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Abstract

Transformer models are expensive to fine-tune,
slow for inference, and have large storage re-
quirements. Recent approaches tackle these
shortcomings by training smaller models, dy-
namically reducing the model size, and by
training light-weight adapters. In this paper,
we propose AdapterDrop, removing adapters
from lower transformer layers during training
and inference, which incorporates concepts
from all three directions. We show that Adap-
terDrop can dynamically reduce the compu-
tational overhead when performing inference
over multiple tasks simultaneously, with mini-
mal decrease in task performances. We further
prune adapters from AdapterFusion, which im-
proves the inference efficiency while maintain-
ing the task performances entirely.

1 Introduction

While transfer learning has become the go-to
method for solving NLP tasks (Pan and Yang, 2010;
Torrey and Shavlik, 2010; Ruder, 2019; Howard
and Ruder, 2018; Peters et al., 2018), transformer-
based models are notoriously deep requiring mil-
lions or even billions of parameters (Radford et al.,
2018; Devlin et al., 2019; Radford et al., 2019; Liu
et al., 2019; Brown et al., 2020). This results in
slow inference and large storage requirements.

At least three independent lines of research
have recently evolved to tackle these shortcom-
ings. (1) Smaller and faster models that are ei-
ther distilled or trained from scratch (Sanh et al.,
2019; Sun et al., 2020; Bai et al., 2021; Wang et al.,
2020). (2) Robustly trained transformers in which
the model depth can be reduced at run-time, thereby
decreasing inference time dynamically (Fan et al.,
2020; Elbayad et al., 2020; Xin et al., 2020; Hou
et al., 2020). (3) Adapters, which, instead of fully
fine-tuning the model, only train a newly intro-
duced set of weights at every layer, thereby sharing

∗Work done prior to joining Amazon.

the majority of parameters between tasks (Houlsby
et al., 2019; Bapna and Firat, 2019; Pfeiffer et al.,
2020a). Adapters have been shown to work well
for machine translation (Bapna and Firat, 2019),
cross-lingual transfer (Pfeiffer et al., 2020b, 2021b;
Üstün et al., 2020; Vidoni et al., 2020; Ansell et al.,
2021), community QA (Rücklé et al., 2020), and
task composition for transfer learning (Stickland
and Murray, 2019; Pfeiffer et al., 2021a; Lauscher
et al., 2020; Wang et al., 2021; Poth et al., 2021).
Despite their recent popularity, the computational
efficiency of adapters has not been explored beyond
parameter efficiency.

We close this gap and establish the computa-
tional efficiency of two adapter architectures at
training and inference time. We investigate differ-
ent strategies to further improve the efficiency of
adapter-based models by incorporating ideas from
all three directions mentioned above. Our strategies
rely on dropping out adapters from transformers,
at training and inference time, resulting in models
that are dynamically adjustable regarding the avail-
able computational resources. Our approaches are
agnostic to the pre-trained transformer model (e.g.,
base, large), which makes them broadly applicable.

Contributions:
1. We are the first to establish the computational ef-

ficiency of adapters compared to full fine-tuning.
We show that the training steps of adapters can
be up to 60% faster than full model fine-tuning
with common hyperparameter choices, while be-
ing 4–6% slower at inference. Hence, adapters
are a suitable choice for researchers interested
in achieving faster training times, or when re-
quiring extensive hyperparameter tuning.

2. We propose AdapterDrop, the efficient and dy-
namic removal of adapters with minimal im-
pact on the task performances. We show that
dropping adapters from lower transformer lay-
ers considerably improves the inference speed in
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Setting Adapter Relative speed (for Seq.Len./Batch)

128/16 128/32 512/16 512/32

Training Houlsby 1.48 1.53 1.36 1.33
Pfeiffer 1.57 1.60 1.41 1.37

Inference Houlsby 0.94 0.94 0.96 0.96
Pfeiffer 0.95 0.95 0.96 0.96

Table 1: Relative speed of adapters compared to fully
fine-tuned models. For example, 1.6 for training with
the Pfeiffer adapter means that we can perform 1.6
training steps with this adapter in the time of one train-
ing step with full model fine-tuning.

multi-task settings. For example, with adapters
dropped from the first five layers, AdapterDrop
is 39% faster when performing inference on 8
tasks simultaneously. This can be beneficial
for researchers working on models that need to
make multiple predictions on each input.

3. We prune adapters from adapter compositions in
AdapterFusion (Pfeiffer et al., 2021a) and retain
only the most important adapters after trans-
fer learning, resulting in faster inference while
maintaining the task performances entirely. This
is suitable for settings with little labeled training
data, where AdapterFusion can achieve ample
improvements over standard single task models.

2 Efficiency of Adapters

We first establish the computational efficiency of
adapters without AdapterDrop. As illustrated in
Figure 1, significant differences exist in the for-
ward and backward pass when fine-tuning adapters
compared to fully fine-tuning the model. In the
forward pass, adapters add complexity with the ad-
ditional components; however, it is not necessary
to backpropagate through the entire model during
the backward pass. We compare the training and
inference speed of full model fine-tuning against
the adapter architectures of Houlsby et al. (2019)
and Pfeiffer et al. (2021a) (depicted in Figure 1)
using the AdapterHub.ml framework (Pfeiffer et al.,
2020a). We conduct our measurements with the
transformer configuration of BERT base and verify
them with different GPUs.1

We provide measurements corresponding to
common experiment configurations in Table 1.

Training. Adapters can be considerably faster
compared to full model fine-tuning—60% faster

1We experiment with newer and older GPUs, Nvidia V100
and Titan X, respectively. See Appendix A.1 for details.

in some configurations. The two adapter architec-
tures differ only marginally in terms of training
efficiency: due to its simpler architecture, train-
ing steps of the Pfeiffer adapters are slightly faster.
The magnitude of the differences depends on the
input size; the available CUDA cores are the pri-
mary bottleneck.2 We do not observe any particular
differences between adapters and full fine-tuning
regarding the training convergence.3

The training speedup can be explained by the
decreased overhead of gradient computation. Most
of the parameters are frozen when using adapters
and it is not necessary to backpropagate through
the first components (see Figure 1).

Inference. The two adapter architectures are 94–
96% as fast as fully fine-tuned models, which varies
depending on the input size. This can have a con-
siderable impact when deployed at scale.

3 AdapterDrop

We have established that adapters are more effi-
cient in terms of training time, however, there is a
perpetuate need for sustainable and efficient mod-
els (Strubell et al., 2019). Backpropagating through
as few layers as possible would further improve the
efficiency of training adapters. The efficiency for
inference can be improved by sharing representa-
tions at lower transformer layers when simultane-
ously performing inference for multiple tasks—in
other words, when performing multiple indepen-
dent classifications on the same input. We establish
this in Table 2, finding that models are up to 8.4%
faster with every shared layer (16 tasks).

Motivated by these observations, we propose
AdapterDrop: Dynamically removing adapters
from lower transformer layers (depicted in Fig-
ure 1). AdapterDrop is similar to dropping out
entire transformer layers (Fan et al., 2020), how-
ever, specialized to adapter settings—where lower
layers often have a small impact on the task perfor-
mances (Houlsby et al., 2019).

We study two training methods for AdapterDrop:
(1) Specialized AdapterDrop: Removing adapters
from the first n transformer layers, where n is fixed
during training. This yields separate models for
each possible n. (2) Robust AdapterDrop: Draw-
ing the integer n randomly from [0, 11] for each

2We include detailed plots in Appendix G.1.
3We also pre-train adapters with masked language model-

ing, finding that this does not yield better results (Appendix B).

https://AdapterHub.ml
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Figure 1: Standard adapter fine-tuning vs. Adapter-
Drop fine-tuning. The left model includes adapters
at every layer whereas the right model has adapters
dropped at the first layer. The arrows to the right of
each model indicate the information flow for the For-
ward and Backward pass through the model.

Simultaneous Tasks 2 4 8 16

Speedup (each layer) 4.3% 6.6% 7.8% 8.4%

Table 2: Speedup for each shared transformer layer
when performing inference for multiple tasks simulta-
neously (details are given in Appendix G.2)

training batch.4 This yields one robust model that
is applicable to a varying number of dropped lay-
ers. We study the effectiveness of AdapterDrop on
the devsets of the GLUE benchmark (Wang et al.,
2018) using RoBERTa base (Liu et al., 2019).5

Figure 2 shows that specialized AdapterDrop
maintains good results even with several dropped
layers. With the first five layers dropped, special-
ized AdapterDrop maintains 97.1% of the origi-
nal performance (averaged over all eight GLUE
tasks; see Table 8). Moreover, robust AdapterDrop
achieves comparable results, and with five layers
dropped it maintains 95.4% of the original perfor-
mance (on avg). The advantage of robust over
specialized AdapterDrop is that the robust variant
can be dynamically scaled. Based on current avail-
able computational resources, robust AdapterDrop
can (de)activate layers with the same set of param-
eters, whereas specialized AdapterDrop needs to
be trained for every setting explicitly.

The efficiency gains can be large. When perform-
ing inference for multiple tasks simultaneously, we
measure inference speedups of 21–42% with five

4We also explored dropping adapters from randomly cho-
sen layers (instead of early layers). This generally performs
worse and it requires selecting a suitable dropout rate.

5The detailed setup is listed in Appendix A.2.
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Figure 2: Task performances in relation to dropped lay-
ers during evaluation (Figure 13 shows all tasks). ‘Stan-
dard adapter’ is trained with no dropped layers.

dropped layers—depending on the number of si-
multaneous tasks (Table 2).6 Training of our robust
adapters is also more efficient, which increases the
speed of training steps by 26%.7

4 Efficiency of AdapterFusion

AdapterFusion (Pfeiffer et al., 2021a) leverages the
knowledge of several adapters from different tasks
and learns an optimal combination of the adapters’
output representations for a single target task (see
Figure 3). AdapterFusion (AF) is particularly use-
ful for small training sets where learning adequate
models is difficult. Despite its effectiveness, AF
is computationally expensive because all included
adapters are passed through sequentially.8

Table 3 shows that the differences can be substan-
tial for both training and inference. For instance,
compared to a fully fine-tuned model, AF with
eight adapters is around 47% slower at training
time and 62% slower at inference.9

5 AdapterDrop for AdapterFusion

There exists considerable potential for improving
the efficiency of AF, especially at inference time.
We address this with two variants of AdapterDrop

6For more details see Appendix G.2
7Every dropped adapter improves the speed of training

steps by 4.7% and we drop on average 5.5 adapters when
training robust adapter models (more hyperparameter settings
and details are given in Appendix G.2).

8We also test AF with parallel operations and found no
efficiency gains (see Appendix H).

9All with Pfeiffer adapter and depending on the input size.
We provide more measurements in Appendix G.3.
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AF vs. Full FT AF vs. Adapter

Adapters Training Inference Training Inference

2 0.92 0.64 0.57 0.68
8 0.53 0.38 0.33 0.40

16 0.33 0.24 0.21 0.26

Table 3: Relative speed of AdapterFusion (with 2/8/16
adapters) compared to a fully fine-tuned model and
compared to a single-task adapter (right). Measured
with a batch size of 32, and a sequence length of 128.
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Figure 3: Standard AdapterFusion vs. AdapterFusion
pruning, each with 3 adapters initially. The left model
includes all adapters at every layer whereas the right
model has one adapter pruned at every layer.

for AF by (1) removing entire AF layers; (2) prun-
ing the least important adapters from AF models.

5.1 Removing AdapterFusion Layers

We fuse the adapters from all eight GLUE tasks and
observe the largest gains of AF on RTE and CoLA.
We additionally train robust AF models with the
same procedure as in §3. We investigate from how
many lower layers we can remove AF at test time
while still outperforming the corresponding single-
task adapter (without AdapterDrop).

Figure 4 shows that AF performs better than the
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Figure 4: Comparison of AdapterFusion with (orange)
and without (blue) AdapterDrop training during infer-
ence when omitting early AF layers.
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Figure 5: Task performance of AdapterFusion Pruning.
AF is trained with eight adapters, and we gradually re-
move the least important from the model.

single-task adapter on RTE until removing AF from
the first five layers. This improves the inference ef-
ficiency by 26%.10 On CoLA, we observe a differ-
ent trend. Removing AF from the first layer results
in more noticeable performance decreases, achiev-
ing lower task performances than the single-task
adapter. This is in line with recent work showing
that some linguistic tasks heavily rely on infor-
mation from the first layers (Vulić et al., 2020).
We deliberately highlight that AdapterDrop might
not be suitable for all tasks. However, Figure 13
shows that CoLA represents the most extreme case.
Nevertheless, our results suggest that researchers
need to be cautious when removing AdapterFusion
layers as there may exist a considerable perfor-
mance/efficiency tradeoff.

5.2 AdapterFusion Pruning

The inference efficiency of AF largely depends on
the number of fused adapters, see Table 3. We
can, therefore, achieve efficiency improvements
by pruning adapters from the trained AF models
(depicted in Figure 3). Our hypothesis is that we
can safely remove adapters if they are not usually
activated by AF, which means that they do not
contribute much to the output representations. In
each fusion layer, we record the average adapter
activations—their relative importance—using all
instances of the respective AF training set. We then
remove the adapters with lowest activations.

Figure 5 demonstrates that we can remove most
adapters in AF without affecting the task perfor-
mance. With two remaining adapters, we achieve
comparable results to the full AF models with eight
adapters and improve the inference speed by 68%.

We therefore recommend performing Adaper-
Fusion pruning before deploying these models in
practice. This is a simple yet effective technique

10We include detailed measurements in Appendix G.4.
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to achieve efficiency gains even when aiming at
maintaining performance entirely.

6 Conclusion

Adapters have emerged as a suitable alternative
to full model fine-tuning, and their most widely
claimed computational advantage is the small
model size. In this work, we have demonstrated
that the advantages of adapters go far beyond mere
parameter efficiency. Even without our extensions,
the training steps of two common adapter architec-
tures are up to 60% faster. However, these improve-
ments come at the cost of 4–6% slower inference
speed. Thus, if training is more important, adapters
can be advantageous over full model fine-tuning.

AdapterDrop expands these advantages by drop-
ping a variable number of adapters from lower
transformer layers. We dynamically reduce the
computational overhead at run-time when perform-
ing inference over multiple tasks and maintain task
performances to a large extent. This benefits re-
searchers working on models that need to make
multiple independent predictions on a single input.

Finally, we also investigated the computational
efficiency of AdapterFusion models. We find
that dropping entire AdapterFusion layers comes
at a considerable performance/efficiency tradeoff,
whereas pruning of the least activated adapters in
each layer can improve the model efficiency while
maintaining performance entirely.

We believe that our work can be widely extended
and that there exist many more directions to obtain
efficient adapter-based models. For instance, we
could explore more efficient pre-trained adapters,11

sharing the adapter weights across layers,12 or prun-
ing adapters from AdapterFusion at training time.13

In the Appendix to this paper, we present prelim-
inary results for several related ideas, which may
serve as a starting point for future work.

Acknowledgments

This work has received financial support from mul-
tiple sources. (1) The German Federal Ministry of

11In Appendix B, we evaluate MLM pre-trained adapters.
Our results suggest that different strategies are necessary for
adapters as compared to fully fine-tuned transformers, which
can serve as a starting point for further experiments.

12Appendix D shows that adapter with shared weights
across layers achieves comparable results to a standard adapter
while drastically reducing the number of parameters.

13Appendix E shows that we can randomly dropout 75%
of the adapters during AdapterFusion training with a minimal
impact on the task performance.

Education and Research and the Hessian Ministry
of Higher Education, Research, Science and the
Arts within their joint support of the National Re-
search Center for Applied Cybersecurity ATHENE.
(2) The European Regional Development Fund
(ERDF) and the Hessian State Chancellery – Hes-
sian Minister of Digital Strategy and Develop-
ment under the promotional reference 20005482
(TexPrax). (3) The German Research Foundation
(DFG) as part of the Research Training Group
KRITIS No. GRK 2222. (4) The German Fed-
eral Ministry of Education and Research (BMBF)
as part of the Software Campus program under
the promotional reference 01|S17050. (5) The
LOEWE initiative (Hesse, Germany) within the
emergenCITY center. (6) The German Research
Foundation (DFG) as part of the UKP-SQuARE
project (grant GU 798/29-1). Finally, we gratefully
acknowledge the support of NVIDIA Corporation
with the donation of the Titan X Pascal GPU used
for this research.

References
Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-

bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
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Ivan Vulić, Edoardo Maria Ponti, Robert Litschko,
Goran Glavaš, and Anna Korhonen. 2020. Probing
Pretrained Language Models for Lexical Semantics.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2020), pages 7222–7240.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xu-
anjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang,
and Ming Zhou. 2021. K-Adapter: Infusing Knowl-
edge into Pre-Trained Models with Adapters. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 1405–1418.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression

of pre-trained transformers. In 34th Conference on
Neural Information Processing Systems (NeurIPS
2020).

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL 2020), pages 2246–
2251.

A Measuring Computational and Task
Performance

A.1 Computational Efficiency

We use Python 3.6, PyTorch 1.5.1, CUDA 10.1
for all measurements. We repeat them with
two different GPUs: NVIDIA Tesla V100 PCIe
(32GB) and a NVIDIA Titan X Pascal (12GB). We
make use of the torch.cuda.Event class and
torch.cuda.synchronize to measure only
the exact period of time of a training (or inference)
step.14 For both inference and training, we repeat
the respective step 300 times. We report the median
to mitigate the impact of outliers caused by GPU
warmup.

Relativ speed. We define the relative speed of
an adapter compared full model fine-tuning as: Sa

Sf

where Sa and Sf are the time of one step with
the adapter model and the fully fine-tuned model,
respectively. For example, a relative speed of 1.5
means that the adapter model can perform 1.5 steps
in the time the fully fine-tuned model performs one
step.

Speedup. Speedup describes the positive change
in relative speed of an adapter model when using
AdapterDrop (or another method). A speedup of
p% means that the adapter model with Adapter-
Drop requires only (1 − p/100)× of the runtime
than the adapter model without AdapterDrop.

The speedup of AdapterDrop (and AdapterFu-
sion) are additive. If dropping one layer results in
p% speedup, dropping two layers results in 2p%
speedup, etc.

A.2 Task Performances

We study the task performances of adapter mod-
els on the popular GLUE benchmark (Wang et al.,
2018). Following Devlin et al. (2019), we exclude

14This is necessary due to the asynchronous nature of the
command execution on CPU and GPU.
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the WNLI because of the problematic data construc-
tion.15 We perform our analyses using RoBERTa
base (Liu et al., 2019) as our pre-trained model and
report the mean and standard deviation over three
runs of the best development performance evalu-
ated after every epoch. We train larger data sets
(SST-2, MNLI, QNLI, and QQP) for 10 epochs and
the rest of the data sets for 20 epochs. We use a
batch size of 32 and, if not otherwise noted, the
default hyperparameters for adapter fine-tuning as
in (Pfeiffer et al., 2021a).

B Adapter Initialization and
Convergence

Besides measuring training and inference time, we
are interested in (1) how using adapters compare
to standard RoBERTa-base with regards to down-
stream task convergence, and (2) if initializing
adapters with pre-trained weights using masked
language modeling can lead to faster convergence.

First, we compare RoBERTa-base with adapter
models using the architecture proposed by Pfeif-
fer et al. (2021a). Second, we pretrain an adapter
with masked language modeling (MLM) using doc-
uments from the English Wikipedia.16 The results
for both experiments are visualized in Figure 12.
When comparing RoBERTa-base with randomly
initialized adapters, We find that adapters do not
come at the cost of requiring more training steps
for convergence (1). For several of the eight GLUE
tasks, we observe similar convergence behavior
with the standard RoBERTa-base model and its
counterpart using adapters.

Further, we observe across all tasks that initial-
izing the adapter weights with MLM pre-training
does not have a substantial impact on the down-
stream task convergence (compared to a randomly
initialized adapter). Thus, we find no evidence that
pre-training of adapters with our masked language
modeling objective leads to better convergence per-
formance in our experiments (2).

C Detailed Results: AdapterDrop Task
Performances

We plot the detailed task performances of Adapter-
Drop with the different training strategies in Fig-
ure 13. The relative differences of AdapterDrop to

15See https://gluebenchmark.com/faq
16We used a recent dump of English Wikipedia. We train

with a batch size of 64 and for 250k steps such that no sentence
was used twice.

a standard adapter with no AdapterDrop are given
in Table 8.

D Adapter with Cross-Layer Parameter
Sharing

We can further reduce the number of parameters
required for each task by sharing the weights of the
adapters across all transformer layers. This is simi-
lar to weight sharing in ALBERT (Lan et al., 2020),
but specialized on adapters and can therefore be
applied to a wide range of pre-trained models.

We use the Pfeiffer adapter architecture in our
experiments with the same hyperparameters as in
Appendix A.2. Because cross-layer parameter shar-
ing reduces the capacity of adapter models, we
study the impact of the adapter compression rate.
The compression rate refers to the down-projection
factor in the adapter’s bottleneck layer and thus
impacts the its capacity (the compression rate spec-
ifies by how much ‘FF Down’ in Figure 1 com-
presses the representations). The standard com-
pression rate is 16, and smaller values result in a
larger model capacity.

Table 6 shows that cross-layer parameter shar-
ing with the same compression rate of 16 largely
maintains the performance compared to separate
weights with an average difference of 2.35%. With
a smaller compression rate of 4, we close this
gap by more than 50% while still requiring 66%
fewer parameters.17 The resulting models are light-
weight: our shared adapter with a compression rate
of 16 requires only 307KB storage space.

E Training AdapterFusion with Dropout

We investigate the random dropout of adapters from
AdapterFusion during training (using our eight task
adapters as in §4) to improve the speed of train-
ing steps. Each layer randomly selects different
adapters to drop out. This means that the model
itself may still use the knowledge from all tasks,
although not in the layers individually.

Table 7 shows the results for the four small-
est GLUE tasks in terms of training data size.
The speedup that we achieve with AdapterFusion
dropout can be substantial: with a dropout rate of
75% (i.e., dropping out 6 out of our 8 adapters)
each training step is 74% faster on average (with a
sequence length of 128, a batch size of 32). We ob-
serve no clear trend in terms of task performances.
Fusion dropout leads to consistent decreases on

17Even smaller compression rates do not yield similar gains.

https://gluebenchmark.com/faq
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RTE and CoLA, only a small impact on STS-B (no
difference when dropping out 25% of adapters),
and yields improvements on MRPC.

The effectiveness of Fusion dropout, thus, de-
pends on the individual downstream task. Nev-
ertheless, we believe that this methods could be
suitable, e.g., for resource-constrained settings.

F Detailed Results: Removing
AdapterFusion Layers

The computational overhead of AF can be re-
duced during inference by decreasing the number
of adapters. We investigate how dropping AF lay-
ers impacts the performance on the four smallest
GLUE tasks (MRPC, STS-B, CoLA, RTE) and
visualize the results in Figure 7.

In this experiment we compare the performance
of AF with and without AdapterDrop during train-
ing. For both, we use standard adapters as well
as adapters created via AdapterDrop as basis for
AF. Unsurprisingly, the performance of AF without
AdapterDrop within the adapters or fusion drops
fastest on all four datasets. Using AdapterDrop
when creating the adapters, applying AdapterDrop
on AF, or the combination of both significantly re-
duces the performance drop when omitting fusion
layers during inference. On RTE and MRPC, multi-
ple AF layers can be omitted while still performing
en par with or better compared to a single task
adapter. We further find this robustness to be task
dependent. Even AF with AdapterDrop shows a
steep fall in performance on RTE and CoLA, while
being relatively stable on MRPC and STS-B, even
with most layers omitted.

G Detailed Efficiency Measurements

In this section, we present detailed results of our ef-
ficiency measurements for V100 and TitanX GPUs.

G.1 Adapters

We present the efficiency results for adapters and
fully fine-tuned models in Figure 6, where we plot
the required time (absolute numbers) during train-
ing and inference. The relative speed of adapters
compared to fully fine-tuned models is given in
Table 9.

G.2 AdapterDrop

Multi-task inference. In Figure 8, we plot the
speed of adapters in a multi-task setting compared

to fully fine-tuned models with sequential process-
ing of inputs. In Table 11, we present the rel-
ative speed of adapters in this setting and show
the speedup gained with AdapterDrop for each
dropped layer. The average speedup in Table 2
is calculated as the average speedup over the batch
sizes 16, 32 and 64 in Table 11.

Training adapters with dropped layers. Table
5 shows the speedup of AdapterDrop when training
a single adapter. The average speedup for training
with AdapterDrop is 4.7% per layer for the V100
and 4.5% for the TitanX. This is the average result
over batch sizes 16, 32, 64 and sequence length 64,
128, 256, and 256 (see Table 5).

G.3 AdapterFusion

We plot the speed of AdapterFusion with differ-
ent numbers of included adapters in Figure 9. In
Table 10, we present the relative speed of Adapter-
Fusion compared to a fully-finetuned model and a
model with one adapter. This also shows the com-
putational overhead (slowdown) that results from
adding more adapters to AdapterFusion.

G.4 AdapterDrop for AdapterFusion

Table 4 shows the speedup gained with Adapter-
Drop for AdapterFusion during training and in-
ference. Figure 10 shows the required time as a
function of the dropped layers.

H Parallel Implementation of
AdapterFusion

AdapterHub’s implementation of AdapterFusion
passes through each task adapter sequentially.
We hypothesized that a better efficiency can be
achieved with parallel processing of adapters. We
implement the parallel computation of the different
adapters by reformulation the linear layers as two
convolutions.

The first convolution is a convolution with a ker-
nel size equal to the hidden dimension of the trans-
former and output channels equal to the number of
adapters times the downprojection dimension of the
adapters. The second convolution is a grouped con-
volution18 which processes the channels in blocks
the size of the downprojection dimension. It out-
puts channels equal to the number of adapters times
the hidden dimension.

18Using the ’groups’ parameter in Pytorch (https:
//pytorch.org/docs/stable/generated/
torch.nn.Conv1d.html#torch.nn.Conv1d)

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
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Speedup (per dropped layer)

Inference Training

Adapters V100 TitanX V100 TitanX

2 3.0% 3.1% 6.3% 6.4%
4 4.0% 4.1% 6.8% 6.8%
8 5.2% 5.2% 7.3% 7.3%

16 6.3% 6.3% 7.8% -

Table 4: The speedup for each dropped layer for
AdapterFusion during training and inference. Mea-
surements were conducted with a batch size of 32 and
sequence length of 128. Missing values are due to in-
sufficient GPU memory.

Speedup

Batch Size Seq. Len V100 TitanX

16 64 4.6% 4.4%
16 128 4.6% 4.6%
16 256 4.8% 4.6%
16 512 4.7% -
32 64 4.6% 4.5%
32 128 4.7% 4.5%
32 256 4.6% 4.7%
32 512 4.8% -
64 64 4.7% 4.5%
64 128 4.6% 4.5%
64 256 4.7% -
64 512 - -

Table 5: Speedup for each dropped layer during train-
ing with AdapterDrop on the V100 and TitanX.

We show in Figure 11 and in Table 12 that the
iterative implementation is faster than the parallel
implementation for larger input sizes (e.g., batch
sizes greater than). This indicates that once the in-
put can no longer be processed entirely in parallel
on the GPU (due to limited CUDA cores) the itera-
tive implementation seems to be more efficient.

Standard Cross-Layer Parameter Sharing

Compression rate = 16 1.33 4 16

SST-2 94.7 ±0.3 94.2 ±0.3 94.2 ±0.1 94.1 ±0.4
QNLI 93.0 ±0.2 92.4 ±0.1 93.1 ±0.1 90.6 ±1.4
MNLI 87.3 ±0.1 87.0 ±0.1 87.1 ±0.0 86.2 ±0.2
QQP 90.6 ±0.0 90.8 ±0.1 90.2 ±0.0 88.6 ±0.5
CoLA 62.6 ±0.9 60.3 ±1.6 60.8 ±0.4 57.2 ±1.0
MRPC 88.4 ±0.1 88.2 ±0.7 88.5 ±1.1 86.8 ±0.5
RTE 75.9 ±2.2 69.4 ±0.5 71.5 ±2.7 71.5 ±1.0
STS-B 90.3 ±0.1 89.5 ±0.1 89.7 ±0.3 89.0 ±0.7

Average 85.35 83.98 84.39 83.0

Params 884k 884k 295k 74k

Table 6: Task performance scores of the standard ap-
proach with separate adapter weights vs. cross-layer
parameter sharing. The compression rate denotes the
factor by which ‘FF Down’ in Figure 1 compresses the
representations. The number of parameters is given
without classification heads.

Fusion Dropout

0% 25% 50% 75%

CoLA 63.9 ±0.6 62.9 ±0.8 62.4 ±0.7 60.4 ±0.2
MRPC 88.4 ±0.1 89.2 ±0.5 89.2 ±0.4 89.3 ±0.1
RTE 85.4 ±0.7 82.8 ±1.9 82.1 ±0.3 80.9 ±1.1
STS-B 90.2 ±0.1 90.2 ±0.1 90.1 ±0.1 89.9 ±0.1

Speedup (8) - 15.9% 39.4% 73.7%
Speedup (16) - 22.5% 58.2% 120.6%

Table 7: Development scores of AdapterFusion (com-
pression rate 16x) with or without fusion dropout dur-
ing training. Fusion dropout of 50% means that each
adapter has a 50% chance of not being used as input
to the fusion layer. The speedup depends on the total
number of adapters used in AdapterFusion (8 adapters
in our setting here, 16 used by Pfeiffer et al. (2021a))
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Dropped Layers

0 1 2 3 4 5 6 7 8 9 10 11

Standard adapter 100.0 98.5 97.1 95.3 92.0 89.0 82.2 74.6 64.5 54.5 49.3 43.3

Specialized AdapterDrop (12 models) 100.0 99.5 98.9 98.2 97.6 97.1 95.9 95.3 95.1 94.3 92.5 82.9
Robust AdapterDrop 98.5 97.7 97.3 96.8 96.1 95.4 94.5 93.3 92.2 89.9 85.9 62.0

Table 8: Model performances with AdapterDrop in relation to a standard adapter with no dropped layers. We
report the percentage of retained task performance compared to the standard adapter with no dropped layers during
evaluation. The results are averaged over all eight GLUE task. A value of 97.1 for specialized AdapterDrop with
five dropped layers means that the model achieves 97.1% of the performance compared to the standard adapter
with no dropped layers. Performance scores for each task can be found in Figure 13.

V100 TitanX

Sequence Len. Batch Size Training Inference Training Inference

Houlsby Pfeiffer Houlsby Pfeiffer Houlsby Pfeiffer Houlsby Pfeiffer

64 16 0.98 1.70 0.92 0.94 1.61 1.69 0.93 0.94
64 32 1.70 1.81 0.94 0.95 1.48 1.55 0.93 0.94
64 64 1.46 1.54 0.94 0.95 1.40 1.46 0.94 0.94
64 128 1.48 1.55 0.95 0.96 1.37 1.42 0.94 0.94

128 16 1.48 1.57 0.94 0.95 1.45 1.52 0.93 0.94
128 32 1.53 1.60 0.94 0.95 1.38 1.44 0.94 0.95
128 64 1.47 1.53 0.95 0.96 1.35 1.40 0.94 0.95
128 128 1.42 1.48 0.95 0.96 - - - -
256 16 1.42 1.49 0.94 0.95 1.34 1.38 0.94 0.95
256 32 1.40 1.46 0.95 0.96 1.31 1.36 0.94 0.96
256 64 1.40 1.45 0.95 0.96 - - - -
256 128 - - - - - - - -
512 16 1.36 1.41 0.96 0.96 - - - -
512 32 1.33 1.37 0.96 0.96 - - - -
512 64 - - - - - - - -
512 128 - - - - - - - -

Table 9: Relative speed of adapters compared to fully fine-tuned models. Missing values are due to insufficient
GPU memory.

V100 TitanX

vs. FF vs. Adap. Slowdown vs. FF vs. Adap Slowdown

Seq. Len Batch Size Tr. Inf. Tr. Inf. Tr. Inf. Tr. Inf. Tr. Inf. Tr. Inf.

64 16 0.77 0.62 0.45 0.66 8.2% 10.6% 0.88 0.62 0.52 0.66 10.3% 10.2%
64 32 1.03 0.64 0.57 0.68 12.0% 11.1% 0.80 0.61 0.52 0.64 11.2% 11.0%
64 64 0.87 0.64 0.57 0.67 12.6% 12.0% 0.76 0.61 0.52 0.65 11.6% 11.4%

128 16 0.91 0.65 0.58 0.69 12.0% 11.0% 0.80 0.61 0.53 0.65 10.9% 10.8%
128 32 0.92 0.64 0.57 0.68 12.5% 11.8% 0.76 0.62 0.53 0.66 11.4% 11.1%
128 64 0.87 0.65 0.57 0.68 12.5% 11.6% - - - - - -
256 16 0.88 0.66 0.59 0.69 12.1% 11.3% 0.77 0.65 0.56 0.68 10.8% 10.4%
256 32 0.86 0.68 0.59 0.70 11.9% 11.3% - - - - - -
256 64 - - - - - - - - - - - -
512 16 0.87 0.69 0.62 0.72 11.2% 10.1% - - - - - -
512 32 - - - - - - - - - - - -
512 64 - - - - - - - - - - - -

Table 10: Relative speed of AdapterFusion for different sequence lengths and batch sizes. We compute the
training (Tr.) speed and inference (Inf.) speed with two adapters in AdapterFusion. We compare this to: FF, a
fully fine-tuned model; Adap, an adapter model (Pfeiffer architecture). The slowdown denotes the computational
overhead of each additional adapter composed in AdapterFusion (calculated as the average slowdown for adding
one adapter to AF consisting of 2–16 adapters). Missing values are due to insufficient GPU memory.
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(a) V100 Inference
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(b) TitanX Inference
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(c) V100 Training
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(d) TitanX Training

Figure 6: The absolute time for each inference or training step. We compare a transformer model without
adapters and an adapter model with Pfeiffer or Houlsby architectures. We note that for small inputs, i.e., batch
size 1 or 8, the time does not increase with the sequence length because the GPU is not working at capacity. Figure
(b) with batch size 1 shows the transition from working under and working at capacity.
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Figure 7: Performance of AF by the number of dropped
AF layers. We show the results for AF and the used
adapters (both with and without AdapterDrop), and
compare the performance with a standard single task
adapter.

Device Batch Size Adapters Inference Speedup

V100

1 2 1.25 2.6%
1 4 1.97 3.7%
1 8 2.80 4.9%
1 16 2.97 6.5%

16 2 1.13 4.1%
16 4 1.14 6.5%
16 8 1.20 7.7%
16 16 1.16 8.4%
32 2 1.08 4.5%
32 4 1.14 6.6%
32 8 1.11 7.9%
32 16 1.11 8.5%
64 2 1.08 4.3%
64 4 1.05 6.7%
64 8 1.06 7.9%
64 16 1.06 8.4%

TitanX

32 2 1.07 4.4%
32 4 1.09 6.6%
32 8 1.09 7.8%
32 16 1.06 8.4%

CPU

1 2 0.98 4.2%
1 4 1.03 6.5%
1 8 1.05 7.7%
1 16 1.06 8.4%

Table 11: The relative inference speed of simultaneous
processing of multiple tasks with adapters compared
to sequential processing of tasks with fully fine-tuned
models. Gray columns show the speedup of Adapter-
Drop for every additional dropped layer. All measure-
ments use a sequence length of 128. Batch size 1 for the
V100 is an outlier in both speedup and relative speed
compared to the other results due to the small input size
(compare with Figure 8).

Rel. Speed

Adapters Seq. Len Batch Size V100 TitanX

2 100 1 0.93 0.94
3 100 1 0.89 0.88
5 100 1 0.77 0.76

10 100 1 0.60 1.29
2 100 16 1.02 1.44
3 100 16 1.12 1.58
5 100 16 1.17 1.80

10 100 16 1.27 2.14
2 100 32 1.01 1.48
3 100 32 1.17 1.62
5 100 32 1.23 1.85

10 100 32 1.32 2.24
2 200 1 0.93 1.24
3 200 1 0.88 1.37
5 200 1 0.77 1.55

10 200 1 0.52 1.87
2 200 16 1.01 1.46
3 200 16 1.17 1.59
5 200 16 1.23 1.82

10 200 16 1.32 2.21
2 200 32 1.00 1.11
3 200 32 1.18 1.17
5 200 32 1.26 -

10 200 32 1.34 -
2 300 1 0.93 1.37
3 300 1 0.88 1.50
5 300 1 0.91 1.70

10 300 1 0.94 2.03
2 300 16 1.00 1.48
3 300 16 1.16 1.63
5 300 16 1.22 1.88

10 300 16 1.32 -
2 300 32 1.00 -
3 300 32 1.20 -
5 300 32 1.27 -

10 300 32 1.36 -
2 400 1 1.04 1.39
3 400 1 1.09 1.51
5 400 1 1.10 1.74

10 400 1 1.10 2.08
2 400 16 1.00 -
3 400 16 1.18 -
5 400 16 1.25 -

10 400 16 1.34 -
2 400 32 1.00 -
3 400 32 1.20 -
5 400 32 1.27 -

10 400 32 - -

Table 12: Relative speed of AdapterFusion with the it-
erative implementation versus the parallel implemen-
tation with different batch sizes, sequence lengths and
numbers of adapters for the V100 and TitanX. The par-
allel implementation is faster if the input is sufficiently
small (batch size 1 or 2 adapters) as the GPU is not
working at capacity and is able to use the parallel im-
plementation.
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Figure 8: The absolute time required for performing inference for multiple tasks on the same input. The measure-
ments are conducted with a sequence length of 128. N FF models denotes N fully fine-tuned models, executed
sequentially. Parallelized denotes the time required by N fully fine-tuned models running fully parallelized. Batch
size 1 on the V100 is an outlier compared to the other results with a smaller speedup for each dropped layer but a
higher relative speed compared to the fine-tuned models due to the small input size.
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Figure 9: Absolute time measurements for AdapterFusion at inference (left) and training (right) as a function of
the number of adapters. The measurements were conducted with a batch size of 32 (V100) and 16 (TitanX), and a
sequence length of 128.
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Figure 10: Absolute time measurements for AdapterFusion with AdapterDrop at inference (left) and training
(right) as a function of the number of dropped layers. The measurements were conducted with a batch size of 32
and a sequence length of 128. We additionally plot the time of an adapter (without AdapterDrop) and a model
without adapters to provide a more thorough comparison.
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Figure 11: The difference in inference time between iterative and parallel implementations of AdapterFusion.
Negative values indicate that the iterative implementation is faster. We calculate the difference as ti − tp, where
ti, tp are the times for iterative and parallel implementation, respectively. In Figure (a), the parallel implementation
is faster if the input is sufficiently small as the GPU is not working at capacity and is able to use the parallel
implementation.
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Figure 12: Evaluation performance of fine-tuning RoBERTA-base in comparison with different initialization strate-
gies for adapters (randomly initialized vs. pre-trained on masked language modeling task). Training was conducted
for 10k steps with a learning rate of 5e-05 for RoBERTa-base and 0.0001 for adapters, respectively.
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Figure 13: The AdapterDrop task performances for all eight GLUE tasks in relation to the dropped layers. ‘12 spe-
cialized adapters’ refers to the performance of indiviudal models trained for each AdapterDrop setting separately
(i.e., 12 models); ‘Standard adapter’ refers to the adapter that is trained with no dropped layers; AdapterDrop
training refers to the adapter that is trained with our proposed training procedure.


