
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6562–6577
November 7–11, 2021. c 2021 Association for Computational Linguistics

6562

Adversarial Regularization as Stackelberg Game:
An Unrolled Optimization Approach

Simiao Zuo†∗, Chen Liang†, Haoming Jiang2 , Xiaodong Liu�, Pengcheng He�,
Jianfeng Gao�, Weizhu Chen� and Tuo Zhao†

†Georgia Institute of Technology 2 Amazon �Microsoft
{simiaozuo,cliang73}@gatech.edu, jhaoming@amazon.com
{xiaodl,Pengcheng.H,jfgao,wzchen}@microsoft.com,

tourzhao@gatech.edu

Abstract

Adversarial regularization has been shown to
improve the generalization performance of
deep learning models in various natural lan-
guage processing tasks. Existing works usu-
ally formulate the method as a zero-sum game,
which is solved by alternating gradient de-
scent/ascent algorithms. Such a formulation
treats the adversarial and the defending play-
ers equally, which is undesirable because only
the defending player contributes to the gener-
alization performance. To address this issue,
we propose Stackelberg Adversarial Regular-
ization (SALT), which formulates adversarial
regularization as a Stackelberg game. This
formulation induces a competition between a
leader and a follower, where the follower gen-
erates perturbations, and the leader trains the
model subject to the perturbations. Different
from conventional approaches, in SALT, the
leader is in an advantageous position. When
the leader moves, it recognizes the strategy
of the follower and takes the anticipated fol-
lower’s outcomes into consideration. Such a
leader’s advantage enables us to improve the
model fitting to the unperturbed data. The
leader’s strategic information is captured by
the Stackelberg gradient, which is obtained us-
ing an unrolling algorithm. Our experimental
results on a set of machine translation and nat-
ural language understanding tasks show that
SALT outperforms existing adversarial regu-
larization baselines across all tasks. Our code
is publicly available.

1 Introduction

Adversarial regularization (Miyato et al., 2017) has
been shown to improve the generalization perfor-
mance of deep learning models in various natural
language processing (NLP) tasks, such as language
modeling (Wang et al., 2019b), machine translation
(Sato et al., 2019), natural language understand-
ing (Jiang et al., 2020), and reading comprehen-

∗Corresponding author.

sion (Jia and Liang, 2017). However, even though
significant progress has been made, the power of
adversarial regularization is not fully harnessed.

Conventional adversarial regularization is for-
mulated as a zero-sum game (a min-max optimiza-
tion problem), where two players seek to mini-
mize/maximize their utility functions. In this for-
mulation, an adversarial player composes perturba-
tions, and a defending player solves for the model
parameters subject to the perturbed inputs. Ex-
isting algorithms find the equilibrium of this zero-
sum game using alternating gradient descent/ascent
(Madry et al., 2018). For example, in a classifica-
tion problem, the adversarial player first generates
the input perturbations by running projected gradi-
ent ascent to maximize a loss function, and then the
defending player updates the model using gradient
descent, trying to decrease the classification error.
Notice that in this case, neither of the players know
the strategy of its competitor, i.e., the model does
not know how the perturbations are generated, and
vice versa. In other words, the two players are of
the same priority, and either one of them can be
advantageous in the game. It is possible that the ad-
versarial player generates over-strong perturbations
that hinder generalization of the model.

To resolve this issue, we grant the defending
player (i.e., the model) a higher priority than the ad-
versarial player by letting the defender recognize its
competitor’s strategy, such that it is advantageous
in the game. Consequently, we propose Stackelberg
Adversarial Regularization (SALT), where we for-
mulate adversarial regularization as a Stackelberg
game (Von Stackelberg, 2010). The concept arises
from economics, where two firms are competing
in a market, and one of the them is in the leading
position by acknowledging the opponent’s strategy.
In Stackelberg adversarial regularization, a leader
solves for the model parameters, and a follower
generates input perturbations. The leader procures
its advantage by considering what the best response

6563

of the follower is, i.e., how will the follower re-
spond after observing the leader’s decision. Then,
the leader minimizes its loss, anticipating the pre-
dicted response of the follower.

The SALT framework identifies the interaction
between the leader and the follower by treating the
follower’s strategy (i.e., the input perturbations) as
an operator of the leader’s decision (i.e., the model
parameters). Then we can solve for the model pa-
rameters using gradient descent. One caveat is that
computing the gradient term, which we call the
Stackelberg gradient, requires differentiating the
interaction operator. To rigorously define this oper-
ator, recall that the follower can be approximately
solved using gradient ascent. We can treat the per-
turbations in each iteration as an operator of the
model parameters, and the interaction operator is
then the composition of such update-induced oper-
ators. Correspondingly, the Stackelberg gradient is
obtained by differentiating through these updates.
This procedure is referred to as unrolling (Pearlmut-
ter and Siskind, 2008), and the only computational
overhead caused by it is computing Hessian vec-
tor products. As a result, when applying the finite
difference method, computing the Stackelberg gra-
dient requires two backpropagation and an extra
O(d) complexity operation, where d is the embed-
ding dimension. Therefore, the unrolling algorithm
computes the Stackelberg gradient without causing
much computational overhead.

We conduct experiments on neural machine
translation (NMT) and natural language under-
standing (NLU) tasks. For the NMT tasks, we
experiment on four low-resource and one rich-
resource datasets. SALT improves upon exist-
ing adversarial regularization algorithms by no-
table margins, especially on low-resource datasets,
where it achieves up to 2 BLEU score improve-
ments. To test performance on NLU tasks, we
evaluate SALT on the GLUE (Wang et al., 2019a)
benchmark. SALT outperforms state-of-the-art
models, such as BERT (Devlin et al., 2019), FreeAT
(Shafahi et al., 2019), FreeLB (Zhu et al., 2019),
and SMART (Jiang et al., 2020). We build SALT
on the BERT-base architecture, and we achieve an
average score of 84.5 on the GLUE development
set, which is at least 0.7 higher than existing meth-
ods. Moreover, even though we adapt SALT to
BERT-base, the performance is noticeably higher
than the vanilla BERT-large model (84.5 vs. 84.0).

The unrolling procedure was first proposed

for auto-differentiation (Pearlmutter and Siskind,
2008), and later applied in various context,
such as hyper-parameter optimization (Maclau-
rin et al., 2015; Finn et al., 2017), meta-learning
(Andrychowicz et al., 2016), and Generative Ad-
versarial Networks (Metz et al., 2017). To the best
of our knowledge, we are the first to apply the un-
rolling technique to adversarial regularization to
improve generalization performance.

We summarize our contributions as the follow-
ing: (1) We propose SALT, which employs a Stack-
elberg game formulation of adversarial regulariza-
tion. (2) We use an unrolling algorithm to find the
equilibrium of the Stackelberg game. (3) Extensive
experiments on NMT and NLU tasks verify the
efficacy of our method.

Notation. We use df(x)/dx to denote the gradient
of f with respect to x. We use ∂f(x, y)/∂x to
denote the partial derivative of f with respect to
x. For a d-dimensional vector v, its `2 norm is
defined as ‖v‖2 = (

∑d
i=1 v

2
i)

1/2, and its `∞ norm
is defined as ‖v‖∞ = max1≤i≤d |vi|.

2 Background and Related Works

� Neural machine translation has achieved supe-
rior empirical performance (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017). We fo-
cus on the Transformer architecture (Vaswani et al.,
2017), which integrates the attention mechanism
in an encoder-decoder structure. The encoder in
a Transformer model first maps a source sentence
into an embedding space, then the embeddings are
fed into several encoding layers to generate hid-
den representations, where each of the encoding
layers contains a self-attention mechanism and a
feed-forward neural network (FFN). After which
the Transformer decoder layers, each contains a
self-attention, a encoder-decoder attention, and a
FFN, decode the hidden representations.

� Adversarial training was originally proposed
for training adversarial robust classifiers in image
classification (Szegedy et al., 2014; Goodfellow
et al., 2015; Madry et al., 2018). The idea is to
synthesize strong adversarial samples, and the clas-
sifier is trained to be robust to them. Theoretical
understanding (Li et al., 2019) about adversarial
training and various algorithms to generate the ad-
versarial samples, such as learning-to-learn (Jiang
et al., 2021), are proposed. Besides computer vi-
sion, adversarial training can also benefit reinforce-

6564

ment learning (Shen et al., 2020). Different from
the above fields, in NLP, the goal of adversarial
training is to build models that generalize well on
the unperturbed test data. Note that robustness
and generalization are different concepts. Recent
works (Raghunathan et al., 2020; Min et al., 2020)
showed that adversarial training can hurt general-
ization performance, i.e., accuracy on clean data.
As such, adversarial training needs to be treated
with great caution. Therefore, in NLP, this tech-
nique requires refined tuning of, for example, the
training algorithm and the perturbation strength.

� Fine-tuning pre-trained language models (Pe-
ters et al., 2018; Devlin et al., 2019; Radford et al.,
2019; Liu et al., 2019b; He et al., 2020) is state-of-
the-art for natural language understanding tasks
such as the GLUE (Wang et al., 2019a) bench-
mark. Recently, there are works that use adversar-
ial pre-training (Liu et al., 2020a) and adversarial-
regularized fine-tuning methods such as SMART
(Jiang et al., 2020), FreeLB (Zhu et al., 2019), and
FreeAT (Shafahi et al., 2019) to improve model
generalization and robustness (Cheng et al., 2021).

3 Method

Natural language inputs are discrete symbols (e.g.,
words), instead of continuous ones. Therefore, a
common approach to generate perturbations is to
learn continuous embeddings of the inputs and op-
erate on the embedding space (Miyato et al., 2017;
Clark et al., 2018; Sato et al., 2018, 2019; Stutz
et al., 2019). Let f(x, θ) be our model, where
x is the input embedding, and θ is the model pa-
rameter. Further let y be the ground-truth output
corresponding to x. For example, in NMT, f is a
sequence-to-sequence model, x is the embedding
of the source sentence, and y is the target sentence.
In classification tasks, f is a classifier, x is the in-
put sentence/document embedding, and y is the
label. In both of these cases, the model is trained
by minimizing the empirical risk over the training
data, i.e.,

min
θ
L(θ) =

1

n

n∑
i=1

`(f(xi, θ), yi).

Here {(xi, yi)}ni=1 is our dataset, and ` is a task-
specific loss function, e.g., cross-entropy loss.

3.1 Adversarial Regularization
Adversarial Regularization (Miyato et al., 2017) is
a regularization technique that encourages smooth-

ness of the model outputs around each input data
point. Concretely, we define an adversarial regular-
izer for non-regression tasks as

`v(x, δ, θ) = KL
(
f(x, θ) || f(x+ δ, θ)

)
,

where KL(P || Q) =
∑
k

pk log
pk
qk
.

Here KL(·||·) is the Kullback–Leibler (KL) diver-
gence, δ is the perturbation corresponding to x,
and f(·, θ) is the prediction probability simplex
given model parameters θ. In regression tasks, the
model output f(·, θ) is a scalar, and the adversarial
regularizer is defined as

`v (x, δ, θ) = (f(x, θ)− f(x+ δ, θ))2 .

Then the training objective is

min
θ
L(θ) +

α

n

n∑
i=1

max
‖δi‖≤ε

`v(xi, δi, θ), (1)

where α is a tuning parameter, ε is a pre-defined
perturbation strength, and ‖·‖ is either the `2 norm
or the `∞ norm.

The min and max problems are solved using al-
ternating gradient descent/ascent. We first generate
the perturbations δ by solving the maximization
problem using several steps of projected gradient
ascent, and then we update the model parameters
θ with gradient descent, subject to the perturbed
inputs. More details are deferred to Appendix A.

One major drawback of the zero-sum game for-
mulation (Eq. 1) is that it fails to consider the inter-
action between the perturbations δ and the model
parameters θ. This is problematic because a small
change in δ may lead to a significant change in
θ, which renders the optimization ill-conditioned.
Thus, the model is susceptible to underfitting and
generalize poorly on unperturbed test data.

3.2 Adversarial Regularization as
Stackelberg Game

We formulate adversarial regularization as a Stack-
elberg game (Von Stackelberg, 2010):

min
θ
F(θ) = L(θ) +

α

n

n∑
i=1

`v(xi, δ
K
i (θ), θ),

s.t. δKi (θ) = UK ◦ UK−1 ◦ · · · ◦ U1(δ0i). (2)

Here “◦” denotes operator composition, i.e., f ◦
g(·) = f(g(·)). Following conventions, in this

6565

Stackelberg game, we call the optimization prob-
lem in Eq. 2 the leader. Further, the follower in
Eq. 2 is described using a equality constraint. Note
that UK is the follower’s K-step composite strat-
egy, which is the composition of K one-step strate-
gies {Uk}Kk=1. In practice,K is usually small. This
is because in NLP, we target for generalization, in-
stead of robustness, and choosing a small K pre-
vents over-strong adversaries.

In Eq. 2, Uks are the follower’s one-step strate-
gies, and we call them update operators, e.g., U1

updates δ0 to δ1 using pre-selected algorithms. For
example, projected gradient ascent can be applied
as the update procedure, that is,

δk(θ) = Uk(δk−1(θ))

= Π‖·‖≤ε

(
δk−1(θ) + η

∂`v(x, δ
k−1(θ), θ)

∂δk−1(θ)

)
for k = 1, · · · ,K, (3)

where δ0 ∼ N (0, σ2I) is a initial random perturba-
tion drawn from a normal distribution with variance
σ2I , η is a pre-defined step size, and Π denotes pro-
jection to the `2-ball or the `∞-ball.

To model how the follower will react to a leader’s
decision θ, we consider the function δK(θ). Then,
adversarial training can be viewed solely in terms
of the leader decision θ.

We highlight that in our formulation, the leader
knows the strategy, instead of only the outcome,
of the follower. This information is captured by
the Stackelberg gradient dF(θ)/dθ, defined as the
following:

dF(θ)

dθ
=

d`(f(x, θ), y)

dθ
+ α

d`v(x, δ
K(θ), θ)

dθ

=
d`(f(x, θ), y)

dθ
+ α

∂`v(x, δ
K , θ)

∂θ︸ ︷︷ ︸
leader

+ α
∂`v(x, δ

K(θ), θ)

∂δK(θ)

dδK(θ)

dθ︸ ︷︷ ︸
leader-follower interaction

. (4)

The underlying idea behind Eq. 41 is that given
a leader’s decision θ, we take the follower’s strat-
egy into account (i.e., the “leader-follower interac-
tion” term) and find a direction along which the

1The second term in “leader” is written as
∂`v(x, δ

K , θ)/∂θ, instead of ∂`v(x, δK(θ), θ)/∂θ. This is
because the partial derivative of θ is only taken w.r.t. the third
argument in `v(x, δK , θ). We drop the θ in δK(θ) to avoid
causing any confusion.

Algorithm 1: Stackelberg Adversarial Reg-
ularization with Unrolled Optimization.
Input: D: dataset; T : total number of

training epochs; σ2: variance of
initial perturbations; K: number of
unrolling steps; Optimizer:
optimizer to update θ.

Initialize: model parameters θ;
for t = 1, · · · , T do

for (x, y) ∈ D do
Initialize δ0 ∼ N (0, σ2I);
for k = 1, · · · ,K do

Compute δk using Eq. 3;
Compute dδk(θ)/dθ using

Eq. 6;
end
Compute dF(θ)/dθ based on
dδK(θ)/dθ using Eq. 4;
θ ← Optimizer(dF(θ)/dθ);

end
end
Output: θ

leader’s loss decreases the most. Then we update
θ in that direction. Note that the gradient used in
standard adversarial training (Eq. 1) only contains
the “leader” term, such that the “leader-follower
interaction” is not taken into account.

3.3 SALT: Stackelberg Adversarial
Regularization

We propose to use an unrolling method (Pearlmut-
ter and Siskind, 2008) to compute the Stackelberg
gradient (Eq. 4). The general idea is that since the
interaction operator is defined as the composition
of the {Uk} operators, all of which are known, we
can directly compute the derivative of δK(θ) with
respect to θ. Concretely, we first run a forward iter-
ation to update δ, and then we differentiate through
this update to acquire the Stackelberg gradient.

Note that the updates of δ can take any form,
such as projected gradient ascent in Eq. 3, or more
complicated alternatives like Adam (Kingma and
Ba, 2015). For notation simplicity, we denote
∆(x, δk−1(θ), θ) = δk(θ)−δk−1(θ). Accordingly,
Eq. 3 can be rewritten as

δk(θ) = δk−1(θ) + ∆(x, δk−1(θ), θ). (5)

The most expensive part in computing the Stack-
elberg gradient (Eq. 4) is to calculate dδK(θ)/dθ,

6566

which involves differentiating through the compo-
sition form of the follower’s strategy:

dδk(θ)

dθ
=

dδk−1(θ)

dθ
+
∂∆(x, δk−1, θ)

∂θ

+
∂∆(x, δk−1(θ), θ)

∂δk−1(θ)

dδk−1(θ)

dθ

for k = 1, · · · ,K. (6)

We can compute Eq. 6 efficiently using deep
learning libraries, such as PyTorch (Paszke
et al., 2019). Notice that ∆(x, δk−1(θ), θ) al-
ready contains the first order derivative with re-
spect to the perturbations. Therefore, the term
∂∆(x, δk−1(θ), θ)/∂δk−1(θ) contains the Hessian
of δk−1(θ). As a result, in Eq. 4, the most expen-
sive operation is the Hessian vector product (Hvp).
Using the finite difference method, computing Hvp
only requires two backpropagation and an extra
O(d) complexity operation. This indicates that in
comparison with conventional adversarial training,
SALT does not introduce significant computational
overhead. The training algorithm is summarized in
Algorithm 1.

4 Experiments

In all the experiments, we use PyTorch2 (Paszke
et al., 2019) as the backend. All the experiments
are conducted on NVIDIA V100 32GB GPUs. We
use the Higher package3 (Grefenstette et al., 2019)
to implement the proposed algorithm.

4.1 Baselines
We adopt several baselines in the experiments.

� Transformer (Vaswani et al., 2017) achieves su-
perior performance in neural machine translation.

� BERT (Devlin et al., 2019) is a pre-trained lan-
guage model that exhibits outstanding performance
after fine-tuned on downstream NLU tasks.

� Adversarial training (Adv, Sato et al. 2019) in
NMT can improve models’ generalization by train-
ing the model to defend against adversarial attacks.

� FreeAT (Shafahi et al., 2019) enables “free” ad-
versarial training by recycling the gradient infor-
mation generated when updating the model param-
eters. This method was proposed for computer
vision tasks, but was later modified for NLU. We
further adjust the algorithm for NMT tasks.

2https://pytorch.org/
3https://github.com/facebookresearch/

higher

Data Source Train Valid Test

En-Vi IWSLT’15 133k 768 1268
De-En IWSLT’14 161k 7.2k 6.7k
Fr-En IWSLT’16 224k 1080 1133
En-De WMT’16 4.5m 3.0k 3.0k

Table 1: Dataset source and statistics. Here “k” stands
for thousand, and “m” stands for million.

En-Vi De-En Fr-En

Transformer 30.3 34.7 38.2
Adv 31.0 34.8 38.8
FreeAT 31.0 35.2 38.6
FreeLB 31.6 35.3 38.7
SMART 31.5 35.5 38.9

SALT 32.8 36.8 39.7

Table 2: BLEU score on three low-resource datasets.
All the baseline results are from our re-implementation.
We report the mean of three runs.

� FreeLB (Zhu et al., 2019) is a “free” large batch
adversarial training method. We modify FreeLB to
an adversarial regularization method that better fits
our need. This algorithm was originally proposed
for NLU. We modify the algorithm so that it is also
suitable for NMT tasks.

� SMART (Jiang et al., 2020) is a state-of-the-
art fine-tuning method that utilizes smoothness-
inducing regularization and Bregman proximal
point optimization.

We highlight that we focus on model general-
ization on clean data, instead of adversarial ro-
bustness (a model’s ability to defend adversarial
attacks). As we will see in the experiments, adver-
sarial training methods (e.g., Adv, FreeAT) suffer
from label leakage, and do not generalize as well
as adversarial regularization methods.

4.2 Neural Machine Translation

Datasets. We adopt three low-resource datasets
and a rich-resource dataset. Dataset statistics are
summarized in Table 1. For the low-resource
experiments, we use4: English-Vietnamese from
IWSLT’15, German-English from IWSLT’14, and
French-English from IWSLT’16. For the rich-
resource experiments, we use the English-German
dataset from WMT’16, which contains about 4.5
million training samples.

4https://iwslt.org/

https://pytorch.org/
https://github.com/facebookresearch/higher
https://github.com/facebookresearch/higher
https://iwslt.org/

6567

RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Average
Acc Acc/F1 Mcc Acc P/S Corr Acc Acc/F1 Acc Score

BERTLARGE 71.1 86.0/89.6 61.8 93.5 89.6/89.3 92.4 91.3/88.4 86.3/86.2 84.0

BERTBASE 63.5 84.1/89.0 54.7 92.9 89.2/88.8 91.1 90.9/88.3 84.5/84.4 81.5
FreeAT 68.0 85.0/89.2 57.5 93.2 89.5/89.0 91.3 91.2/88.5 84.9/85.0 82.6
FreeLB 70.0 86.0/90.0 58.9 93.4 89.7/89.2 91.5 91.4/88.4 85.4/85.5 83.3
SMART 71.2 87.7/91.3 59.1 93.0 90.0/89.4 91.7 91.5/88.5 85.6/86.0 83.8
SALT 72.9 88.4/91.8 61.0 93.6 90.4/90.0 92.0 91.7/88.6 86.1/85.8 84.5

Table 3: Evaluation results on the GLUE development set. All the rows use BERTBASE, except the top one, which
is included to demonstrate the effectiveness of our model. Best results on each dataset, excluding BERTLARGE, are
shown in bold. Results of BERTBASE (Devlin et al., 2019), BERTLARGE (Devlin et al., 2019), FreeAT (Shafahi et al.,
2019), and FreeLB (Zhu et al., 2019) are from our re-implementation. SMART results are from Jiang et al. (2020).

RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Average
Acc Acc/F1 Mcc Acc P/S Corr Acc Acc/F1 Acc Score

BERTBASE 66.4 84.8/88.9 52.1 93.5 87.1/85.8 90.5 71.2/89.2 84.6/83.4 80.0
FreeLB 70.1 83.5/88.1 54.5 93.6 87.7/86.7 91.8 72.7/89.6 85.7/84.6 81.2
SALT 72.2 85.8/89.7 55.6 94.2 88.0/87.1 92.1 72.8/89.8 85.8/84.8 82.0

Table 4: GLUE test set results on the GLUE evaluation server. All the methods fine-tune a pre-trained BERTBASE
model. FreeAT and SMART did not report BERTBASE results in their paper or on the GLUE evaluation server.
Model references: BERTBASE (Devlin et al., 2019), FreeLB (Zhu et al., 2019).

BLEU

Transformer (Vaswani et al., 2017) 28.4
FreeAT (Shafahi et al., 2019) 29.0
FreeLB (Zhu et al., 2019) 29.0
SMART (Jiang et al., 2020) 29.1

SALT 29.6

Table 5: sacreBLEU score on WMT’16 En-De. All the
baseline results are from our re-implementation.

Implementation. Recall that to generate adversar-
ial examples, we perturb the word embeddings. In
NMT experiments, we perturb both the source-side
and the target-side embeddings. This strategy is
empirically demonstrated (Sato et al., 2019) to be
more effective than perturbing only one side of the
inputs. We use Fairseq5 (Ott et al., 2019) to imple-
ment our algorithms. We adopt the Transformer-
base (Vaswani et al., 2017) architecture in all the
low-resource experiments, except IWSLT’14 De-
En. In this dataset, we use a model smaller than
Transformer-base by decreasing the hidden dimen-
sion size from 2048 to 1024, and decreasing the
number of heads from 8 to 4 (while dimension of
each head doubles). For the rich-resource experi-

5https://github.com/pytorch/fairseq

ments, we use the Transformer-big (Vaswani et al.,
2017) architecture. Training details are presented
in Appendix B.1.

Results. Experimental results for the low-resource
experiments are summarized in Table 2. Notice that
SMART, which utilizes conventional adversarial
regularization, consistently outperforms standard
adversarial training (Adv). Similar observations
were also reported in Miyato et al. (2017); Sato
et al. (2019). This is because Adv generates pertur-
bations using the correct examples, thus, the label
information are “leaked” (Kurakin et al., 2017).
Additionally, we can see that SALT is particularly
effective in this low-resource setting, where it out-
performs all the baselines by large margins. In
comparison with the vanilla Transformer model,
SALT achieves up to 2 BLEU score improvements
on all the three datasets.

Table 5 summarizes experiment results on the
WMT’16 En-De dataset. We report the sacre-
BLEU (Post, 2018) score, which is a detokenzied
version of the BLEU score that better reflects trans-
lation quality. We can see that SALT outperforms
all the baseline methods by notable margins, and it
improves upon the vanilla Transformer model by
1.2 BLEU score.

https://github.com/pytorch/fairseq

6568

(a) Number of unrolling steps. (b) Perturbation strength ε, `2 case. (c) Perturbation strength ε, `∞ case.

Figure 1: Relation between BLEU score and different factors on the IWSLT’14 De-En dataset.

4.3 Natural Language Understanding

Datasets. We demonstrate the effectiveness of
SALT on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al.,
2019a), which is a collection of nine NLU tasks.
The benchmark includes question answering (Ra-
jpurkar et al., 2016), linguistic acceptability (CoLA,
Warstadt et al. 2019), sentiment analysis (SST,
Socher et al. 2013), text similarity (STS-B, Cer
et al. 2017), paraphrase detection (MRPC, Dolan
and Brockett 2005), and natural language inference
(RTE & MNLI, Dagan et al. 2006; Bar-Haim et al.
2006; Giampiccolo et al. 2007; Bentivogli et al.
2009; Williams et al. 2018) tasks. Dataset details
can be found in Table 7 (Appendix B.2).

Implementation. We evaluate our algorithm by
fine-tuning a pre-trained BERT-base (Devlin et al.,
2019) model. Our implementation is based on the
MT-DNN code-base (Liu et al., 2019a, 2020b)6.
Training details are presented in Appendix B.2.

Results. Table 3 summarizes experiment results
on the GLUE development set. We can see that
SALT outperforms BERTBASE in all the tasks. Fur-
ther, our method is particularly effective for small
datasets, such as RTE, MRPC, and CoLA, where
we achieve 9.4, 4.3, and 6.3 absolute improve-
ments, respectively. Comparing with other adver-
sarial training baselines, i.e., FreeAT, FreeLB, and
SMART, our method achieves notable improve-
ments in all the tasks.

We highlight that SALT achieves a 84.5 aver-
age score, which is significantly higher than that of
the vanilla BERTBASE (+3.0) fine-tuning approach.
Also, our average score is higher than the scores of
baseline adversarial training methods (+1.9, +1.2,
+0.7 for FreeAT, FreeLB, SMART, respectively).
Moreover, the 84.5 average score is even higher

6https://github.com/microsoft/MT-DNN

than fine-tuning BERTLARGE (+0.5), which con-
tains three times more parameters than the back-
bone of SALT.

Table 4 summarizes results on the GLUE test set.
We can see that SALT consistently outperforms
BERTBASE and FreeLB across all the tasks.

4.4 Parameter Study

� Robustness to the number of unrolling steps.
From Figure 1a, we can see that SALT is robust to
the number of unrolling steps. As such, setting the
unrolling steps K = 1 or 2 suffices to build models
that generalize well.

� Robustness to the perturbation strength. Un-
rolling is robust to the perturbation strength within
a wide range, as indicated in Figure 1b. Meanwhile,
the performance of SMART consistently drops
when we increase ε from 0.01 to 0.5. This indicates
that the unrolling algorithm can withstand stronger
perturbations than conventional approaches.

� `2 constraints vs. `∞ constraints. Figure 1c
illustrates model performance with respect to dif-
ferent perturbation strength in the `∞ case. Notice
that in comparison with the `2 case (Figure 1b),
SALT achieves the same level of performance, but
the behavior of SMART is unstable. Additionally,
SALT is stable within a wider range of perturba-
tion strength in the `2 than in the `∞ case, which
is the reason that we adopt `2 constraints in the
experiments.

We highlight that SALT does not introduce ad-
ditional tuning parameter comparing with con-
ventional adversarial regularization approaches.

4.5 Analysis

� Unrolling reduces bias. In Figure 3, we visual-
ize the training and the validation error on the STS-
B and the SST datasets from the GLUE benchmark.
As mentioned, conventional adversarial regulariza-

https://github.com/microsoft/MT-DNN

6569

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.25

0.50

0.75

1.00
A

cc
ur

ac
y

Perfect
Actual
Gap

(a) BERTBASE (ECE: 6.09%).

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

(b) SMART (ECE: 5.08%).

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

(c) SALT (ECE: 4.06%).

Figure 2: Reliability diagrams on SST. Perfect Calibration: confidence = accuracy; ECE: the lower the better.

Figure 3: Training and validation loss of SMART and
SALT on STS-B (upper) and SST-2 (lower) datasets.

tion suffers from over-strong perturbations, such
that the model cannot fit the unperturbed data well.
This is supported by the fact that the training loss
of SALT is smaller than that of SMART, which
means SALT fits the data better. SALT also yields
a smaller loss than SMART on the validation data,
indicating that the Stackelberg game-formulated
model exhibits better generalization performance.

� Adversarial robustness. Even though the pri-
mary focus of SALT is model generalization, we
still test its robustness on the Adversarial-NLI
(ANLI, Nie et al. 2020) dataset. The dataset con-
tains 163k data, which are collected via a human-
and-model-in-the-loop approach. From Table 6,
we can see that SALT improves model robustness
upon conventional methods (i.e., SMART).

� Probing experiments. For each method, we first
fine-tune a BERTBASE model on the SST-2 dataset.
Then, we only tune a prediction head on other

Dev
R1 R2 R3 All

BERTBASE 53.3 43.0 44.7 46.8
SMART 54.1 44.4 45.3 47.8
SALT 56.6 46.2 45.9 49.3

Test
R1 R2 R3 All

BERTBASE 54.1 44.9 46.6 48.4
SMART 54.3 46.4 46.5 48.9
SALT 55.4 47.7 46.7 49.7

Table 6: Experimental results on the ANLI dataset.
Model references: BERTBASE (Devlin et al., 2019),
SMART (Jiang et al., 2020).

Figure 4: Probing experiments. Each violin plot is
based on 10 runs with different random seeds.

datasets while keeping the representations fixed.
Such a method directly measures the quality of
representations generated by different models. As
illustrated in Fig. 4, SALT outperforms the baseline
methods by large margins.

� Classification Model Calibration. Adversarial
regularization also helps model calibration (Stutz
et al., 2020). A well-calibrated model produces
reliable confidence estimation (i.e., confidence '
actual accuracy), where the confidence is defined as
the maximum output probability calculated by the
model. We evaluate the calibration performance of
BERTBASE, SMART, and SALT by the Expected
Calibration Error (ECE, Niculescu-Mizil and Caru-
ana 2005). We plot the reliability diagram (confi-
dence vs. accuracy) on the SST task in Fig. 2 (see

6570

Appendix C for details). As we can see, BERTBASE
and SMART are more likely to make overconfi-
dent predictions. SALT reduces ECE, and its corre-
sponding reliability diagram aligns better with the
perfect calibration curve.

� Comparison with Unrolled-GAN. The un-
rolling technique has been applied to train GANs
(Unrolled-GAN, Metz et al. 2017). However, sub-
sequent works find that this approach not necessar-
ily improves training (Grnarova et al., 2018; Tran
et al., 2019; Doan et al., 2019). This is because
Unrolled-GAN unrolls its discriminator, which has
a significant amount of parameters. Consequently,
the unrolling algorithm operates on a very large
space, rendering the stochastic gradients that are
used for updating the discriminator considerably
noisy. In SALT, the unrolling space is the sample
embedding space, the dimension of which is much
smaller than the unrolling space of GANs. There-
fore, unrolling is more effective for NLP tasks.

5 Conclusion

We propose SALT, an adversarial regularization
method that employs a Stackelberg game formu-
lation. Such a formulation induces a competition
between a leader (the model) and a follower (the
adversary). In SALT, the leader is in an advanta-
geous position by recognizing the follower’s strat-
egy, and this strategic information is captured by
the Stackelberg gradient. We compute the Stack-
elberg gradient, and hence find the equilibrium of
the Stackelberg game, using an unrolled optimiza-
tion approach. Empirical results NMT and NLU
tasks suggest the superiority of SALT to existing
adversarial regularization methods.

Broader Impact
This paper proposes Stackelberg Adversarial Regu-
larization (SALT), an adversarial regularized train-
ing framework for NLP tasks. Different from Gen-
erative Adversarial Networks (GAN), where the
target is to attack existing neural network models,
or to improve models’ robustness to adversarial
attacks, we seek to improve the generalization per-
formance of deep learning models. We demon-
strate that the SALT framework can be used for
neural machine translation and natural language
understanding tasks. In all the experiments, we
use publicly available data, and we build our algo-
rithms using public code bases. We do not find any
ethical concerns.

References
Marcin Andrychowicz, Misha Denil, Sergio Gomez

Colmenarejo, Matthew W. Hoffman, David Pfau,
Tom Schaul, and Nando de Freitas. 2016. Learn-
ing to learn by gradient descent by gradient descent.
In Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 3981–3989.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and
Danilo Giampiccolo. 2006. The second PASCAL
recognising textual entailment challenge. In Pro-
ceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge.
In In Proc Text Analysis Conference (TAC’09.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Hao Cheng, Xiaodong Liu, Lis Pereira, Yaoliang Yu,
and Jianfeng Gao. 2021. Posterior differential regu-
larization with f-divergence for improving model ro-
bustness. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1078–1089, Online. Association for
Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Proceedings of the First Inter-
national Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual
Object Classification, and Recognizing Textual En-
tailment, MLCW’05, pages 177–190, Berlin, Hei-
delberg. Springer-Verlag.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

https://proceedings.neurips.cc/paper/2016/hash/fb87582825f9d28a8d42c5e5e5e8b23d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/fb87582825f9d28a8d42c5e5e5e8b23d-Abstract.html
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://www.aclweb.org/anthology/2021.naacl-main.85
https://www.aclweb.org/anthology/2021.naacl-main.85
https://www.aclweb.org/anthology/2021.naacl-main.85
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://doi.org/10.18653/v1/N19-1423

6571

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Thang Doan, João Monteiro, Isabela Albuquerque,
Bogdan Mazoure, Audrey Durand, Joelle Pineau,
and R. Devon Hjelm. 2019. On-line adaptative cur-
riculum learning for gans. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 3470–3477.
AAAI Press.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1126–1135. PMLR.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1243–1252. PMLR.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 1–9, Prague. Association
for Computational Linguistics.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Edward Grefenstette, Brandon Amos, Denis Yarats,
Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chin-
tala. 2019. Generalized inner loop meta-learning.
arXiv preprint arXiv:1910.01727.

Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi,
Thomas Hofmann, and Andreas Krause. 2018. An
online learning approach to generative adversarial
networks. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. 2017. On calibration of modern neu-
ral networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1321–1330. PMLR.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, and
Tuo Zhao. 2021. Learning to defend by learning
to attack. In The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021,
April 13-15, 2021, Virtual Event, volume 130 of Pro-
ceedings of Machine Learning Research, pages 577–
585. PMLR.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2177–2190, Online. Asso-
ciation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie
Lyu, Tuo Zhao, and Chao Zhang. 2020. Cali-
brated language model fine-tuning for in- and out-of-
distribution data. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1326–1340, Online. As-
sociation for Computational Linguistics.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
2017. Adversarial machine learning at scale. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Yan Li, Ethan X Fang, Huan Xu, and Tuo Zhao.
2019. Inductive bias of gradient descent based ad-
versarial training on separable data. arXiv preprint
arXiv:1906.02931.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1609/aaai.v33i01.33013470
https://doi.org/10.1609/aaai.v33i01.33013470
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://www.aclweb.org/anthology/W07-1401
https://www.aclweb.org/anthology/W07-1401
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=H1Yp-j1Cb
https://openreview.net/forum?id=H1Yp-j1Cb
https://openreview.net/forum?id=H1Yp-j1Cb
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
http://proceedings.mlr.press/v130/jiang21a.html
http://proceedings.mlr.press/v130/jiang21a.html
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://openreview.net/forum?id=BJm4T4Kgx

6572

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu
Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
2020a. Adversarial training for large neural lan-
guage models. arXiv preprint arXiv:2004.08994.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng,
Xueyun Zhu, Emmanuel Awa, Pengcheng He,
Weizhu Chen, Hoifung Poon, Guihong Cao, and
Jianfeng Gao. 2020b. The Microsoft toolkit of multi-
task deep neural networks for natural language un-
derstanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 118–126,
Online. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Dougal Maclaurin, David Duvenaud, and Ryan P.
Adams. 2015. Gradient-based hyperparameter op-
timization through reversible learning. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Confer-
ence Proceedings, pages 2113–2122. JMLR.org.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adver-
sarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. 2017. Unrolled generative adversarial
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Yifei Min, Lin Chen, and Amin Karbasi. 2020. The
curious case of adversarially robust models: More
data can help, double descend, or hurt generalization.
arXiv preprint arXiv:2002.11080.

Takeru Miyato, Andrew M. Dai, and Ian J. Good-
fellow. 2017. Adversarial training methods for
semi-supervised text classification. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Mi-
los Hauskrecht. 2015. Obtaining well calibrated
probabilities using bayesian binning. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pages 2901–2907. AAAI Press.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In Machine Learning, Proceedings of the
Twenty-Second International Conference (ICML
2005), Bonn, Germany, August 7-11, 2005, volume
119 of ACM International Conference Proceeding
Series, pages 625–632. ACM.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4885–4901, Online. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024–8035.

Barak A Pearlmutter and Jeffrey Mark Siskind.
2008. Reverse-mode ad in a functional framework:
Lambda the ultimate backpropagator. ACM Trans-
actions on Programming Languages and Systems
(TOPLAS), 30(2):1–36.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages

https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v37/maclaurin15.html
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=BydrOIcle
https://openreview.net/forum?id=BydrOIcle
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9667
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9667
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/W18-6301
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

6573

2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang,
John C. Duchi, and Percy Liang. 2020. Understand-
ing and mitigating the tradeoff between robustness
and accuracy. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
7909–7919. PMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Motoki Sato, Jun Suzuki, and Shun Kiyono. 2019. Ef-
fective adversarial regularization for neural machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 204–210, Florence, Italy. Association for
Computational Linguistics.

Motoki Sato, Jun Suzuki, Hiroyuki Shindo, and Yuji
Matsumoto. 2018. Interpretable adversarial pertur-
bation in input embedding space for text. In Pro-
ceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 4323–
4330. ijcai.org.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu,
John P. Dickerson, Christoph Studer, Larry S. Davis,
Gavin Taylor, and Tom Goldstein. 2019. Adver-
sarial training for free! In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 3353–3364.

Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang,
and Tuo Zhao. 2020. Deep reinforcement learn-
ing with robust and smooth policy. In Proceed-

ings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 8707–8718. PMLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

David Stutz, Matthias Hein, and Bernt Schiele. 2019.
Disentangling adversarial robustness and generaliza-
tion. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 6976–6987. Com-
puter Vision Foundation / IEEE.

David Stutz, Matthias Hein, and Bernt Schiele. 2020.
Confidence-calibrated adversarial training: Gener-
alizing to unseen attacks. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 9155–9166. PMLR.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neu-
ral networks. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Pro-
ceedings.

Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen,
Linxiao Yang, and Ngai-Man Cheung. 2019. Self-
supervised GAN: analysis and improvement with
multi-class minimax game. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 13232–13243.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Heinrich Von Stackelberg. 2010. Market structure and
equilibrium. Springer Science & Business Media.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://proceedings.mlr.press/v119/raghunathan20a.html
http://proceedings.mlr.press/v119/raghunathan20a.html
http://proceedings.mlr.press/v119/raghunathan20a.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.24963/ijcai.2018/601
https://doi.org/10.24963/ijcai.2018/601
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper/2019/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
http://proceedings.mlr.press/v119/shen20b.html
http://proceedings.mlr.press/v119/shen20b.html
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.1109/CVPR.2019.00714
https://doi.org/10.1109/CVPR.2019.00714
http://proceedings.mlr.press/v119/stutz20a.html
http://proceedings.mlr.press/v119/stutz20a.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2019/hash/d04cb95ba2bea9fd2f0daa8945d70f11-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d04cb95ba2bea9fd2f0daa8945d70f11-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d04cb95ba2bea9fd2f0daa8945d70f11-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

6574

Dilin Wang, ChengYue Gong, and Qiang Liu. 2019b.
Improving neural language modeling via adversarial
training. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 6555–6565. PMLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Thomas
Goldstein, and Jingjing Liu. 2019. Freelb: En-
hanced adversarial training for language understand-
ing. arXiv preprint arXiv:1909.11764.

http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

6575

A Virtual Adversarial Training

Virtual adversarial training (VAT, Miyato et al.
2017) solves the following min-max optimization
problem:

min
θ
F(θ, δ∗) = L(θ) +

α

n

n∑
i=1

`v(xi, δ
∗
i , θ),

δ∗i = argmax
‖δi‖≤ε

`v(xi, δi, θ),

where

`v(xi, δi, θ) = KL
(
f(xi, θ) || f(xi + δi, θ)

)
.

Note that the objective of the minimization problem
is a function of both the model parameters and the
perturbations.

Because the min problem and the max problem
are operating on the same loss function, i.e., the
min problem seeks to minimize `v, while the max
problem tries to maximize `v, this min-max op-
timization is essentially a zero-sum game. And
we can find the game’s equilibrium using gradient
descent/ascent algorithms.

Specifically, the adversarial player first generate
an initial perturbation δ0, and then refines it using
K steps of projected gradient ascent, i.e.,

δk = Π‖·‖≤ε

(
δk−1 + η

∂`v(x, δ
k−1, θ)

∂δk−1

)
,

for k = 1, · · · ,K.

Here Π denotes projection onto the `2-ball or
the `∞-ball. Empirically, we find that these two
choices yield very similar performance, although
adversarial training models is robust to ε within a
wider range when applying the `2 constraint.

After obtaining the K-step refined perturbation
δK , we use gradient descent to update the model
parameters θ. Concretely, the gradient of the model
parameters is computed as

∂F(θ, δK)

∂θ
=

d`(f(xi, θ), yi)

dθ
+α

∂`v(x, δ
K , θ)

∂θ
.

(7)
The training algorithm is demonstrated in Algo-
rithm 2.

Note that in this paper, we target for models’
generalization performance on the unperturbed test
data, therefore we do not want a strong adversary
that “traps” the model parameters to a bad local
optima. Most of the existing algorithms achieve
this goal by carefully tuning the hyper-parameters

ε and K, i.e., a small ε usually generates weaker
adversaries, so does a small K. However, these
heuristics do not work well, and at times δK is
too strong. Consequently, conventional adversarial
training results in undesirable underfitting on the
clean data.

Algorithm 2: Virtual Adversarial Training.
Input: D: dataset; T : total number of

training iterations; σ2: variance of
initial perturbations; K: number of
inner training iterations; η: step size
to update δ; Optimizer: optimizer to
update θ.

Initialize: model parameters θ;
for t = 1, · · · , T do

for (x, y) ∈ D do
Initialize δ0 ∼ N (0, σ2I);
for k = 1, · · · ,K do

gk ← ∂`v(xi, δi, θ)/∂δi;
δk ← Π(δk−1 + ηgk);

Compute the gradient gθ using
Eq. 7;
θ ← Optimizer(gθ);

Output: θ

B Training Details

B.1 Neural Machine Translation

For the rich-resource WMT’16 En-De dataset, we
use the pre-processed data from Ott et al. (2018)7.
For the low-resource datasets, we use byte-pair
encoding (Sennrich et al., 2016) with 10,000 merge
operations to build the vocabulary for the IWSLT
(’14, ’15, ’16) datasets. We follow the scripts in
Ott et al. (2019)8 for other pre-processing steps.

We use Adam (Kingma and Ba, 2015) as the
leader’s (i.e., the upper level problem that solves
for model parameters) optimizer, and we set β =
(0.9, 0.98). The follower’s (i.e., the lower level
problem that solves for perturbations) optimizer is
chosen from Adam and SGD, where we observe
only marginal empirical differences between these
two choices. For low-resource translation, we set
the batch size to be equivalent to 64k tokens. For
example, when running the experiments on 4 GPUs,

7https://github.com/pytorch/fairseq/
tree/master/examples/scaling_nmt

8https://github.com/pytorch/fairseq/
tree/master/examples/translation

https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation

6576

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 7: Summary of the GLUE benchmark.

Batch lrleader lrfollower σ ε K Beam Len-Pen

En-Vi (IWSLT’15) 64k 1× 10−3 1× 10−5 1× 10−4 0.1 1 10 1.0
De-En (IWSLT’14) 64k 1× 10−3 1× 10−4 1× 10−4 0.3 1 9 1.5
Fr-En (IWSLT’16) 64k 1× 10−3 1× 10−5 1× 10−5 0.3 1 10 2.0

En-De (WMT’16) 450k 1× 10−3 1× 10−4 1× 10−4 0.3 1 4 0.6

Table 8: Hyper-parameters for machine translation. Here, σ is the standard deviation of the initial perturbations, ε
is the perturbation strength, K is the number of unrolling steps, Beam is the size of beam search, and Len-Pen is
the length penalty parameter during beam search.

we set the tokens-per-GPU to be 8,000, and we
accumulate gradients for 2 steps. For rich-resource
translation, we set the batch size to be equivalent to
450k tokens. In all the experiments, we constrain
each perturbation according to its sentence-level `2
norm, i.e., ‖δ‖2 ≤ ε. Other hyper-parameters are
specified in Table 8.

B.2 Natural Language Understanding

Details of the GLUE benchmark, including tasks,
statistics, and evaluation metrics, are summarized
in Table 7.

We use Adam as both the leader’s and the fol-
lower’s optimizer, and we set β = (0.9, 0.98). The
learning rate of the leader lrleader is chosen from
{5×10−5, 1×10−4, 5×10−4}, and the follower’s
learning rate is chosen from {1×10−5, lrleader}. We
choose the batch size from {4, 8, 16, 32}, and we
train for a maximum 6 epochs with early-stopping
based on the results on the development set. We ap-
ply a gradient norm clipping of 1.0. We set the
dropout rate in task specific layers to 0.1. We
choose standard deviation of initial perturbations
σ from {1 × 10−5, 1 × 10−4}, and `2 constraints

with perturbation strength ε = 1.0 are applied. We
set the unrolling steps K = 2. We report the best
performance on each dataset individually.

C Model Calibration

Many applications require trustworthy predictions
that need to be not only accurate but also well cali-
brated (Kong et al., 2020). A well-calibrated model
is expected to output prediction confidence com-
parable to its classification accuracy. For example,
given 100 data points with their prediction confi-
dence 0.6, we expect 60 of them to be correctly
classified. More precisely, for a data point X , we
denote by Y (X) the ground truth label, Ŷ (X) the
label predicted by the model, and P̂ (X) the output
probability associated with the predicted label. The
calibration error of the predictive model for a given
confidence p ∈ (0, 1) is defined as:

Ep =
∣∣∣P [Ŷ (X) = Y (X)|P̂ (X) = p

]
− p
∣∣∣ . (8)

Since Eq. 8 involves population quantities, we usu-
ally adopt empirical approximations (Guo et al.,
2017) to estimate the calibration error. Specifically,

6577

we partition all data points into 10 bins of equal size
according to their prediction confidence. Let Bm
denote the bin with prediction confidence bounded
between `m and um. Then, for any p ∈ [`m, um),
we define the empirical calibration error as:

Êp = Êm =
1

|Bm|

∣∣∣ ∑
i∈Bm

[
1(ŷi = yi)− p̂i

]∣∣∣, (9)

where yi, ŷi and p̂i are the true label, predicted
label and confidence for sample i.

Reliability Diagram is a bar plot that compares
Êp against each bin, i.e., p. A perfectly calibrated
would have Êp = (`m + um)/2 for each bin.

Expected Calibration Error (ECE) is the
weighted average of the calibration errors of all
bins (Naeini et al., 2015) defined as:

ECE =
M∑
m=1

|Bm|
n
Êm, (10)

where n is the sample size.
We remark that the goal of calibration is to mini-

mize the calibration error without significantly sac-
rificing prediction accuracy. Otherwise, a random
guess classifier can achieve zero calibration error.

