on the development sets are shown in Ta-
ble 11. There are no surprises that the scores are
much lower than those with pre-trained models. In-
terestingly, though both English SRL and syntax

FiSRL Syntax 0.1K 1K 10K

No No 48.30±0.57 73.23±0.21 83.61±0.14
No Yes 58.63±0.71 74.10±0.28 83.51±0.28
Yes No 62.35±0.29 74.92±0.32 83.38±0.06
Yes Yes 67.41±0.32 75.91±0.22 83.98±0.09

Table 12: EWT development Arg-F1(%) scores in
Finnish(FiPB)/English settings (with different number
of English SRL sentences). “FiSRL” indicates whether
using Finnish SRL, and “Syntax” denotes whether us-
ing syntax.

Method Syntax 0.1K 1K 10K

Chinese→ English

BIO No 57.29±0.70 71.41±0.53 79.43±0.05
TwoStep No 57.17±1.17 72.64±0.09 79.95±0.09
BIO Yes 56.67±0.52 72.03±0.28 79.41±0.10

TwoStep Yes 60.42±0.27 73.53±0.14 79.77±0.06

Arabic→ English

BIO No 59.78±0.37 72.07±0.20 79.34±0.05
TwoStep No 59.71±0.71 72.58±0.22 79.61±0.21
BIO Yes 58.03±0.73 72.48±0.09 79.28±0.08

TwoStep Yes 60.92±0.14 73.23±0.10 79.66±0.24

Table 13: OntoNotes English development Arg-F1(%)
scores in semi-supervised settings (with different num-
ber of target SRL training sentences), using Chinese or
Arabic as the source language.

can provide improvements in both low-resource
and high-resource cases, syntax is much more help-
ful. A possible reason is that the multilingual pre-
training provides shared representations across lan-
guages, without which the extra supervision from
other languages may be much less effective.

C.3 Other Languages as Source

In our main experiments, we take English as the
source language since it is usually the language
that has the most abundant resources. Here, we
take some other languages as the source and En-
glish as the target. Specifically, we use FiPB/EWT
and OntoNotes for these experiments, where other
settings exactly follow those of the main experi-
ments. The development results are shown in Table
12 and 13. The general trends are very similar to
those in the English-as-source experiments, where
syntax supervision is generally helpful, especially
in low-resource scenarios. There are many other in-
teresting settings that are not covered in this work,
such as multi-source transfer and direct transfer
among non-English languages. We leave the explo-
rations of these to future work.
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Figure 7: Error breakdowns of arguments on the
OntoNotes Chinese development set, 1K setting.
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Figure 8: Error breakdowns of arguments on the
OntoNotes Arabic development set, 1K setting.

C.4 Error Analysis on OntoNotes
We further perform error analysis on the Chinese
and Arabic development set in the 1K setting. As
shown in Figure 7 and 8, syntactic supervision and
the syntax-aware TwoStep decoder make fewer er-
rors related to phrasal attachments, span boundaries
and predicate identification. Notice that the first
two categories are closely related to syntax, which
may explain why syntax-informed models make
fewer such errors. In particular, the two-step model
trained with syntactic supervision makes the fewest
syntax-related errors. Together with its generally
better overall F1 scores, these demonstrate the ben-
efits of utilizing syntactic information alongside a
suitable syntactically-aware model.


