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Abstract

To assess the effectiveness of any medical in-
tervention, researchers must conduct a time-
intensive and manual literature review. NLP
systems can help to automate or assist in
parts of this expensive process. In support of
this goal, we release MSˆ2 (Multi-Document
Summarization of Medical Studies), a dataset
of over 470k documents and 20K summaries
derived from the scientific literature. This
dataset facilitates the development of systems
that can assess and aggregate contradictory ev-
idence across multiple studies, and is the first
large-scale, publicly available multi-document
summarization dataset in the biomedical do-
main. We experiment with a summarization
system based on BART, with promising early
results, though significant work remains to
achieve higher summarization quality. We for-
mulate our summarization inputs and targets in
both free text and structured forms and mod-
ify a recently proposed metric to assess the
quality of our system’s generated summaries.
Data and models are available at https://
github.com/allenai/ms2.

1 Introduction

Multi-document summarization (MDS) is a chal-
lenging task, with relatively limited resources and
modeling techniques. Existing datasets are either
in the general domain, such as WikiSum (Liu et al.,
2018) and Multi-News (Fabbri et al., 2019), or very
small such as DUC1 or TAC 2011 (Owczarzak and
Dang, 2011). In this work, we add to this burgeon-
ing area by developing a dataset for summarizing
biomedical findings. We derive documents and
summaries from systematic literature reviews, a
type of biomedical paper that synthesizes results
across many other studies. Our aim in introducing
MSˆ2 is to: (1) expand MDS to the biomedical
domain, (2) investigate fundamentally challenging

∗Work performed during internship at AI2
1https://duc.nist.gov

Figure 1: Our primary formulation (texts-to-text) is a
seq2seq MDS task. Given study abstracts and a BACK-
GROUND statement, generate the TARGET summary.

Figure 2: The distributions of review and study publica-
tion years in MSˆ2 show a clear temporal lag. Dashed
lines mark the median year of publication.

issues in NLP over scientific text, such as summa-
rization over contradictory information and assess-
ing summary quality via a structured intermediate
form, and (3) aid in distilling large amounts of
biomedical literature by supporting automated gen-
eration of literature review summaries.

Systematic reviews synthesize knowledge across
many studies (Khan et al., 2003), and they are so
called for the systematic (and expensive) process
of creating a review; each taking 1-2 years to com-
plete (Michelson and Reuter, 2019).2 As we note

2https://community.cochrane.org/review-production/
production-resources/proposing-and-registering-new-
cochrane-reviews

https://github.com/allenai/ms2
https://github.com/allenai/ms2
https://duc.nist.gov
https://community.cochrane.org/review-production/production-resources/proposing-and-registering-new-cochrane-reviews
https://community.cochrane.org/review-production/production-resources/proposing-and-registering-new-cochrane-reviews
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in Fig. 2, a delay of around 8 years is observed
between reviews and the studies they cite! The
time and cost of creating and updating reviews has
inspired efforts at automation (Tsafnat et al., 2014;
Marshall et al., 2016; Beller et al., 2018; Marshall
and Wallace, 2019), and the constant deluge of
studies3 has only increased this need.

To move the needle on these challenges and sup-
port further work on literature review automation,
we present MSˆ2, a multi-document summarization
dataset in the biomedical domain. Our contribu-
tions in this paper are as follows:

• We introduce MSˆ2, a dataset of 20K reviews
and 470k studies summarized by these reviews.

• We define a texts-to-text MDS task (Fig. 1) based
on MSˆ2, by identifying target summaries in each
review and using study abstracts as input docu-
ments. We develop a BART-based model for
this task, which produces fluent summaries that
agree with the evidence direction stated in gold
summaries around 50% of the time.

• In order to expose more granular representations
to users, we define a structured form of our data
to support a table-to-table task (§ 4.2). We lever-
age existing biomedical information extraction
systems (Nye et al., 2018; DeYoung et al., 2020)
(§3.3.1, §3.3.2) to evaluate agreement between
target and generated summaries.

2 Background

Systematic reviews aim to synthesize results over
all relevant studies on a topic, providing high qual-
ity evidence for biomedical and public health deci-
sions. They are a fixture in the biomedical litera-
ture, with many established protocol around their
registration, production, and publication (Chalmers
et al., 2002; Starr et al., 2009; Booth et al., 2012).
Each systematic review addresses one or several
research questions, and results are extracted from
relevant studies and summarized. For example, a
review investigating the effectiveness of Vitamin
B12 supplementation in older adults (Andrès et al.,
2010) synthesizes results from 9 studies.

The research questions in systematic reviews can
be described using the PICO framework (Zakowski
et al., 2004). PICO (which stands for Population:

3Of the heterogeneous study types, randomized con-
trol trials (RCTs) offer the highest quality of evidence.
Around 120 RCTs are published per day as of this writing
https://ijmarshall.github.io/sote/, up from 75 in 2010 (Bastian
et al., 2010).

who is studied? Intervention: what intervention
was studied? Comparator: what was the inter-
vention compared against? Outcome: what was
measured?) defines the main facets of biomedical
research questions, and allows the person(s) con-
ducting a review to identify relevant studies (stud-
ies included in a review generally have the same or
similar PICO elements as the review). A medical
systematic review is one which reports results for
applying any kind of medical or social interven-
tion to a group of people. Interventions are wide-
ranging, including yoga, vaccination, team train-
ing, education, vitamins, mobile reminders, and
more. Recent work on evidence inference (DeY-
oung et al., 2020; Nye et al., 2020) goes beyond
identifying PICO elements, and aims to group and
identify overall findings in reviews. MSˆ2 is a natu-
ral extension of these paths: we create a dataset and
build a system with both natural summarization tar-
gets from input studies, while also incorporating
the inherent structure studied in previous work.

In this work, we use the term review when de-
scribing literature review papers, which provide our
summary targets. We use the term study to describe
the documents that are cited and summarized by
each review. There are various study designs which
offer differing levels of evidence, e.g. clinical trials,
cohort studies, observational studies, case studies,
and more (Concato et al., 2000). Of these study
types, randomized controlled trials (RCTs) offer
the highest quality of evidence (Meldrum, 2000).

3 Dataset

We construct MSˆ2 from papers in the Semantic
Scholar literature corpus (Ammar et al., 2018).
First, we create a corpus of reviews and studies
based on the suitability criteria defined in §3.1. For
each review, we classify individual sentences in the
abstract to identify summarization targets (§3.2).
We augment all reviews and studies with PICO
span labels and evidence inference classes as de-
scribed in §3.3.1 and §3.3.2. As a final step in data
preparation, we cluster reviews by topic and form
train, development, and test sets from these clusters
(§3.4).

3.1 Identifying suitable reviews and studies

To identify suitable reviews, we apply (i) a high-
recall heuristic keyword filter, (ii) PubMed filter,
(iii) study-type filter, and (iv) suitability classi-
fier, in series. The keyword filter looks for the

https://ijmarshall.github.io/sote/


7496

Label Sentence

BACKGROUND ... AREAS COVERED IN THIS REVIEW The ob-
jective of this review is to evaluate the efficacy of
oral cobalamin treatment in elderly patients .

OTHER To reach this objective , PubMed data were systematic
ally search ed for English and French articles published
from January 1990 to July 2008 . ...

TARGET The efficacy was particularly highlighted when look-
ing at the marked improvement in serum vitamin B12
levels and hematological parameters , for example
hemoglobin level , mean erythrocyte cell volume and
reticulocyte count .

OTHER The effect of oral cobalamin treatment in patients pre-
senting with severe neurological manifestations has
not yet been adequately documented ....

Table 1: Abbreviated example from Andrès et al.
(2010) with predicted sentence labels (full abstract in
Tab. 11, App. D.3). Spans corresponding to Popula-
tion, Intervention, and Outcome elements are tagged
and surrounded with special tokens.

phrase “systematic review” in the title and abstracts
of all papers in Semantic Scholar, which yields
220K matches. The PubMed filter, yielding 170K
matches, limits search results to papers that have
been indexed in the PubMed database, which re-
stricts reviews to those in the biomedical, clini-
cal, psychological, and associated domains. We
then use citations and Medical Subject Headings
(MeSH) to identify input studies via their document
types and further refine the remaining reviews, see
App. A for details on the full filtering process.

Finally, we train a suitability classifier as the fi-
nal filtering step, using SciBERT (Beltagy et al.,
2019), a BERT (Devlin et al., 2019) based language
model trained on scientific text. Details on classi-
fier training and performance are provided in Ap-
pendix C. Applying this classifier to the remaining
reviews leaves us with 20K candidate reviews.

3.2 Background and target identification
For each review, we identify two sections: 1) the
BACKGROUND statement, which describes the re-
search question, and 2) the overall effect or findings
statement as the TARGET of the MDS task (Fig. 1).
We frame this as a sequential sentence classification
task (Cohan et al., 2019): given the sentences in the
review abstract, classify them as BACKGROUND,
TARGET, or OTHER. All BACKGROUND sentences
are aggregated and used as input in modeling. All
TARGET sentences are aggregated and form the
summary target for that review. Sentences classi-
fied as OTHER may describe the methods used to
conduct the review, detailed findings such as the
number of included studies or numerical results, as
well as recommendations for practice. OTHER sen-
tences are not suitable for modeling because they

Intervention Outcome Evidence sentence Direction

oral
cobalamin
therapy

effect The effect of oral cobalamin
treatment in patients presenting
with severe neurological
manifestations has not yet been
adequately documented .

no_change

oral
cobalamin
therapy

discomfort,
inconve-
nience and
cost

Oral cobalamin treatment avoids
the discomfort , inconvenience
and cost of monthly injections .

decreases

oral
cobalamin
therapy

serum
vitamin b12
levels and
hematologi-
cal
parameters

The efficacy was particularly
highlighted when looking at the
marked improvement in serum
vitamin B12 levels and
hematological parameters , for
example hemoglobin level , mean
erythrocyte cell volume and
reticulocyte count .

increases

Table 2: Sample Intervention, Outcome, evidence state-
ment, and identified effect directions from a systematic
review investigating the effectiveness of vitamin B12
therapies in the elderly (Andrès et al., 2010).

either contain information specific to the review, as
in methods; too much detail, in the case of results;
or contain guidance on how medicine should be
practiced, which is both outside the scope of our
task definition and ill-advised to generate.

Five annotators with undergraduate or gradu-
ate level biomedical background labeled 3000 sen-
tences from 220 review abstracts. During annota-
tion, we asked annotators to label sentences into 9
classes (which we collapse into the 3 above; see
App. D for detailed info on other classes). Two
annotators then reviewed all annotations and cor-
rected mistakes. The corrections yield a Cohen’s
κ (Cohen, 1960) of 0.912. Though we retain only
BACKGROUND and TARGET sentences for model-
ing, we provide labels to all 9 classes in our dataset.

Using SciBERT (Beltagy et al., 2019), we train a
sequential sentence classifier. We prepend each sen-
tence with a [SEP] token and use a linear layer
followed by a softmax to classify each sentence.
A detailed breakdown of the classifier scores is
available in Tab. 9, App. D. While the classifier per-
forms well (94.1 F1) at identifying BACKGROUND

sentences, it only achieves 77.4 F1 for TARGET sen-
tences. The most common error for TARGET sen-
tences is confusing them for results from individual
studies or detailed statistical analysis. Tab. 1 shows
example sentences with predicted labels. Due to
the size of the dataset, we cannot manually annotate
sentence labels for all reviews, so we use the sen-
tence classifier output as silver labels in the training
set. To ensure the highest degree of accuracy for
the summary targets in our test set, we manually re-
view all 4519 TARGET sentences in the 2K reviews
of the test set, correcting 1109 sentences. Any re-
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views without TARGET sentences are considered
unsuitable and are removed from the final dataset.

3.3 Structured form

As discussed in §2, the key findings of studies and
reviews can be succinctly captured in a structured
representation. The structure consists of PICO ele-
ments (Nye et al., 2018) that define what is being
studied, in addition to the effectiveness of the in-
tervention as inferred through Evidence Inference
(§3.3.2). In addition to the textual form of our task,
we construct this structured form and release it with
MSˆ2 to facilitate investigation of consistency be-
tween input studies and reviews, and to provide
additional information for interpreting the findings
reported in each document.

3.3.1 Adding PICO tags
The Populations, Interventions, and Outcomes of
interest are a common way of representing clinical
knowledge (Huang et al., 2006). Recent work (Nye
et al., 2020) has found that the Comparator is rarely
mentioned explicitly, so we exclude it from our
dataset. Previous summarization work has shown
that tagging salient entities, especially PIO ele-
ments (Wallace et al., 2020), can improve summa-
rization performance (Nallapati et al., 2016a,b), so
we mark PIO elements with special tokens added to
our model vocabulary: <pop>, </pop>, <int>,
</int>, <out>, and </out>.

Using the EBM-NLP corpus (Nye et al., 2018),
a crowd-sourced collection of PIO tags,4 we train
a token classification model (Wolf et al., 2020)
to identify these spans in our study and review
documents. These span sets are denoted P =
{P1, P2, ..., PP̄ }, I = {I1, I2, ..., IĪ} and O =
{O1, O2, ..., OŌ}. At the level of each review, we
perform a simple aggregation over these elements.
Any P, I, or O span fully contained within any other
span of the same type is removed from these sets
(though they remain tagged in the text). Removing
these contained elements reduces the number of
duplicates in our structured representation. Our
dataset has an average of 3.0 P, 3.5 I, and 5.4 O
spans per review.

3.3.2 Adding Evidence Inference
We predict the direction of evidence associated
with every Intervention-Outcome (I/O) pair found

4EBM-NLP contains high quality, crowdsourced and
expert-tagged PIO spans in clinical trial abstracts. See App. I
for a comparison to other PICO datasets.

in the review abstract. Taking the product of each
Ii and Oj in the sets I and O yields all possible
I/O pairs, and each I/O pair is associated with an
evidence direction dij , which can take on one of
the values in {increases, no_change, decreases }.
For each I/O pair, we also derive a sentence sij
from the document supporting the dij classifica-
tion. Each review can therefore be represented as a
set of tuples T of the form (Ii, Oj , sij , dij) and car-
dinality Ī × Ō. See Tab. 2 for examples. For mod-
eling, as in PICO tagging, we surround supporting
sentences with special tokens <evidence> and
</evidence>; and append the direction class
with a <sep> token.

We adapt the Evidence Inference (EI) dataset
and models (DeYoung et al., 2020) for labeling.
The EI dataset is a collection of RCTs, tagged
PICO elements, evidence sentences, and overall
evidence direction labels increases, no_change, or
decreases. The EI models are composed of 1) an
evidence identification module which identifies an
evidence sentence, and 2) an evidence classifica-
tion module for classifying the direction of effec-
tiveness. The former is a binary classifier on top
of SciBERT, whereas the latter is a softmax dis-
tribution over effectiveness directions. Using the
same parameters as DeYoung et al. (2020), we mod-
ify these two modules to function solely over I
and O spans.5 The resulting 354k EI classifica-
tions for our reviews are 13.4% decreases, 57.0%
no_change, and 29.6% increases. Of the 907k clas-
sifications over input studies, 15.7% are decreases,
60.7% no_change, and 23.6% increases. Only
53.8% of study classifications match review classifi-
cations, highlighting the prevalence and challenges
of contradictory data.

3.4 Clustering and train / test split
Reviews addressing overlapping research questions
or providing updates to previous reviews may share
input studies and results in common, e.g., a review
studying the effect of Vitamin B12 supplementation
on B12 levels in older adults and a review studying
the effect of B12 supplementation on heart dis-
ease risk will cite similar studies. To avoid the
phenomenon of learning from test data, we clus-
ter reviews before splitting into train, validation,
and test sets. We compute SPECTER paper em-
beddings (Cohan et al., 2020) using the title and

5Nye et al. (2020) found that removing Comparator ele-
ments improved classification performance from 78.0 F1 to
81.4 F1 with no additional changes or hyper-parameter tuning.
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Dataset statistics MSˆ2

Total reviews 20K
Total input studies 470k
Median number of studies per review 17
Median number of reviews per study 1
Average number of reviews per study 1.9
Median BACKGROUND sentences per review 3
Median TARGET sentences per review 2

Table 3: MSˆ2 dataset statistics.

Dataset Docs Tokens per
Summary

Tokens per
Document

DUC ’03/’04 320 109.6 4636.2
TAC 2011 176 99.7 4695.7
WikiSum 2,332,000 101–103 102–106

Multi-News 56,216 263.7 2103.4
MSˆ2 470,402 61.3 365.3

Table 4: A comparison of MDS datasets; adapted from
Fabbri et al. (2019). Datasets are DUC ’03/’041, TAC
2011 (Owczarzak and Dang, 2011), WikiSum (Liu
et al., 2018), and Multi-News (Fabbri et al., 2019).
Note: WikiSum only provides ranges, not exact size.

abstract of each review, and perform agglomerative
hierarchical clustering using the scikit-learn library
(Buitinck et al., 2013). This results in 200 clus-
ters, which we randomly partition into 80/10/10
train/development/test sets.

3.5 Dataset statistics

The final dataset consists of 20K reviews and 470k
studies. Each review in the dataset summarizes
an average of 23 studies, ranging between 1–401
studies. See Tab. 3 for statistics, and Tab. 4 for a
comparison to other datasets. The median review
has 6.7K input tokens from its input studies, while
the average has 9.4K tokens (a few reviews have
lots of studies). We restrict the input size when
modeling to 25 studies, which reduces the average
input to 6.6K tokens without altering the median.

Fig. 2 shows the temporal distribution of reviews
and input studies in MSˆ2. We observe that though
reviews in our dataset have a median publication
year of 2016, the studies cited by these reviews
are largely from before 2010, with a median of
2007 and peak in 2009. This citation delay has
been observed in prior work (Shojania et al., 2007;
Beller et al., 2013), and further illustrates the need
for automated or assisted reviews.

4 Experiments

We experiment with a texts-to-text task formulation
(Fig. 1). The model input consists of the BACK-
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Figure 3: Two input encoding configurations. Above:
LongformerEncoderDecoder (LED), where all input
studies are appended to the BACKGROUND and en-
coded together. Below: In the BART configuration,
each input study is encoded independently with the re-
view BACKGROUND. These are concatenated to form
the input encoding.

GROUND statement and study abstracts; the output
is the TARGET statement. We also investigate the
use of the structured form described in §3.3.2 for
a supplementary table-to-table task, where given
inputs of I/O pairs from the review; the model tries
to predict the evidence direction. We provide ini-
tial results for the table-to-table task, although we
consider this an area in need of active research.

4.1 Texts-to-text task

Our approach leverages BART (Lewis et al.,
2020b), a seq2seq autoencoder. Using BART, we
encode the BACKGROUND and input studies as
in Fig. 3, and pass these representations to a de-
coder. Training follows a standard auto-regressive
paradigm used for building summarization models.
In addition to PICO tags (§3.3.1), we augment the
inputs by surrounding the background and each
input study with special tokens <background>,
</background>, and <study>, </study>.

For representing multiple inputs, we experiment
with two configurations: one leveraging BART
with independent encodings of each input, and
LongformerEncoderDecoder (LED) (Beltagy et al.,
2020) which can encode long inputs of up to 16K
tokens. For the BART configuration, each study ab-
stract is appended to the BACKGROUND statement
and encoded independently. These representations
are concatenated together to form the input to the
decoder layer. In the BART configuration, interac-
tions happen only in the decoder. For the LED con-
figuration, the input sequence starts with the BACK-
GROUND statement followed by a concatenation of
all input study abstracts. The BACKGROUND repre-
sentation is shared among all input studies; global
attention allows interactions between studies, and a
sliding attention window of 512 tokens allows each
token to attend to its neighbors.
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We train a BART-base model, with hyperparam-
eters described in App. F. We report experimental
results in Tab. 5. In addition to ROUGE (Lin, 2004),
we also report two metrics derived from evidence
inference: ∆EI and F1. We describe the intuition
and computation of the ∆EI metric in Section 4.3;
because it is a distance metric, lower ∆EI is better.
For F1, we use the EI classification module to iden-
tify evidence directions for both the generated and
target summaries. Using these classifications, we
report a macro-averaged F1 over the class agree-
ment between the generated and target summaries
(Buitinck et al., 2013). For example generations,
see Tab. 13 in App. G.

4.2 Table-to-table task
An end user of a review summarization system may
be interested in specific results from input studies
(including whether they agree or contradict) rather
than the high level conclusions available in TAR-
GET statements. Therefore, we further experiment
with structured input and output representations
that attempt to capture results from individual stud-
ies. As described in §3.3.2, the structured repre-
sentation of each review or study is a tuple of the
form (Ii, Oj , sij , dij). It is important to note that
we use the same set of Is and Os from the review
to predict evidence direction from all input studies.

Borrowing from the ideas of (Raffel et al., 2020),
we formulate our classification task as a text genera-
tion task, and train the models described in Section
4.1 to generate one of the classes in {increases,
no_change, decreases }. Using the EI classifica-
tions from 3.3.2, we compute an F-score macro-
averaged over the effect classes (Tab. 6). We retain
all hyperparameter settings other than reducing the
maximum generation length to 10.

We stress that this is a preliminary effort to
demonstrate feasibility rather than completeness —
our results in Tab. 6 are promising but the under-
lying technologies for building the structured data:
PICO tagging, co-reference resolution, and PICO
relation extraction, are currently weak (Nye et al.,
2020). Resorting to using the full cross-product of
Interventions and Outcomes results in duplicated
I/O pairs as well as potentially spurious pairs that
do not correspond to actual I/O pairs in the review.

4.3 ∆EI metric
Recent work in summarization evaluation has high-
lighted the weaknesses of ROUGE for capturing
factuality of generated summaries, and has focused

Model R-1 R-2 R-L ∆EI↓ F1

BART 27.56 9.40 20.80 .459 46.51
LED 26.89 8.91 20.32 .449 45.00

Table 5: Results for the texts-to-text setting. We report
ROUGE, ∆EI (§ 4.3), and macro-averaged F1-scores.

Model P R F1

BART 50.31 67.98 65.89

Table 6: Results for the table-to-table setting. We re-
port macro-averaged precision, recall, and F-scores.

on developing automated metrics more closely cor-
related with human-assessed factuality and quality
(Zhang* et al., 2020; Wang et al., 2020a; Falke
et al., 2019). In this vein, we modify a recently
proposed metric based on EI classification distri-
butions (Wallace et al., 2020), intending to capture
the agreement of Is, Os, and EI directions between
input studies and the generated summary.

For each I/O tuple (Ii, Oj), the predicted di-
rection dij is actually a distribution of proba-
bilities over the three direction classes Pij =
(pincreases, pdecreases, pno_change). If we consider
this distribution for the gold summary (Pij) and
the generated summary (Qij), we can compute
the Jensen-Shannon Distance (JSD) (Lin, 1991),
a bounded score between [0, 1], between these dis-
tributions. For each review, we can then compute a
summary JSD metric, which we call ∆EI, as an av-
erage over the JSD of each I/O tuple in that review:

Ī∑
i=1

J̄∑
j=1

JSD(Pij , Qij) (1)

Different from Wallace et al. (2020), ∆EI is an
average over all outputs, attempting to capture an
overall picture of system performance,6 and our
metric retains the directionality of increases and
decreases, as opposed to collapsing them together.

To facilitate interpretation of the ∆EI metric, we
offer a degenerate example. Given the case where
all direction classifications are certain, and the prob-
ability distributions Pij and Qij exist in the space
of (1, 0, 0), (0, 1, 0), or (0, 0, 1), ∆EI takes on the
following values at various levels of consistency

6Wallace et al. (2020) only report correlation of a related
metric with human judgments.
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Gold
Generated inc. no_c. dec. insuff.

increases 56 3 1 19
no_change 13 1 1 10
decreases 0 0 5 2

insufficient 5 1 0 5
skip 8 0 0 3

Table 7: Confusion matrix for human evaluation results

between Pij and Qij for the input studies:

100% consistent ∆EI = 0.0
50% consistent ∆EI = 0.42
0% consistent ∆EI = 0.83

In other words, in both the standard BART and
LED setting, the evidence directions predicted in
relation to the generated summary are slightly less
than 50% consistent with the direction predictions
produced relative to the gold summary.

4.4 Human evaluation & error analysis

We randomly sample 150 reviews from the test set
for manual evaluation. For each generated and gold
summary, we annotate the primary effectiveness
direction in the summary to the following classes:
(i) increases: intervention has a positive effect on
the outcome; (ii) no_change: no effect, or no differ-
ence between the intervention and the comparator;
(iii) decreases: intervention has a negative effect on
the outcome; (iv) insufficient: insufficient evidence
is available; (v) skip: the summary is disfluent, off
topic, or does not contain information on efficacy.

Here, increases, no_change, and decreases cor-
respond to the EI classes, while we introduce insuf-
ficient to describe cases where insufficient evidence
is available on efficacy, and skip to describe data
or generation failures. Two annotators provide la-
bels, and agreement is computed over 50 reviews
(agreement: 86%, Cohen’s κ: 0.76). Of these, 17
gold summaries lack an efficacy statement, and are
excluded from analysis. Tab. 7 shows the confusion
matrix for the sample. Around 50% (67/133) of
generated summaries have the same evidence direc-
tion as the gold summary. Most confusions happen
between increases, no_change, and insufficient.

Tab. 8 shows how individual studies can provide
contradictory information, some supporting a posi-
tive effect for an intervention and some observing
no or negative effects. EI may be able to capture
some of the differences between these input studies.
From observations on limited data: while studies

Effectiveness Example statements from studies

Positive
effect

Adjuvant vinorelbine plus cisplatin
extends survival in patients with
completely resected NSCLC...

Our results suggest that patients with
NSCLC at pathologic stage I who have
undergone radical surgery benefit from
adjuvant chemotherapy.

No effect or
negative
effect

No survival benefit for CAP vs
no-treatment control was found in this
study. Therefore, adjuvant therapy with
CAP should not be recommended for
patients with resected early-stage
non-small cell lung cancer .

On the basis of this trial , adjuvant
therapy with CAP should not be
recommended for patients with
resected stage I lung cancer .

Table 8: Text from the input studies to Petrelli and
Barni (2013), a review investigating the effectiveness
of cisplatin-based (CAP) chemotherapy for non-small
cell lung cancer (NSCLC). Input studies vary in their
results, with some stating a positive effect for adjuvant
chemotherapy, and some stating no survival benefit.

with positive effect tend to have more EI predic-
tions that were increases or decreases, those with
no or negative effect tended to have predictions that
were mostly no_change. However, more work is
needed to better understand how to capture these
directional relations and how to aggregate them
into a coherent summary.

5 Related Work

NLP for scientific text has been gaining interest re-
cently with work spanning the whole NLP pipeline:
datasets (S2ORC (Lo et al., 2020), CORD-19
(Wang et al., 2020b)), pretrained transformer mod-
els (SciBERT (Beltagy et al., 2019), BioBERT (Lee
et al., 2020), ClinicalBERT (Huang et al., 2019),
SPECTER (Cohan et al., 2020)), NLP tasks like
NER (Nye et al., 2018; Li et al., 2016), relation
extraction (Jain et al., 2020; Luan et al., 2018;
Kringelum et al., 2016), QA (Abacha et al., 2019),
NLI (Romanov and Shivade, 2018; Khot et al.,
2018), summarization (Cachola et al., 2020; Chan-
drasekaran et al., 2019), claim verification (Wadden
et al., 2020), and more. MSˆ2 adds a MDS dataset
to the scientific document NLP literature.

A small number of MDS datasets are available
for other domains, including MultiNews (Fabbri
et al., 2019), WikiSum (Liu et al., 2018), and
Wikipedia Current Events (Gholipour Ghalandari
et al., 2020). Most similar to MSˆ2 is MultiNews,



7501

where multiple news articles about the same event
are summarized into one short paragraph. Aside
from being in a different textual domain (scientific
vs. newswire), one unique characteristic of MSˆ2
compared to existing datasets is that MSˆ2 input
documents have contradicting evidence. Modeling
in other domains has typically focused on straight-
forward applications of single-document summa-
rization to the multi-document setting (Lebanoff
et al., 2018; Zhang et al., 2018), although some
methods explicitly model multi-document structure
using semantic graph approaches (Baumel et al.,
2018; Liu and Lapata, 2019; Li et al., 2020).

In the systematic review domain, work has typ-
ically focused on information retrieval (Boudin
et al., 2010; Ho et al., 2016; Znaidi et al., 2015;
Schoot et al., 2020), extracting findings (Lehman
et al., 2019; DeYoung et al., 2020; Nye et al.,
2020), and quality assessment (Marshall et al.,
2015, 2016). Only recently in Wallace et al. (2020)
and this work has consideration been made for ap-
proaching the entire system as a whole. We refer
the reader to App. I for more context regarding the
systematic review process.

6 Discussion

Though MDS has been explored in the general
domain, biomedical text poses unique challenges
such as the need for domain-specific vocabulary
and background knowledge. To support develop-
ment of biomedical MDS systems, we release the
MSˆ2 dataset. MSˆ2 contains summaries and docu-
ments derived from biomedical literature, and can
be used to study literature review automation, a
pressing real-world application of MDS.

We define a seq2seq modeling task over this
dataset, as well as a structured task that incorpo-
rates prior work on modeling biomedical text (Nye
et al., 2018; DeYoung et al., 2020). We show that
although generated summaries tend to be fluent
and on-topic, they only agree with the evidence
direction in gold summaries around half the time,
leaving plenty of room for improvement. This ob-
servation holds both through our ∆EI metric and
through human evaluation of a small sample of gen-
erated summaries. Given that only 54% of study
evidence directions agree with the evidence direc-
tions of their review, modeling contradiction in
source documents may be key to improving upon
existing summarization methods.

Limitations Challenges in co-reference resolu-
tion and PICO extraction limit our ability to gener-
ate accurate PICO labels at the document level. Er-
rors compound at each stage: PICO tagging, taking
the product of Is and Os at the document level, and
predicting EI direction. Pipeline improvements are
needed to bolster overall system performance and
increase our ability to automatically assess perfor-
mance via automated metrics like ∆EI. Relatedly,
automated metrics for summarization evaluation
can be difficult to interpret, as the intuition for
each metric must be built up through experience.
Though we attempt to facilitate understanding of
∆EI by offering a degenerate example, more ex-
ploration is needed to understand how a practically
useful system would perform on such a metric.

Future work Though we demonstrate that
seq2seq approaches are capable of producing fluent
and on-topic review summaries, there are signifi-
cant opportunities for improvement. Data improve-
ments include improving the quality of summary
targets and intermediate structured representations
(PICO tags and EI direction). Another opportunity
lies in linking to structured data in external sources
such as various clinical trial databases7,8,9 rather
than relying solely on PICO tagging. For modeling,
we are interested in pursuing joint retrieval and
summarization approaches (Lewis et al., 2020a).
We also hope to explicitly model the types of con-
tradictions observed in Tab. 8, such that generated
summaries can capture nuanced claims made by
individual studies.

7 Conclusion

Given increasing rates of publication, multi-
document summarization, or the creation of liter-
ature reviews, has emerged as an important NLP
task in science. The urgency for automation tech-
nologies has been magnified by the COVID-19 pan-
demic, which has led to both an accelerated speed
of publication (Horbach, 2020) as well as prolifera-
tion of non-peer-reviewed preprints which may be
of lower quality (Lachapelle, 2020). By releasing
MSˆ2, we provide a MDS dataset that can help to
address these challenges. Though we demonstrate
that our MDS models can produce fluent text, our
results show that there are significant outstanding
challenges that remain unsolved, such as PICO

7https://clinicaltrials.gov/
8https://www.clinicaltrialsregister.eu/
9https://www.gsk-studyregister.com/

https://clinicaltrials.gov/
https://www.clinicaltrialsregister.eu/
https://www.gsk-studyregister.com/
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tuple extraction, co-reference resolution, and eval-
uation of summary quality and faithfulness in the
multi-document setting. We encourage others to
use this dataset to better understand the challenges
specific to MDS in the domain of biomedical text,
and to push the boundaries on the real world task
of systematic review automation.
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Ethical Concerns and Broader Impact

We believe that automation in systematic reviews
has great potential value to the medical and scien-
tific community; our aim in releasing our dataset
and models is to facilitate research in this area.
Given unresolved issues in evaluating the factual-
ity of summarization systems, as well as a lack
of strong guarantees about what the summary out-
puts contain, we do not believe that such a system
is ready to be deployed in practice. Deploying
such a system now would be premature, as with-
out these guarantees we would be likely to gener-
ate plausible-looking but factually incorrect sum-
maries, an unacceptable outcome in such a high
impact domain. We hope to foster development
of useful systems with correctness guarantees and
evaluations to support them.
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Figure 4: Five fold cross-validation results from train-
ing a binary SciBERT classifier on the annotations. Pre-
cisions increase following a logistic curve over thresh-
old choices; recalls decrease.

Sentence class P R F

BACKGROUND 0.972 0.952 0.958
RECOMMENDATION 0.418 0.296 0.338
EVIDENCE_QUALITY 0.580 0.528 0.550
EFFECT 0.752 0.800 0.774
METHODS 0.938 0.944 0.940
GOAL 0.916 0.936 0.924
DETAILED_FINDINGS 0.856 0.860 0.858
ETC 0.406 0.322 0.338
FURTHER_STUDY 0.756 0.864 0.804

Table 9: Precision, Recall, and F1-scores for all anno-
tation classes, averaged over five folds of cross valida-
tion.

A MeSH Filtering

For each candidate review, we extract its cited pa-
pers and identify the study type of each cited paper
using MeSH publication type,10 keeping only stud-
ies that are clinical trials, cohort studies, and/or ob-
servational studies (see Appendix A.1 for full list
of MeSH terms). We exclude case reports, which
usually report findings on one or a small number
of individuals. We observe that publication type
MeSH terms tend to be under-tagged.11 Therefore,
we also use ArrowSmith trial labels (Cohen et al.,
2015; Shao et al., 2015) and a keyword heuristic
(the span “randomized” occurring in the title or
abstract) to identify additional RCT-like studies.12

Candidate reviews are culled to retain only those
that cite at least one suitable study and no case

10https://www.nlm.nih.gov/mesh/pubtypes.html
11From a cursory inspection of a random sample of studies,

this problem seems to be widespread.
12RCTs provide the highest quality of evidence so we strive

to include as many as possible as inputs in our dataset.

studies, leaving us with 30K reviews.

A.1 Suitability MeSH Terms

We use the following publication type MeSH terms
to decide whether a review’s input document is a
study of interest:

1. ‘Clinical Study’
2. ‘Clinical Trial’
3. ‘Controlled Clinical Trial’
4. ‘Randomized Controlled Trial’
5. ‘Pragmatic Clinical Trial’
6. ‘Clinical Trial, Phase I’
7. ‘Clinical Trial, Phase II’
8. ‘Clinical Trial, Phase III’
9. ‘Clinical Trial, Phase IV’

10. ‘Equivalence Trial’
11. ‘Comparative Study’
12. ‘Observational Study’
13. ‘Adaptive Clinical Trial’

And we exclude any reviews citing studies with
the following publication type MeSH terms:

1. ‘Randomized Controlled Trial, Veterinary’
2. ‘Clinical Trial, Veterinary’
3. ‘Observational Study, Veterinary’
4. ‘Case Report’

B Suitability Annotation

The annotation guidelines for review suitability are
given below. Each annotator was tasked with an
initial round of annotation, followed by a round of
review, then further annotation.

B.1 Suitability Guidelines

A systematic review is a document resulting from
an in-depth search and analysis of all the literature
relevant to a particular topic. We are interested in
systematic reviews of medical literature, specifi-
cally those that assess varying treatments and the
outcomes associated with them.

There are many different types of reviews, and
many types of documents that look like reviews.
We need to identify only the “correct” types of
reviews. Sometimes this can be done from the title
alone, sometimes one has to read the review itself.

The reviews we are interested in:

• Must study a human population (no animal,
veterinary, or environmental studies)

https://www.nlm.nih.gov/mesh/pubtypes.html
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BACK-
GROUND

GOAL METHODS DETAILED_-
FINDINGS

FURTHER_-
STUDY

RECOMMEND-
ATION

EVIDENCE_-
QUALITY

EFFECT ETC

BACKGROUND 0.952 0.017 0.008 0.003 0.0 0.003 0.003 0.008 0.006
GOAL 0.009 0.935 0.056 0.0 0.0 0.0 0.0 0.0 0.0
METHODS 0.003 0.011 0.944 0.034 0.0 0.0 0.0 0.006 0.001
DETAILED_FINDINGS 0.001 0.0 0.027 0.862 0.0 0.001 0.027 0.079 0.002
FURTHER_STUDY 0.0 0.0 0.0 0.0 0.857 0.061 0.01 0.02 0.051
RECOMMENDATION 0.0 0.0 0.021 0.021 0.277 0.298 0.021 0.277 0.085
EVIDENCE_QUALITY 0.0 0.0 0.016 0.227 0.008 0.016 0.523 0.148 0.062
EFFECT 0.004 0.0 0.002 0.114 0.013 0.015 0.032 0.8 0.021
ETC 0.051 0.051 0.064 0.128 0.077 0.038 0.09 0.218 0.282

Table 10: Full 9-class sentence classification confusion matrix, averaged over five folds of cross validation.

Label Sentence

BACKGROUND IMPORTANCE OF THE FIELD Cobalamin ( vitamin
B12 ) deficiency is particularly common in the elderly
( > 15 % ) .

BACKGROUND Management of cobalamin deficiency with
cobalamin injections is well codified at present ,
but new routes of cobalamin administration ( oral and
nasal ) are being studied , especially oral cobalamin
therapy for food-cobalamin malabsorption .

BACKGROUND AREAS COVERED IN THIS REVIEW The objec-
tive of this review is to evaluate the efficacy of
oral cobalamin treatment in elderly patients .

OTHER To reach this objective , PubMed data were systematic
ally search ed for English and French articles published
from January 1990 to July 2008 .

OTHER Data from our research group on cobalamin deficiency
( Groupe d’Etude des CAREnce vitamine B12 - CARE
B12 ) were also analyzed .

OTHER WHAT THE READER WILL GAIN Three prospect
i ve r and omized studies , a systematic review
by the Cochrane group and five prospect i ve co-
hort studies were found and provide evidence that
oral cobalamin treatment may adequately treat cobal-
amin deficiency .

TARGET The efficacy was particularly highlighted when look-
ing at the marked improvement in serum vitamin B12
levels and hematological parameters , for example
hemoglobin level , mean erythrocyte cell volume and
reticulocyte count .

OTHER The effect of oral cobalamin treatment in patients pre-
senting with severe neurological manifestations has
not yet been adequately documented .

TARGET Oral cobalamin treatment avoids the discomfort , in-
convenience and cost of monthly injections .

TARGET TAKE HOME MESSAGE Our experience
and the present analysis support the use of
oral cobalamin therapy in clinical practice

Table 11: Example review abstract from Andrès et al.
(2010) with predicted sentence labels. Spans corre-
sponding to Population, Intervention, and Outcome el-
ements are tagged and surrounded with special tokens.

• Must review studies involving multiple partic-
ipants. We are interested in reviews of trials
or cohort studies. We are *not* interested in
reviews of case studies - which describe one
or a few specific people.

• Must study an explicit population or problem
(P from PICO)

– Example populations: women > 55 old
with breast cancer, migrant workers, ele-
mentary school children in Spokane, WA,
etc.

• Must compare one or more medical interven-
tions

– Example interventions: drugs, vaccines,
yoga, therapy, surgery, education, an-
noying mobile device reminders, pro-
fessional naggers, personal trainers, and
more! Note: placebo / no intervention is
a type of intervention.

– Comparing the effectiveness of an inter-
vention against no intervention is okay.

– Combinations of interventions count as
comparisons (e.g. yoga vs. yoga + ther-
apy).

– Two different dosages also count (e.g.
500ppm fluoride vs 1000ppm fluoride in
toothpaste).

– Must have an explicit outcome measure
– Example outcome measures: survival

time, frequency of headaches, relief of
depression, survey results, and many
other possibilities.

• The outcome measure must measure the effec-
tiveness of the intervention.

C Suitability Classifier

Four annotators with biomedical background la-
beled 879 reviews sampled from the candidate pool
(572 suitable, 307 not, Cohen’s Kappa: 0.55) ac-
cording to the suitability criteria (guidelines in Ap-
pendix B). We aim to include reviews that perform
an aggregation over existing results, such as report-
ing on how a medical or social intervention affects
a group of people, while excluding reviews that
make new observations, such as identifying novel
disease co-morbidities or those that synthesize case
studies.

For our suitability classifier, we finetune Sci-
BERT (Beltagy et al., 2019) using standard param-
eters; using five-fold cross validation we find that
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a threshold of 0.75 provides a precision of greater
than 80% while maintaining an adequate recall
(Figure 4).

Though there are a fairly large number of false
positives by this criteria, we note that these false
positive documents are generally reviews; however,
they may not investigate an intervention, or may
not have suitable target statements. In the latter
case, target identification described in § 3.2 helps
us further refine and remove these false positives
from the final dataset.

D Sentence Annotation

Sentence annotation guidelines and detailed scores
are below. Each annotator was tasked with anno-
tating 50-100 sentences, followed by a round of
review, before being asked to annotate more.

D.1 Sentence Annotation Guidelines

A systematic review is a document resulting from
an in-depth search and analysis of all the litera-
ture relevant to a particular topic. We are inter-
ested in systematic reviews of medical literature,
specifically those that assess varying treatments
and the outcomes associated with them. Ignore
any existing labels; these are automatically pro-
duced and error prone. If something clearly fits
into more than one category, separate the labels by
commas (annoying, we know, but it can be impor-
tant). For sentences that are incorrectly broken in a
way that makes them difficult to label, skip them
(you can fix them, but they’ll be programmatically
ignored). For reviews that don’t meet suitability
guidelines, also skip them. We want to identify
sentences within these reviews as belonging to one
of several categories:

• BACKGROUND: Any background informa-
tion not including goals.

• GOAL: A high level goal sentence, describ-
ing the aims or purposes of the review.

• METHODS: Anything describing the partic-
ular strategies or techniques for conducting
the review. This includes methods for finding
and assessing appropriate studies to include,
e.g., the databases searched or other character-
istics of the searched literature. A character-
istic might be a study type, it might be other
details, such as criteria involving the study
participants, what interventions (treatments)

were studied or compared, or what outcomes
are measured in those studies. This may also
include whether or not a meta-analysis is per-
formed.

• DETAILED_FINDINGS: Any sections re-
porting study results, often includes numbers,
p-values, etc. These will frequently include
statements about a subset of the trials or the
populations.

• GENERAL FINDINGS: There are four types
of general findings we would like you to label.
These do not include things like number of pa-
tients, or a p-value (that’s DETAILED FIND-
INGS). Not all of these four subtypes will
always be present in a paper’s abstract. Some
sentences will contain information about more
than one subtype, and some sentences can con-
tain information about some of these subtypes
as well as DETAILED FINDINGS.

– EFFECT: Effect of the intervention,
may include a statement about signifi-
cance. These can cover a wide range of
topics, including public health or policy
changes.

– EVIDENCE_QUALITY: Commentary
about the strength or quality of evidence
pertaining to the intervention.

– FURTHER_STUDY: These statements
might call for more research in a partic-
ular area, and can include hedging state-
ments, e.g.:

* “More rigorously designed longitu-
dinal studies with standardized def-
initions of periodontal disease and
vitamin D are necessary.”

* “More research with larger sample
size and high quality in different
nursing educational contexts are re-
quired.”

* “However, this finding largely relies
on data from observational studies;
high-quality RCTs are warranted be-
cause of the potential for subject se-
lection bias.”

– RECOMMENDATION: Any kind of
clinical or policy recommendation, or
recommendations for use in practice.
This must contain an explicit recommen-
dation, not a passive statement saying
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that a treatment is good. “Should” or
“recommend” are good indicators. These
may not always be present in an abstract.
E.g.:

* “Public policy measures that can re-
duce inequity in health coverage, as
well as improve economic and edu-
cational opportunities for the poor,
will help in reducing the burden of
malaria in SSA.”

– ETC: Anything that doesn’t fit into the
categories above.

All sentences appear in the context of their review.
Some of the selected reviews might not actually be
reviews; these were identified by accident. These
should be excluded from annotation - either make a
comment on the side (preferred) or delete the rows
belonging to the non-review.

Examples follow. Please ask questions - these
guidelines are likely not perfect and we’ll have
missed many edge cases

Examples:
BACKGROUND A sizeable number of individ-

uals who participate in population-based colorectal
cancer (CRC) screening programs and have a posi-
tive fecal occult blood test (FOBT) do not have an
identifiable lesion found at colonoscopy to account
for their positive FOBT screen.

GOAL To determine the effect of integrating in-
formal caregivers into discharge planning on post-
discharge cost and resource use in older adults.

METHODS MAIN OUTCOMES Clinical sta-
tus (eg, spirometric measures); functional status
(eg, days lost from school); and health services use
(eg, hospital admissions). Studies were included
if they had measured serum vitamin D levels or
vitamin D intake and any periodontal parameter.

DETAILED_FINDINGS Overall, 27 studies
were included (13 cross-sectional studies, 6 case-
control studies, 5 cohort studies, 2 randomized clin-
ical trials and 1 case series study). Sixty-five per-
cent of the cross-sectional studies reported signifi-
cant associations between low vitamin D levels and
poor periodontal parameters. Analysis of group
cognitive-behavioural therapy (CBT) v. usual care
alone (14 studies) showed a significant effect in
favour of group CBT immediately post-treatment
(standardised mean difference (SMD) -0.55 (95%
CI -0.78 to -0.32)).

EFFECT This review identified short-term ben-
efits of technology-supported self-guided interven-

tions on the physical activity level and fatigue and
some benefit on dietary behaviour and HRQoL in
people with cancer. However, current literature
demonstrates a lack of evidence for long-term ben-
efit.

EVIDENCE_QUALITY Interpretation of find-
ings was influenced by inadequate reporting of in-
tervention description and compliance.

No meta-analysis was performed due to high
variability across studies.

RECOMMENDATION The decision to per-
form EGD should be individualized and based on
clinical judgement.

ETC PROSPERO CRD42017080346;
https://www.crd.york.ac.uk/prospero/

display_record.php?RecordID=80346.

D.2 Detailed Sentence Breakdown Scores

Sentence classification scores for 9 classes are
given in Table 9. The corresponding confusion
matrix can be found in Table 10.

D.3 Sentence Classification Results

Table 11 provides an example of sentence classifi-
cation results over 3 classes.

E Dataset Contradiction Scores

The confusion matrix between review effect find-
ings and input study effect findings is given in Ta-
ble 12.

F Hyperparameters and Modeling
Details

We implement our models using PyTorch (Paszke
et al., 2019), the HuggingFace Transformers (Wolf
et al., 2020) and PyTorch lightning (Falcon, 2019)
libraries, starting from the BART-base checkpoint
(Lewis et al., 2020b). All models were trained us-
ing FP16, using NVidia RTX 8000 GPUs (GPUs
with 40G or more of memory are required for most
texts-to-text configurations). All models are trained
for eight epochs as validation scores diminished
over time; early experiments ran out to approxi-
mately fifty epochs and showed little sensitivity to
other hyperparameters. We use gradient accumu-
lation to reach an effective batch size of 32. We
use the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 1e-5, an epsilon of 1e-8,
and a linear learning rate schedule with 1000 steps
of warmup. We ran a hyperparameter sweep over
decoding parameters on the validation set for 4, 6,

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=80346
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=80346
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decreases no_change increases count

decreases .338 .540 .122 1202991
no_change .144 .659 .197 5375546
increases .096 .529 .376 2490229

Table 12: Confusion matrix between review effect findings and input study effect findings. Each row corresponds
to the fraction of the effect direction found in the review with the fraction of that direction accounted for in the
study. The most frequent confusion is with no_change, as opposed to flipping the overall direction of the finding.

BACKGROUND TARGET GENERATED

OBJECTIVE To explore the evidence for the effective-
ness of acupuncture for nonspecific low back pain ( LBP
). SUMMARY OF BACKGROUND DATA Since the
most recent systematic review s on RCTs on acupunc-
ture for LBP, 6 RCTs have been published, which may
impact on the previous conclusions.

There is moderate evidence that acupuncture is
more effective than no treatment, and strong
evidence of no significant difference between
acupuncture and sham acupuncture , for short-
term pain relief.

The is insufficient evidence to support the
use of acupuncture for LBP. CONCLUSIONS
There is limited evidence for the effectiveness
of acupuncture in LBP in the short term.

Objectives : To provide a quantitative analysis of all r
and omized controlled trials design ed to determine the
effectiveness of physical interventions for people with
spinal cord injury ( SCI ).

There is initial evidence supporting the effec-
tiveness of some physical interventions for peo-
ple with SCI.

The Results : This systematic review provides
evidence that physical interventions for peo-
ple with SCI are effective in improving muscle
strength and function in the short term.

BACKGROUND Neuroendocrine tumours ( NET ) most
commonly metastasize to the liver. Hepatic resection
of NET hepatic metastases ( NETHM ) has been shown
to improve symptomology and survival. METHODS A
systematic review of clinical studies before September
2010 was performed to examine the efficacy of hepatic
resection for NETHM.

Poor histologic grade, extra-hepatic disease
and a macroscopically incomplete resection
were associated with a poor prognosis. CON-
CLUSION Hepatic resection for NETHM pro-
vides symptomatic benefit and is associated
with favourable survival outcomes although the
majority of patients invariably develop disease
progression

Theatic resection of NETHM has been shown
to improve survival in patients with advanced,
well-differentiated NETs.

The aim of this systematic review and meta- analysis
was to assess the efficacy on an intervention on breast-
feeding self-efficacy and perceived insufficient milk sup-
ply outcomes.

Although significant effect of the interven-
tions in improving maternal breastfeeding self-
efficacy was revealed by this review, there is
still a paucity of evidence on the mode, format,
and intensity of interventions.

The findings of this systematic review and
meta- analysis suggest that breastfeeding edu-
cation is an effective intervention for improv-
ing breastfeeding self-efficacy and breastfeed-
ing duration among primiparous women.

Table 13: Example summaries from the test set generated using the BART configuration.

and 8 beams; maximum lengths of 64, 128, and
256 wordpieces; and length penalties of 1, 2, and
4. We find little qualitative or quantitative variation
between runs and select the setting with the high-
est Rouge1 scores: 6 beams, a length penalty of 2,
and 128 tokens for output maximum lengths. We
use an attention dropout (Srivastava et al., 2014)
of 0.1. Optimizer hyperparameters, as well as any
hyperparameters not mentioned, used defaults cor-
responding to their libraries. Training requires ap-
proximately one day on two GPUs. Due to memory
constraints, we limit each review to 25 input docu-
ments, with a maximum of 1000 tokens per input
document.

We make use of NumPy (Harris et al., 2020)
in our models and evaluation, as well as scikit-
learn (Buitinck et al., 2013), and the general SciPy
framework (Virtanen et al., 2020) for evaluation.

G Example generated summaries

See Table 13 for examples of inputs, targets, and
generations.

Model R-1 R-2 R-L ∆EI F1

BART 26.66 9.04 19.78 .447 49.68
LED 25.82 8.44 19.29 .482 47.09

Table 14: texts-to-text results on the validation set. We
report ROUGE, ∆EI, and macro-averaged F1-scores.
These are similar to test scores.

Model P R F1

BART 46.98 45.39 46.97

Table 15: table-to-table results on the validation set.
We report precision, recall, and macro-averaged F1-
scores.

H Validation Results

We provide results on the validation set in Tables
14 and 15.

I A Brief Review of Systematic Reviews

We provide a brief overview of the systematic re-
view process for the reader. A systematic review
is a thorough, evidence-based process to answer
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scientific questions. In the biomedical domain, a
systematic review typically consists of five steps:
defining the question, finding relevant studies, de-
termining study quality, assessing the evidence
(quantitative or qualitative analysis), and drawing
final conclusions. For a detailed overview of the
steps, see Khan et al. (2003). While there are other
definitions and aspects of the review process (Aro-
mataris and Munn, 2020; Higgins et al., 2019), the
five-step process above is sufficient for describing
reviews in the context of this work. We emphasize
that this work, indeed the approaches used in this
field, cannot replace the labor done in a systematic
review, and may instead be useful for scoping or
exploratory reviews.

The National Toxicology Program,13 part of the
United States Department of Health and Human
Services, conducts scoping reviews for epidemio-
logical studies. The National Toxicology Program
has actively solicited help from the natural lan-
guage processing community via the Text Analysis
Conference.14 Other groups conducting biomedical
systematic reviews include the Cochrane Collabo-
ration,15 the Joanna Briggs Institute,16 Guidelines
International Network,17 SickKids,18 the Univer-
sity of York,19 and the public health agencies of
various countries,20 to name a few. Systematic
review methodologies have also been applied in
fields outside of medicine, by organizations such as
the Campbell Collaboration,21 which conducts re-
views over a wide range of areas: business, justice,
education, and more.

I.1 Automation in Systematic Reviews

Automation in systematic reviews has typically fo-
cused on assisting in portions of the process: search
and extraction, quality assessment, and interpret-
ing findings. For a detailed analysis of automated
approaches in aiding the systematic review process,
see Norman (2020); Marshall and Wallace (2019).

Search and Extraction. Search, screening, and
extracting the results of studies into a structured
representation are several components of the sys-

13https://ntp.niehs.nih.gov/
14https://tac.nist.gov/2018/SRIE/
15https://www.cochrane.org/
16https://jbi.global/
17https://www.g-i-n.net
18https://www.sickkids.ca/
19https://www.york.ac.uk/crd/
20https://www.canada.ca/en/public-health/services/reports-

publications.html
21https://www.campbellcollaboration.org

tematic review process that have been the major
focuses of natural language processing approaches.
Several systems provide active-learning enhanced
search (Howard et al., 2020; Schoot et al., 2020), or
offer screening based on study type (Marshall et al.,
2016). PICO (Participants, Interventions, Controls,
and Outcomes) elements can be used to assist in
search and screening (Znaidi et al., 2015; Ho et al.,
2016; Boudin et al., 2010). To this end, several
datasets have been introduced. EBM-NLP (Nye
et al., 2018) is a dataset of crowd-sourced PICO
elements in randomized control trial abstracts. Jin
and Szolovits (2018) provides a large-scale dataset
of sentence-level PICO labels that are automati-
cally derived using the structured abstract headers
in PubMed abstracts. The Chemical-Disease Re-
lations challenge (Wei et al., 2015) offers data for
some of the PICO classes and a related relation ex-
traction task, as does the i2b2 2010 disease-relation
task (Uzuner et al., 2011). Evidence Inference
(Lehman et al., 2019; DeYoung et al., 2020) at-
tempts to automate detecting the direction of con-
clusions given PICO elements of interest; e.g., Nye
et al. (2020) starts from RCTs, finds PICO ele-
ments, and then finds conclusions associated with
those PICO elements. Many review tools22,23,24,25

incorporate workflow management tools for man-
ual extraction of these elements and associated con-
clusions.

Quality Assessment. Relatively few tools focus
on quality assessment. The primary tool seems to
be RobotReviewer (Marshall et al., 2016), which
assesses Risk of Bias in trial results, which is one
aspect of quality. There are opportunities for qual-
ity assessment that focus on automatically assess-
ing statistical power or study design.

Interpretation. The interpretation step of the
systematic review process involves drawing overall
conclusions about the interventions studied: how
effective is the intervention, when should it be used,
what is the overall strength of the evidence support-
ing the effectiveness and recommendations, and
what else needs to be studied. It too has received
relatively little attention from those developing as-
sistive systems. Similar to this work, Wallace et al.
(2020) takes advantage of structured Cochrane re-
views to identify summary targets, and uses por-
tions of the input documents as model inputs. Shah

22https://www.evidencepartners.com/
23https://www.covidence.org/reviewers/
24https://sysrev.com/
25https://www.jbisumari.org/

https://ntp.niehs.nih.gov/
https://tac.nist.gov/2018/SRIE/
https://www.cochrane.org/
https://jbi.global/
https://www.g-i-n.net
https://www.sickkids.ca/
https://www.york.ac.uk/crd/
https://www.canada.ca/en/public-health/services/reports-publications.html
https://www.canada.ca/en/public-health/services/reports-publications.html
https://www.campbellcollaboration.org
https://www.evidencepartners.com/
https://www.covidence.org/reviewers/
https://sysrev.com/
https://www.jbisumari.org/
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et al. (2021) extracts relations from nutritional lit-
erature, and uses content planning methods to gen-
erate summaries highlighting contradictions in the
relevant literature.


