@inproceedings{stoehr-etal-2021-classifying,
title = "Classifying Dyads for Militarized Conflict Analysis",
author = "Stoehr, Niklas and
Torroba Hennigen, Lucas and
Ahbab, Samin and
West, Robert and
Cotterell, Ryan",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.613",
doi = "10.18653/v1/2021.emnlp-main.613",
pages = "7775--7784",
abstract = "Understanding the origins of militarized conflict is a complex, yet important undertaking. Existing research seeks to build this understanding by considering bi-lateral relationships between entity pairs (dyadic causes) and multi-lateral relationships among multiple entities (systemic causes). The aim of this work is to compare these two causes in terms of how they correlate with conflict between two entities. We do this by devising a set of textual and graph-based features which represent each of the causes. The features are extracted from Wikipedia and modeled as a large graph. Nodes in this graph represent entities connected by labeled edges representing ally or enemy-relationships. This allows casting the problem as an edge classification task, which we term dyad classification. We propose and evaluate classifiers to determine if a particular pair of entities are allies or enemies. Our results suggest that our systemic features might be slightly better correlates of conflict. Further, we find that Wikipedia articles of allies are semantically more similar than enemies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stoehr-etal-2021-classifying">
<titleInfo>
<title>Classifying Dyads for Militarized Conflict Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Niklas</namePart>
<namePart type="family">Stoehr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Torroba Hennigen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samin</namePart>
<namePart type="family">Ahbab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">West</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding the origins of militarized conflict is a complex, yet important undertaking. Existing research seeks to build this understanding by considering bi-lateral relationships between entity pairs (dyadic causes) and multi-lateral relationships among multiple entities (systemic causes). The aim of this work is to compare these two causes in terms of how they correlate with conflict between two entities. We do this by devising a set of textual and graph-based features which represent each of the causes. The features are extracted from Wikipedia and modeled as a large graph. Nodes in this graph represent entities connected by labeled edges representing ally or enemy-relationships. This allows casting the problem as an edge classification task, which we term dyad classification. We propose and evaluate classifiers to determine if a particular pair of entities are allies or enemies. Our results suggest that our systemic features might be slightly better correlates of conflict. Further, we find that Wikipedia articles of allies are semantically more similar than enemies.</abstract>
<identifier type="citekey">stoehr-etal-2021-classifying</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.613</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.613</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>7775</start>
<end>7784</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Classifying Dyads for Militarized Conflict Analysis
%A Stoehr, Niklas
%A Torroba Hennigen, Lucas
%A Ahbab, Samin
%A West, Robert
%A Cotterell, Ryan
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F stoehr-etal-2021-classifying
%X Understanding the origins of militarized conflict is a complex, yet important undertaking. Existing research seeks to build this understanding by considering bi-lateral relationships between entity pairs (dyadic causes) and multi-lateral relationships among multiple entities (systemic causes). The aim of this work is to compare these two causes in terms of how they correlate with conflict between two entities. We do this by devising a set of textual and graph-based features which represent each of the causes. The features are extracted from Wikipedia and modeled as a large graph. Nodes in this graph represent entities connected by labeled edges representing ally or enemy-relationships. This allows casting the problem as an edge classification task, which we term dyad classification. We propose and evaluate classifiers to determine if a particular pair of entities are allies or enemies. Our results suggest that our systemic features might be slightly better correlates of conflict. Further, we find that Wikipedia articles of allies are semantically more similar than enemies.
%R 10.18653/v1/2021.emnlp-main.613
%U https://aclanthology.org/2021.emnlp-main.613
%U https://doi.org/10.18653/v1/2021.emnlp-main.613
%P 7775-7784
Markdown (Informal)
[Classifying Dyads for Militarized Conflict Analysis](https://aclanthology.org/2021.emnlp-main.613) (Stoehr et al., EMNLP 2021)
ACL
- Niklas Stoehr, Lucas Torroba Hennigen, Samin Ahbab, Robert West, and Ryan Cotterell. 2021. Classifying Dyads for Militarized Conflict Analysis. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7775–7784, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.