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Abstract
In this work, we introduce back-training, an al-
ternative to self-training for unsupervised do-
main adaptation (UDA) from source to target
domain. While self-training generates syn-
thetic training data where natural inputs are
aligned with noisy outputs, back-training re-
sults in natural outputs aligned with noisy in-
puts. This significantly reduces the gap be-
tween the target domain and synthetic data
distribution, and reduces model overfitting to
the source domain. We run UDA experiments
on question generation and passage retrieval
from the Natural Questions domain to ma-
chine learning and biomedical domains. We
find that back-training vastly outperforms self-
training by a mean improvement of 7.8 BLEU-
4 points on generation, and 17.6% top-20 re-
trieval accuracy across both domains. We
further propose consistency filters to remove
low-quality synthetic data before training. We
also release a new domain-adaptation dataset-
MLQuestions containing 35K unaligned ques-
tions, 50K unaligned passages, and 3K aligned
question-passage pairs.

1 Introduction

In domains such as education and medicine, collect-
ing labeled data for tasks like question answering
and generation requires domain experts, thereby
making it expensive to build supervised models.
Transfer learning can circumvent this limitation
by exploiting models trained on other domains
where labeled data is readily available (Bengio,
2012; Ruder et al., 2019). However, using these
pre-trained models directly without adapting to the
target domain often leads to poor generalization
due to distributional shift (Zhao et al., 2019). To
address this issue, these models are further trained
on cheap synthetically generated labeled data by
exploiting unlabeled data from target domain (Ram-
poni and Plank, 2020). One such popular data aug-
mentation method for unsupervised domain adap-
tation (UDA) is self-training (Yarowsky, 1995).

Synthetic Training Data
Algorithm Input Output

Question Generation (QG)

Self-Training pu ∼ PT (p) q̂ ∼ PS(q|pu)
Back-Training p̂ ∼ PS(p|qu) qu ∼ PT (q)

Passage Retrieval (IR)

Self-Training qu ∼ PT (q) p̂ ∼ PS(p|qu)
Back-Training q̂ ∼ PS(q|pu) pu ∼ PT (p)

Table 1: Self-Training and Back-Training for unsuper-
vised domain adaptation of question generation and
passage retrieval. In self-training, inputs are sampled
from the target domain data distribution PT and their
corresponding outputs are generated using a supervised
model PS trained on the source domain. In back-
training, the inverse happens: outputs are sampled from
PT and their corresponding inputs are generated using
PS . Notation: q and p denote questions and passages
respectively, .u denotes samples from the target domain
and .̂ denotes the samples generated by a supervised
model trained on the source domain.

In self-training, given a pre-trained model that
can perform the task of interest in a source domain
and unlabeled data from the target domain, the pre-
trained model is used to predict noisy labels for the
target domain data. The pre-trained model is then
fine-tuned on synthetic data to adapt to the new
domain. To improve the quality of the synthetic
data, it is also common to filter out low-confidence
model predictions (Zhu, 2005).

A model fine-tuned on its own confidence pre-
dictions might suffer from confirmation bias which
leads to overfitting (Yu et al., 2020). This means
that the distributional gap between the target do-
main’s true output distribution and the learned out-
put distribution could grow wider as training pro-
ceeds. In this paper, we propose a new training
protocol called back-training which closes this gap
(the name is inspired from back-translation for ma-
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chine translation). While self-training generates
synthetic data where noisy outputs are aligned with
quality inputs, back-training generates quality out-
puts aligned with noisy inputs. The model fine-
tuned to predict real target domain outputs from
noisy inputs reduces overfitting to the source do-
main (Vincent et al., 2008), and matches the target
domain distribution more closely.

We focus on unsupervised domain adaptation
(UDA) of Question Generation (QG) and Pas-
sage Retrieval (IR) from generic domains such as
Wikipedia to target domains. Our target domain
of interest is machine learning, as it is a rapidly
evolving area of research. QG and IR tasks could
empower student learning on MOOCs (Heilman
and Smith, 2010). For example, from a passage
about linear and logistic regression, an education
bot could generate questions such as what is the dif-
ference between linear and logistic regression? to
teach a student about these concepts. Moreover, IR
models could help students find relevant passages
for a given question (Fernández-Luna et al., 2009).
In this domain, unsupervised data such as text pas-
sages and questions are easy to obtain separately
rather than aligned to each other.

We also perform our main domain adaptation ex-
periments on biomedical domain using PubMedQA
dataset (Jin et al., 2019) to further strengthen our
hypothesis.

Table 1 demonstrates the differences between
self-training and back-training for QG and IR. Con-
sider the QG task: for self-training, we first train
a supervised model PS(q|p) on the source domain
that can generate a question q given a passage p.
We use this model to generate a question q̂ for an
unsupervised passages pu sampled from the target
domain distribution PT (p). Note that q̂ is gen-
erated conditioned on the target domain passage
using PS(q|pu). We use the pairs (pu, q̂) as the
synthetic training data to adapt PS(q|p) to the tar-
get domain. In back-training, we assume access
to unsupervised questions and passages from the
target domain. We first train an IR model PS(p|q)
on the source domain, then sample a question qu
from the target domain distribution PT (q). We con-
dition the retriever on this question i.e., PS(p|qu),
and retrieve a passage p̂ from the target domain and
treat it as a noisy alignment. We use the pairs (p̂,
qu) as the synthetic training data to adapt PS(q|p).
Table 1 also describes the details of domain adapta-
tion for the passage retriever.

Our contributions and findings are as follows:
1) We show that QG and IR models trained on
NaturalQuestions (Kwiatkowski et al., 2019) gen-
eralize poorly to target domains, with at least 17%
mean performance decline on both QG and IR tasks.
2) Although self-training improves the domain per-
formance marginally, our back-training method out-
performs self-training by a mean improvement of
7.8 BLEU-4 points on generation, and 17.6% top-
20 retrieval accuracy across both target domains.
3) We further propose consistency filters to remove
low-quality synthetic data before training. 4) We
release MLQuestions: a domain adaptation dataset
for the machine learning domain containing 35K
unaligned questions, 50K unaligned passages, and
3K aligned question-passage pairs.

2 Background

In this section, we describe the source and target
domain datasets, models for question generation
and passage retrieval, and the evaluation metrics.

2.1 Source Domain: NaturalQuestions

We use the NaturalQuestions dataset (Kwiatkowski
et al., 2019) as our source domain. NaturalQues-
tions is an open-domain question answering dataset
containing questions from Google search engine
queries paired with answers from Wikipedia. We
use the long form of the answer which corresponds
to passages (paragraphs) of Wikipedia articles. It
is the largest dataset available for open-domain
QA, comprising of 300K training examples, each
example comprising of a question paired with a
Wikipedia passage. We label 200 random ques-
tions of NaturalQuestions and annotate them into 5
different classes based on the nature of the question
as per Nielsen et al. (2008). Table 2 shows these
classes and their distribution. As seen, 86% of
them are descriptive questions starting with what,
who, when and where. Refer to Appendix A.2 for
details on dataset pre-processing and Appendix A.4
for detailed taxonomy description.

2.2 Target Domain I: Machine Learning

Our first target domain of interest is machine learn-
ing. There is no large supervised QA dataset for
this domain, and it is expensive to create one since
it requires domain experts. However, it is relatively
cheap to collect a large number of ML articles and
questions. We collect ML concepts and passages
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Taxonomy Examples
(from MLQuestions)

Description
(Frequent Wh-words)

Distribution (%)
NaturalQuestions MLQuestions

DESCRIPTION What is supervised
learning with example?

Asking definition or
examples about a concept

(What, Who, When, Where)
86% 39%

METHOD How do you compute
vectors in Word2Vec?

Computational or procedural
questions - (How) 1% 15%

EXPLANATION Why does ReLU activation
work so surprisingly well?

Causal, justification or
goal-oriented questions - (Why) 3% 18%

COMPARISON What is the difference
between LDA and PCA?

Ask to compare more than
one concept with each other 5% 10%

PREFERENCE Is language acquisition
innate or learned?

Yes/No or select from valid
set of options - (Is, Are) 5% 18%

Table 2: Classification of 200 random questions from NaturalQuestions and MLQuestions as per Nielsen (2008).

from the Wikipedia machine learning page1 and
recursively traverse its subcategories. We end up
with 1.7K concepts such as Autoencoder, word2vec
etc. and 50K passages related to these concepts.

For question mining, we piggy-back on Google
Suggest’s People also ask feature to collect 104K
questions by using above machine learning concept
terms as seed queries combined with question terms
such as what, why and how. However, many ques-
tions could belong to generic domain due to am-
biguous terms such as eager learning. We employ
three domain experts to annotate 1000 questions to
classify if a question is in-domain or out-of-domain.
Using this data, we train a classifier (Liu et al.,
2019) to filter questions that have in-domain proba-
bility less than 0.8. This resulted in 46K in-domain
questions, and has 92% accuracy upon analysing
100 questions. Of these, we use 35K questions as
unsupervised data. See appendix A.3 for classifier
training details and performance validation.

The rest of the 11K questions are used to create
supervised data for model evaluation. We use the
Google search engine to find answer passages to
these questions, resulting around 11K passages.
Among these, we select 3K question and passage
pairs as the evaluation set for QG (50% validation
and 50% test). For IR, we use the full 11K passages
as candidate passages for the 3K questions. We call
our dataset MLQuestions.

Table 2 compares MLQuestions with Natu-
ralQuestions. We note that MLQuestions has higher
diversity of question classes than NaturalQuestions,
making the transfer setting challenging.

2.3 Target Domain II: Biomedical Science
Our second domain of interest is biomedicine for
which we use PubMedQA (Jin et al., 2019) dataset.

1https://en.wikipedia.org/wiki/
Category:Machine_learning

Questions are extracted from PubMed abstract ti-
tles ending with question mark, and passages are
the conclusive part of the abstract. As unsupervised
data, we utilize PQA-U(nlabeled) subset contain-
ing 61.2K unaligned questions and passages. For
supervised data, we use PQA-L(abeled) subset of
1K question-passage pairs manually curated by do-
main experts. We use the same dev-test split of
50-50% as (Jin et al., 2019) as the evaluation set
for QG. For IR, in order to have the same number
of candidate passages as MLQuestions, we com-
bine randomly sampled 10K passages from PQA-U
with 1K PQA-L passages to get 11K passages as
candidate passages for 1K questions.

2.4 Question Generation Model

We use BART (Lewis et al., 2020) to train a super-
vised QG model on NaturalQuestions. BART is
a Transformer encoder-decoder model pretrained
to reconstruct original text inputs from noisy text
inputs. Essentially for QG, BART is further trained
to learn a conditional language model PS(q|p) that
generates a question q given a passage p from the
source domain. For experimental details, see A.1.

2.5 Passage Retrieval Model

We use the pretrained Dense Passage Retriever
(DPR; Karpukhin et al. 2020) on NaturalQuestions.
DPR encodes a question q and passage p separately
using a BERT bi-encoder and is trained to maxi-
mize the dot product (similarity) between the en-
codings EP (p) and EQ(q), while minimizing sim-
ilarity with other closely related but negative pas-
sages. Essentially, DPR is a conditional classifier
PS(p|q) that retrieves a relevant passage p given
a question q from the source domain. For model
training details, see A.1.

https://en.wikipedia.org/wiki/Category:Machine_learning
https://en.wikipedia.org/wiki/Category:Machine_learning
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Figure 1: IID/OOD generalization gaps for Question
Generation and Passage Retrieval due to distributional
shift between source and target domains. For a fair
comparison, the number of candidate passages for IR
are kept similar for all datasets.

2.6 Evaluation Metrics

We evaluate question generation using standard
language generation metrics: BLEU1-4 (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005)
and ROUGEL (Lin, 2004). They are abbreviated
as B1, B2, B3, B4, M, and R respectively through-
out the paper. We also perform human evaluation
on the model generated questions. For passage
retrieval, we report top-k retrieval accuracy for
k = 1, 10, 20, 40, 100 following Karpukhin et al.
(2020) by measuring the fraction of cases where
the correct passage lies in the top k retrieved pas-
sages. We consider 11K passages in all datasets for
retrieval during test time.

3 Transfer from Source to Target
Domain without Adaptation

We investigate how well models trained on Natu-
ralQuestions transfer directly to our target domains
without any domain adaptation. For comparison,
we also present the results on NaturalQuestions.
To be fair, we sample equal number of samples
from the development set of NaturalQuestions as
in the test set of MLQuestions and PubMedQA
for QG and IR tasks. Figure 1 shows the results.
We observe high performance drops across all gen-
eration metrics (14-20%) from NaturalQuestions
(IID data) to MLQuestions and PubMedQA (OOD
Data). Human evaluation on QG (see Table 7)
also reveals that the generated questions are either
generic, or fail to understand domain-specific ter-
minology. OOD performance in the IR task is even
worse (25-40% drop), revealing a huge distribution
shift between the source and target domain.

Notation Definition
S, T Source, Target Domain
PS , PT Source, Target data distribution
DS ≡ {(qis, pis)}mi=1 Source labeled corpus
PU ≡ {piu}

mp

i=1 Target unlabeled passages
QU ≡ {qiu}

mq

i=1 Target unlabeled questions
θ ≡ {θG,θR} QG, IR Models
SG, SR Synthetic data for QG, IR

Table 3: Notations used throughout the paper.

4 Unsupervised Domain Adaptation

In this section, we describe self-training and back-
training methods to generate synthetic training data
for unsupervised domain adaptation (UDA). We
also introduce consistency filters to further improve
the quality of the synthetic data.

4.1 Problem Setup

The source domain consists of labeled data con-
taining questions paired with passages DS ≡
{(qis, pis)}mi=1. The target domain consists of un-
labeled passages PU ≡ {piu}

mp

i=1, and unlabeled
questions QU ≡ {qiu}

mq

i=1. Note that PU and QU
are not necessarily aligned with each other. Given
this setup, our goal is to learn QG and IR models
with parameters θ ≡ {θG,θR} that can achieve
high generation and retrieval performance on target
domain T . Table 3 describes the notations used
across the paper.

4.2 Self-Training for UDA

Self-training (Yarowsky, 1995) involves training
a model on its own predictions. We present the
proposed self-training for UDA in Algorithm 1.
First the baseline models θG and θR are trained on
the source passage-question corpus DS . Then, at
each iteration, the above models generate pseudo-
labeled data from unlabeled passages PU for ques-
tion generation and questions QU for passage re-
trieval. For QG, θG generates a question q̂ for each
pu ∈ PU and adds (pu, q̂) to synthetic data SG.
For IR, θR retrieves a passage p̂ from PU for each
qu ∈ QU and adds (qu, p̂) to SR. The models θG
and θR are fine-tuned on SG and SR respectively.
The process is repeated for a desired number of
iterations, which we refer to as iterative refinement.
Note that in self-training, inputs are sampled from
target domain and the outputs are predicted (noisy).

4.3 Back-Training for UDA

The main idea of back-training is to work back-
wards: start with true output samples from the
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Algorithm 1 Vanilla Self-Training Back-Training for
unsupervised domain adaptation. Vanilla algorithms can be
improved further using consistency filters

Require: Source Data DS ≡ {(qis, pis)}mi=1, Target unla-
beled data PU ≡ {piu}m

p

i=1,QU ≡ {qiu}
mq

i=1

Ensure: Target domain QG model θG, IR model θR

1: Init: θG,θR ← Train on DS
2: repeat
3: SG ← [ ], SR ← [ ] . Synthetic data for θG and θR

4: for qu ∈ QU do
5: p̂← Retrieve p from PU closest to qu using θR

6: add (p̂, qu) to SR SG

7: end for
8: for pu ∈ PU do
9: q̂ ← Generate q from pu using θG

10: add (pu, q̂) to SG SR

11: end for
12: θG ← Finetune on SG, θR ← Finetune on SR

13: until dev performance decreases

target domain, and predict corresponding inputs
which aligns the most with the output. While self-
training assumes inputs are sampled from the target
domain distribution, back-training assumes outputs
are sampled from the target domain distribution.
When two tasks are of dual nature (i.e., input of
one task becomes the output of another task), back-
training can be used to generate synthetic training
data of one task using the other, but on a condition
that outputs can be sampled from the target domain
distribution. QG and IR tasks meet both criteria.
For QG, we have unlabeled questions in the target
domain and its dual friend IR can retrieve their cor-
responding input passages from the target domain.
For IR, we have passages in the target domain and
QG can generate their input questions. Formally,
for QG, the IR model θR retrieves passage p̂ from
PU for each qu ∈ QU and adds (p̂, qu) to SG. For
IR, the QG model θG generates a question q̂ for
each pu ∈ PU and adds (q̂, pu) to SR.

Similarities with back-translation Back-
translation is an effective method to improve
machine translation using synthetic parallel cor-
pora containing human-produced target language
sentences paired with artificial source language
translations (Sennrich et al., 2016; Edunov et al.,
2018). Back-training is inspired by this idea,
however it is not limited to machine translation.

4.4 Consistency filters for Self-Training and
Back-Training

The above algorithms utilize full unlabeled data
along with their predictions even if the predictions
are of low confidence. To alleviate this problem, in

Back-trainingSelf-training Self-training
Consistency Consistency

Figure 2: Self-training and Back-training for UDA.

self-training, it is common to filter low-confidence
predictions (Zhu, 2005). We generalize this notion
as consistency filtering: For the tasks QG and IR, a
generator G ∈ {θG,θR} produces synthetic train-
ing data for a task whereas the criticC ∈ {θG,θR}
filters low confidence predictions. We define two
types of consistency filtering: 1) Self consistency
where the generator and critic are the same. This is
equivalent to filtering out model’s own low confi-
dence predictions in self-training. 2) Cross consis-
tency where the generator and critic are different.
This means θR will filter the synthetic data gener-
ated by θG, and vice-versa. For θG as critic we use
conditional log-likelihood logPr(q|p;θG) as the
confidence score. For θR as critic we use the dot
product similarity between the encodings EP (p)
and EQ(q) as the confidence score. Self-training
and back-training can be combined with one or
both of the these consistency checks. We set filter
thresholds to accept 75% of synthetic data (refer to
appendix A.1 for exact threshold values).

A popular data filtering technique in data aug-
mentation is cycle consistency (Alberti et al., 2019)
which is enforced by further generating noisy input
from noisy output, and matching noisy input simi-
larity with source input. We leave its exploration
as future work.

5 Domain Adaptation Evaluation

As described in Section 2, our source domain is Nat-
uralQuestions and the target domains are MLQues-
tions and PubMedQA. We evaluate if domain adap-
tation helps to improve the performance compared
to no adaptation. We empirically investigate quali-
tative differences between self-training and back-
training to validate their effectiveness. We also
investigate if consistency filters and iterative refine-
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Dataset Model Question Generation Passage Retrieval
B1 B2 B3 B4 M R R@1 R@20 R@40 R@100

MLQuestions
No-adaptation 31.23 20.07 13.05 9.04 22.70 31.38 15.86 58.13 69.13 76.86
Self-Training 31.81 20.74 13.61 9.43 23.31 32.18 17.86 65.26 74.13 83.06

Back-Training 44.12 32.86 24.21 18.48 23.83 43.97 24.53 77.73 84.8 91.73

PubMedQA
No-adaptation 13.57 6.41 3.31 1.62 8.67 14.38 32.4 56.8 61.6 72.2
Self-Training 13.36 6.28 3.25 1.64 8.84 15.00 32.8 57.0 63.6 72.8

Back-Training 26.71 17.01 11.80 8.25 16.99 25.14 55.4 79.8 81.8 85.8

Table 4: Results of unsupervised domain adaptation. No-adaptation denotes the model trained on NaturalQuestions
and tested directly on MLQuestions/PubMedQA without any domain adaptation.
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Figure 3: Evolution of QG model perplexity (PPL)
and IR model loss for Self-training vs Back-training as
training proceeds on MLQuestions. Trajectories run
from right to left as training loss decreases with time.
Rightmost points are plotted after first mini-batch train-
ing, and subsequent points are plotted after each mini-
batch training.

ment result in further improvements.

5.1 No-adaptation vs. self-training vs
back-training

In Table 4, we compare the performance of vanilla
self-training and back-training (i.e., without con-
sistency filtering or iterative refinement) with the
no-adaptation baseline (i.e. model trained on
source domain and directly tested on target do-
main). On MLQuestions, self-training achieves
an absolute gain of around 0.6 BLEU-4 points for
QG and 7.13 R@20 points for IR. Whereas back-
training vastly outperforms self-training, with im-
provements of 9.4 BLEU-4 points on QG and 19.6
R@20 points on IR over the no-adaptation baseline.
The improvements are even bigger on PubMedQA
whereas self-training shows no improvement at all.

5.2 Why does back-training work?

Figure 3 shows the QG model perplexity and IR
model loss on synthetic training data and test data
as the training (domain adaptation) proceeds on
MLQuestions. The plots reveal three interesting ob-
servations: (1) for back-training, the train and test
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Figure 4: DPR embedding similarity scores and QG
Log-likelihood scores distribution on MLQuestions
synthetic data computed using θR and θG respectively.

loss (and hence likelihood) are correlated and hence
the data generated by back-training matches the
target distribution more closely than self-training;
(2) self-training achieves lower training error but
higher test error compared to back-training, indi-
cating overfitting; (3) extrapolating back-training
curve suggests that scaling additional unlabeled
data will likely improve the model.

Figure 4 plots the distribution for self-training
(computing likelihood scores of model’s own pre-
dictions) and back-training (computing likelihood
scores of different model’s predictions) for QG and
IR tasks on MLQuestions. The figures reveal that
self-training curve has high mean and low variance,
indicating less diverse training data. On the other
hand, back-training curve has low mean and high
variance indicating diverse training data.

5.3 Are consistency filters useful?

Table 5 reveals that although our consistency fil-
ters outperform base models on MLQuestions, the
improvements are not very significant. Our hy-
pothesis is that quality of synthetic data is already
high (as backed up by Section 5.2 findings), which
limits the performance gain. However, the filters
reduce synthetic training data by 25%, which leads
to faster model training without any drop in per-
formance. Additionally, self-consistency improves
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QG IR
Consistency BLEU4 ROUGE R@20 R@100

Self-Training

None 9.43 32.18 65.26 83.06
Self 9.85 32.34 64.75 83.23
Cross 8.92 31.97 65.46 83.00

Back-Training

None 18.48 43.97 77.73 91.73
Self 18.62 44.19 77.40 91.66
Cross 18.67 43.22 78.86 92.13

Table 5: Effect of using consistency filters on Self-
Training and Back-Training for MLQuestions.

QG IR
Iteration BLEU4 ROUGE R@20 R@100

Self-Training

T = 1 9.43 32.18 65.26 83.06
T = 2 9.28↓ 32.09↓ 65.60↑ 83.78↑
Net Gain 0 0 0.34 0.72

Back-Training

T = 1 18.48 43.97 77.73 91.73
T = 2 20.01↑ 46.02↑ 79.80↑ 93.26↑
Net Gain 1.53 2.05 2.07 1.53

Table 6: Evolution of model performance on MLQues-
tions with increasing iterations: Blue numbers denote
increases in performance, while Red numbers denote
decrease in performance.

self-training in many problems (Zhu, 2005; Sachan
and Xing, 2018). We believe our cross-consistency
filter could also be explored on similar problems.

5.4 Is iterative refinement useful?
Further performance improvement of up to 1.53
BLEU-4 points and 2.07 R@20 points can be ob-
served in back-training (Table 6) via the iterative
procedure described in Algorithm 1. On the other
hand, self-training does not show any improve-
ments for QG and marginal improvements for IR.

5.5 Human Evaluation Results
We also report human evaluation of QG by sam-
pling 50 generated questions from MLQuestions
test set and asking three domain experts to rate a
question as good or bad based on four attributes:
Naturalness, i.e., fluency and grammatical correct-
ness; Coverage, i.e., whether question covers the
whole passage or only part of the passage; Factual
Correctness in ML domain; Answerability, i.e., if
the question can be answered using the passage.
From the results in Table 7, we observe that the

back-training model is superior on all four criteria.
However, all models perform similarly on natural-
ness.

In Table 8 we present some generated ques-
tions of various models on MLQuestions and Pub-
MedQA dataset. Subjectively, we find that no-
adaptation and self-training models fail to under-
stand domain knowledge, generate generic ques-
tions and miss important words present in gold
question. Whereas back-training generated ques-
tion matches more closely to gold question.

Model N C FC A

No-adaptation 0.64 0.30 0.58 0.68
Self-Training 0.63 0.32 0.58 0.70
Back-Training 0.66 0.41 0.64 0.88

Table 7: Human evaluations scores between 0-1 on 50
model generated questions for four criteria: Natural-
ness (N), Coverage (C), Factual Correctness (FC), and
Answerability (A).

5.6 Analysis of Question Types
1 Introduction
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Figure 5: Confusion matrix of actual (row) vs model
generated question (column) classes for 100 questions
sampled from MLQuestions test set. Classes are abbre-
viated as Description (D) Comparison (C), Explanation
(E), Method (M), and Preference (P). Values are in %
where each row sums to 100%.

We analyze how well our QG model can gen-
erate different kinds of questions according to the
taxonomy described in Table 2. In Figure 5 we plot
the confusion matrix between the actual question
class and generated question class for our back-
training model. To do this, 100 actual questions
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Passage Questions

If the line is a good fit for the data then No-adaptation: What is the meaning of random plot in statistics?
the residual plot will be random. However, ST: What is the meaning of random plot in statistics?
if the line is a bad fit for the data then BT: How do you know if a residual plot is random?
the plot of residuals will be random. Reference: How do you know if a residual plot is good?

Financial incentives for smoking cessation No-adaptation: When do we stop smoking in pregnancy?
in pregnancy are highly cost-effective, ST: When do you stop smoking in pregnancy?
with an incremental cost per quality BT: Is there a financial incentive for smoking cessation in pregrancy?
adjusted life years of £482, which is well Reference: Are financial incentives cost-effective to support smoking and
below recommended decision thresholds. cessation during pregnancy?

Table 8: Examples of generated questions from MLQuestions (first row) and PubMedQA (second row). ST and
BT refer to Self-training and Back-training models respectively.

and corresponding generated questions are sampled
from the MLQuestions test set and annotated by a
domain expert. We find that the model generates
few Explanation questions and even fewer Prefer-
ence questions while over-generating Description
questions. Comparison and Method questions show
good F1-score overall, hence these classes benefit
the most from domain adaptation.

6 Related Work

Question Generation methods have focused on
training neural Seq2Seq models (Du et al., 2017;
Mishra et al., 2020; Zhao et al., 2018; Chan and
Fan, 2019; Klein and Nabi, 2019) on supervised
QA datasets such as SQuAD (Rajpurkar et al.,
2016). Many recent works such as (Tang et al.,
2017; Wang et al., 2017) recognize the duality be-
tween QG and QA and propose joint training for
the two. Duan et al. (2017) generate QA pairs
from YahooAnswers, and improve QA by adding
a question-consistency loss in addition to QA loss.
Our work instead establishes strong duality be-
tween QG and IR task. Ours is also the first work
towards unsupervised domain adaptation for QG to
the best of our knowledge.

Passage Retrieval has previously been per-
formed using classical Lucene-BM25 systems
(Robertson and Zaragoza, 2009) based on sparse
vector representations of question and passage,
and matching keywords efficiently using TF-IDF.
Recently, Karpukhin et al. (2020) show that fine-
tuning dense representations of questions and pas-
sages on BERT outperforms classical methods by
a strong margin. We adopt the same model for
domain adaptation of IR. Concurrent to our work,
Reddy et al. (2020) also perform domain adapta-
tion for IR. Our focus has been on systematically
approaching UDA problem for both QG and IR.

Data Augmentation methods like self-training
have been applied in numerous NLP problems such
as question answering (Chung et al., 2018), ma-
chine translation (Ueffing, 2006), and sentiment
analysis (He and Zhou, 2011). Sachan and Xing
(2018) apply self-training to generate synthetic data
for question generation and question answering
(QA) in the same domain, and filter data using QA
model confidence on answer generated by question.

Back-translation’s idea of aligning real outputs
with noisy inputs is shared with back-training and
has been successful in improving Unsupervised
NMT (Artetxe et al., 2018; Edunov et al., 2018).
Zhang et al. (2018) use back-translation to gener-
ate synthetic data for the task of automatic style
transfer. Back-training also shares similarities with
co-training (Blum and Mitchell, 1998; Wan, 2009)
and tri-training (Li et al., 2014; Weiss et al., 2015)
where multiple models of same task generate syn-
thetic data for each other.

7 Conclusion and Future Work

We introduce back-training as an unsupervised do-
main adaptation method focusing on Question Gen-
eration and Passage Retrieval. Our algorithm gen-
erates synthetic data pairing high-quality outputs
with noisy inputs in contrast to self-training produc-
ing noisy outputs aligned with quality inputs. We
find that back-training outperforms self-training
by a large margin on our newly released dataset
MLQuestions and PubMedQA.

One area of future research will be exploring
back-training for other paired tasks like visual ques-
tion generation (Mostafazadeh et al., 2016) and im-
age retrieval (Datta et al., 2008), and style transfer
(Gatys et al., 2015) from source to target domain
and vice-versa. The theoretical foundations for the
superior performance of back-training have to be
explored further.
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A Appendix

A.1 Model Training Details

All experiments are run with same training con-
figuration. Mean scores across 5 individual runs
are provided on the test set. We describe the full
model training details below for reproducibility.

BART Question Generation Transformer
We train BART-Base2 with batch size 32 and
learning rate of 1e-5. For all experiments we
train the model for 5 epochs, though the model
converges in 2-3 epochs. For optimization
we use Adam (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.999, ε = 1e − 8. The question
and passage length is padded to 150 and 512 tokens
respectively. For decoding we use top-k sampling
(Fan et al., 2018) with k = 50. The model is
trained with standard cross-entropy objective.

Dense Passage Retriever (DPR)
We use publicly available implementation of
DPR model3 to train our IR system. We also
use pre-trained NQ DPR checkpoint provided by
authors 4 as the model trained on source domain of
NaturalQuestions dataset. The model is trained for
5 epochs with batch size of 32 for all experiments
with default hyperparameter settings in Karpukhin
et al. (2020). Karpukhin et al. (2020) also construct
negative examples for each (passage, question) pair
where the model maximizes question similarity
with gold passage and minimizes similarity
with negative passages simultaneously. We
construct negative passages similar to Karpukhin
et al. (2020) as the top-k passages returned by
BM25 which match most question tokens but
don’t contain the answer. We set k = 7 for our
experiments. For iterative refinement models,
we always use same negative passages as the
model obtained after 1st iteration (T = 1). This
is because after each iteration model is being
fine-tuned starting from previous model and
not re-trained on pseudo-data. We obtain better
performance gains on dev set following this setting.

2We use huggingface BART implementation
https://huggingface.co/transformers/
model_doc/bart.html

3https://github.com/facebookresearch/
DPR

4https://github.com/facebookresearch/
DPR/blob/master/dpr/data/download_data.
py

https://huggingface.co/transformers/model_doc/bart.html
https://huggingface.co/transformers/model_doc/bart.html
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR/blob/master/dpr/data/download_data.py
https://github.com/facebookresearch/DPR/blob/master/dpr/data/download_data.py
https://github.com/facebookresearch/DPR/blob/master/dpr/data/download_data.py
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Critic
Consistency θG θR

Self consistency -1.19 78.24
Cross consistency -5.95 71.65

Table 9: Threshold values for different consistency fil-
ters. Values are chosen as the third quartile (Q3) of
score distribution of synthetic data, accepting 75% of
synthetic data for model training.

OOD In-domain

OOD

In-domain

54 6

48 92

Figure 6: Test set Confusion matrix of Out-of-domain
(OOD) and In-domain classes for classifier probability
threshold of 0.8.

Consistency Filters
Table 9 enlists threshold values for different
consistency filters. Values are arrived at by plotting
confidence scores distribution of synthetic data,
and setting threshold to accept 75% of the data
(i.e. third quartile Q3). As explained in section 4.4,
for θG as critic we use conditional log-likelihood
logPr(q|p;θG) as our confidence scores. For θR

as critic we use DPR similarity score EP (p)EQ(q)
as our confidence scores.

A.2 NaturalQuestions Dataset Pre-processing

We use Google NaturalQuestions dataset as our
source domain corpus. We pre-process publicly
available train and dev corpora in a similar man-
ner to (Mishra et al., 2020) by selecting all ques-
tions starting from the long-answer tag and filtering
out cases where the long-answer doesn’t start with
the HTML <p> tag. We obtain 108,501 examples
which we split into a 90/10 ratio for training/dev
sets. The NQ dev set of 2,136 examples is used as
our test data (as the test set is hidden).

Figure 7: Precision-Recall curve for Test set of 150
questions. AP denotes average precision.

A.3 MLQuestions: Filtering undesirable data
This section describes filtering out-of-domain ques-
tions (OOD) from collected 104K questions from
Google described in section 2.2. Many ML terms
are homonyms (Menner, 1936): they have a differ-
ent meaning in another context - (e.g. “Ensemble”,
“Eager Learning”, “Transformers”). This means
the collected data contains OOD questions. Upon
analyzing 100 random questions drawn from 104K
questions, we find 27 of them are OOD.

To filter such undesirable data, we randomly
sample 1000 questions and recruit 3 domain experts
to label them as In-domain or OOD. 200 questions
were labeled by all 3 to determine inter-annotator
agreement. We record a Cohen’s Kappa agreement
score (McHugh, 2012) of 0.84. The 1000 anno-
tated questions are split into sizes 800, 50, 150 for
train, dev, and test sets respectively. Based on this
labeled data, we train a classifier on top of question
features to classify remaining questions as useful
or OOD. For extracting features from questions,
we utilize DistillBERT model (Sanh et al., 2019)
trained on SNLI+MultiNLI (Bowman et al., 2015;
Williams et al., 2018) and then fine-tuned on the
STS benchmark(Cer et al., 2017) train set5. This
gives us feature vector of size 768 which is used
to train SVM classifier6 with L2 penalty of 0.1.
We carefully set the acceptance threshold relatively
high to 0.8, to ensure high precision, thus accepting
very few OOD questions.

Figure 6 shows confusion matrix on test set with
α set as 0.8. The classifier obtains high precision
and average recall of 94.6% and 66% respectively.

5We use off-the-shelf implementation https://
github.com/UKPLab/sentence-transformers
to extract sentence features from pretrained model

6https://scikit-learn.org/stable/
modules/svm.html

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
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High precision is empirically verified by annotat-
ing 100 random accepted questions, out of which
92 are found to be in-domain. The remaining 8%
of the data can be treated as noise for model train-
ing. Figure 7 plots the precision-recall trade-off by
varying the acceptance threshold α.

A.4 Taxonomy of MLQuestions Dataset
In Table 2, we show the distribution of various
types of questions in MLQuestions and Natu-
ralQuestions dataset. We split the questions into 5
categories based on Nielsen’s Educational Taxon-
omy (Nielsen et al., 2008): descriptive questions,
which ask for definitions or examples; method ques-
tions which ask for computations or procedures;
explanation questions, which ask for justifications;
comparison questions, which ask to compare two
or more concepts; and preference questions, which
are answered by a selection from a set of options.
Refer to Nielsen (2008) for detailed understanding
of the taxonomy.

B Reproducibility Checklist

B.1 For all reported experimental results
• A clear description of the mathematical set-

ting, algorithm, and/or model: This is pro-
vided in Section 2 and Appendix A.1 of the
main paper.

• Submission of a zip file containing source
code, with specification of all dependencies,
including external libraries, or a link to
such resources (while still anonymized): We
provide the source code zipped repository
MLQuestions. The README file contains all
instructions needed to replicate experiments.
The file requirements.txt specifies required
python dependencies.

• Description of computing infrastructure used:
We perform our experiments on a machine
with specifications: 2 CPUs, 2 RTX8000
GPUs, 18GB RAM.

• The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or es-
timated energy cost: Table 10 lists average
runtime for each step of vanilla Self-training
and back-training algorithms, as well as for
consistency filters.

• Number of parameters in each model: For
question generation, the BART base model

Task Data Size Runtime

θG generates synthetic data 50K 174
θR generates synthetic data 35K 110
θG filters low-quality data 35K 31
θG filters low-quality data 50K 45
θG filters low-quality data 35K 35
θG filters low-quality data 50K 48
θG Self-training 50K 373
θG Back-training 35K 263
θR Self-training 35K 547
θR Back-training 50K 762

Table 10: Runtime (in minutes) for each step in domain
adaptation models for MLQuestions dataset. Since
there are 35K unaligned questions and 50K unaligned
passages, a step has different execution times depend-
ing on type of training (self/back) or consistency filter
(self/cross).

contains total 139M parameters. For passage
retrieval, the DPR model contains total 220M
parameters.

• Corresponding validation performance for
each reported test result: Tables 11, 12, 13
report the validation set performance for each
reported test result in the main paper.

• Explanation of evaluation metrics used,
with links to code: Refer to Section 2.6 of
main paper for explanation of evaluation
metrics. For evaluating QG model, we use
the Maluuba NLG-Eval github library to
compute BLEU, METEOR, ROUGE scores.
The repository can be found at
https://github.com/Maluuba/
nlg-eval. For IR, we implement the top-K
retrieval accuracy which can be found in the
file location file://MLQuestions/IR/
eval_retriever.py of our submitted
source code.

B.2 For all experiments with
hyperparameter search

• The exact number of training and evaluation
runs: For all experiments we train the QG
and IR for 5 epochs. We evaluate the model
performance using evaluation metrics after
each epoch on the validation set, and find that
models converge after 2-3 epochs.

• Bounds for each hyperparameter: We exper-
imented by manually varying hyperparame-
ters in vicinity of values mentioned in ap-
pendix A.1. The best hyperparameters on val-

https://github.com/Maluuba/nlg-eval
https://github.com/Maluuba/nlg-eval
file://MLQuestions/IR/eval_retriever.py
file://MLQuestions/IR/eval_retriever.py
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Dataset Model Question Generation Passage Retrieval
B1 B2 B3 B4 M R R@1 R@20 R@40 R@100

MLQuestions
No-adaptation 30.64 19.70 12.82 8.80 23.23 31.33 13.00 54.86 64.6 73.93
Self-Training 31.01 20.36 13.50 9.37 23.67 31.75 14.13 62.20 70.80 80.66

Back-Training 41.42 30.72 22.50 17.29 23.38 41.58 21.86 77.40 84.66 90.26

PubMedQA
No-adaptation 14.23 7.02 3.65 1.81 9.12 15.96 32.66 57.20 61.8 72.68
Self-Training 14.04 6.98 3.09 1.54 8.67 15.30 33.0 57.48 64.2 73.44

Back-Training 27.17 17.92 12.34 8.76 17.66 25.89 56.60 81.0 83.20 87.68

Table 11: Validation set results of unsupervised domain adaptation. No-adaptation denotes the model trained on
NaturalQuestions and evaluated directly on MLQuestions/PubMedQA dev sets without any domain adaptation.

QG IR
Consistency BLEU4 ROUGE R@20 R@100

Self-Training

None 9.37 31.75 62.20 80.66
Self 9.76 31.67 62.75 81.56
Cross 9.02 32.34 62.96 82.00

Back-Training

None 17.29 41.58 77.40 90.26
Self 17.91 43.27 76.86 91.06
Cross 18.09 41.84 78.26 91.33

Table 12: Effect of using consistency filters on Self-
Training and Back-Training for MLQuestions valida-
tion set.

QG IR
Iteration BLEU4 ROUGE R@20 R@100

Self-Training

T = 1 9.37 31.75 62.20 80.66
T = 2 9.22↓ 31.13↓ 62.80↑ 81.08↑
Net Gain 0 0 0.60 0.42

Back-Training

T = 1 17.29 41.58 77.40 90.26
T = 2 19.97↑ 45.74↑ 78.56↑ 91.26↑
Net Gain 2.68 4.16 1.16 1.00

Table 13: Evolution of model performance on MLQues-
tions validation set with increasing iterations: Blue
numbers denote increases in performance, while Red
numbers denote decrease in performance.

idation set were chosen for final model train-
ing.

• Hyperparameter configurations for best-
performing models: We provide complete hy-
perparameters details for QG and IR model in
Appendix A.1.

• The method of choosing hyperparameter val-
ues (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among
them (e.g., accuracy): We use manual tuning
method with the criterion as BLEU-4 accu-
racy for QG and R@40 retrieval accuracy for
IR task on validation set.

• Summary statistics of the results (e.g., mean,
variance, error bars, etc.): Mean scores
across 5 individual runs are provided for all
experiments of main paper.

B.3 For all datasets used

• Relevant details such as languages, and num-
ber of examples and label distributions: Sec-
tion 2 provide statistics of NaturalQuestions,
MLQuestions, and PubMedQA datasets. All
datasets are in English language.

• Details of train/validation/test splits: This
is also provided in section 2 for all three
datasets.

• Explanation of any data that were excluded,
and all pre-processing steps: Relevant details
are provided in section 2 for all three datasets.

• A zip file containing data or link to a down-
loadable version of the data: We provide
MLQuestions dataset in the submission zip
file. The NaturalQuestions and PubMedQA
dataset can be downloaded from https:
//ai.google.com/research/
NaturalQuestions/download and

https://ai.google.com/research/NaturalQuestions/download
https://ai.google.com/research/NaturalQuestions/download
https://ai.google.com/research/NaturalQuestions/download
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https://github.com/pubmedqa/
pubmedqa repsectively. The datasets can
be pre-processed following the procedures
mentioned in section 2.

• For new data collected, a complete descrip-
tion of the data collection process, such as
instructions to annotators and methods for
quality control.: We provide above details for
our newly created dataset MLQuestions in sec-
tion 2.2.

https://github.com/pubmedqa/pubmedqa
https://github.com/pubmedqa/pubmedqa

