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Abstract

Entity linking is an important problem with
many applications. Most previous solutions
were designed for settings where annotated
training data is available, which is, however,
not the case in numerous domains. We pro-
pose a light-weight and scalable entity linking
method, EIGENTHEMES, that relies solely on
the availability of entity names and a referent
knowledge base. EIGENTHEMES exploits the
fact that the entities that are truly mentioned in
a document (the “gold entities”) tend to form a
semantically dense subset of the set of all can-
didate entities in the document. Geometrically
speaking, when representing entities as vectors
via some given embedding, the gold entities
tend to lie in a low-rank subspace of the full
embedding space. EIGENTHEMES identifies
this subspace using the singular value decom-
position and scores candidate entities accord-
ing to their proximity to the subspace. On the
empirical front, we introduce multiple strong
baselines that compare favorably to (and some-
times even outperform) the existing state of
the art. Extensive experiments on benchmark
datasets from a variety of real-world domains
showcase the effectiveness of our approach.

1 Introduction

Entity linking (EL) is the task of grounding men-
tions to a reference knowledge base (also referred
to as knowledge graph). With a plethora of applica-
tions, including but not limited to information ex-
traction (Hoffart et al., 2011) and automatic knowl-
edge base construction (Gao et al., 2018), EL is one
of the most actively researched topics in natural lan-
guage processing. Despite the recent proliferation
of EL methods, recent works (Tsai and Roth, 2016;
Upadhyay et al., 2018) have pointed out that the
performance of existing techniques largely relies
on the existence of large corpora of annotated data.

∗Research done while at EPFL.

Unsupervised entity linking. In contrast, truly un-
supervised entity linkers should be able to operate
in the absolute absence of annotated data, with ac-
cess to only a reference knowledge graph (KG) and
a list of entity names, or aliases. Furthermore, nei-
ther the candidate generator nor the disambiguation
technique (the two key modules of any typical en-
tity linker) can make use of annotated data. There-
fore, “unsupervised” disambiguation techniques
that leverage labeled data to generate candidate en-
tities (Pan et al., 2015) are not applicable in our
setting. Only very recently have researchers (Le
and Titov, 2019; Logeswaran et al., 2019) started
to focus on EL systems that can operate in the ab-
solute absence of annotated data. The motivation
is well founded: there are some domains that link
to their own specialized KGs, for which labeled
data is not readily available, expensive to obtain,
or scarce in the best case. This can be exemplified
with domains such as law, science, or medicine.
Moreover, companies may have their proprietary
KGs where some entities are only meaningful with
respect to the company. In all these cases, available
labeled data cannot generalize to the corresponding
specialized KGs.

Challenges. The majority of the existing meth-
ods (Milne and Witten, 2008; Ganea and Hofmann,
2017; Yamada et al., 2017; Gupta et al., 2017; Le
and Titov, 2018) in the EL literature are ill-suited
for unsupervised EL as they rely heavily on an-
notated data. These methods typically leverage
annotated data to (1) generate candidate entities,
(2) use features (e.g. the prior probability P (e|m)
of an entity e given a mention m) derived from
these annotations, (3) learn aligned word and en-
tity embeddings enabling computation of similarity
between an entity and the mention context, and
(4) use a set of mentions and their corresponding
gold entities to train supervised models. Thus, it is
non-trivial and unclear how to adapt these methods
to work in the absence of annotated data.
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𝐶!! =	Michael_Jordan_(basketball_player)
𝐶!" =	Michael_Jordan_(computer_scientist)
𝐶!# =	Mike_Jordan_(racing_driver)
𝐶!$ =	Michael-Hakim_Jordan

𝐶"! =	Natural_Science
𝐶"" =	Applied_Science
𝐶"# =	Science_(album)
𝐶"$ =	Life_Science
𝐶"% =	Science_(journal)

Michael Jordan is one of the leading figures in 
machine learning. In 2016, Science reported him 
as the world's most influential computer scientist.
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Figure 1: (Left) Excerpt from a Wikipedia article about Michael I. Jordan with two mentions (in bold) and corre-
sponding candidate entities generated using surface name matching. (Right) Embedding space for all the candidate
entities within a document. The gold entities (triangles) form a cluster in the proximity of the subspace (green
plane) identified by EIGENTHEMES, while other candidates (circles) are distant from the subspace.

By the same token, one may not expect a large
validation set of annotated data wherein to per-
form extensive hyperparameter tuning. Thus, novel
approaches to EL without annotated data should
either possess a small number of hyperparameters
or be robust to hyperparameter tuning.

EIGENTHEMES. We propose EIGENTHEMES, a
scalable approach for performing collective disam-
biguation in the absence of annotated data. Given
a document with a number of mentions, each men-
tion with a set of candidate entities that it can be
linked to, and vector representations for all these
candidate entities, EIGENTHEMES builds a matrix
of the vector representations of all candidate enti-
ties within the document, and uses singular value
decomposition to learn a subspace spanned by a
number k of components referred to as “eigen-
themes”, where k is the only hyper-parameter spe-
cific to EIGENTHEMES. Note that each principal
component of the learned subspace captures the
topical relatedness among entities across a differ-
ent “latent” facet, and thus, by keeping several
principal components, EIGENTHEMES is equipped
to deal with multi-topic text.

By design, EIGENTHEMES is suitable in settings
where the gold entities within a document are topi-
cally related, in particular much more so than other
subsets of candidate entities—a realistic assump-
tion made by almost all existing works in the EL
literature (Cucerzan, 2007; Yamada et al., 2016;
Tsai and Roth, 2016), and for which we also pro-
vide a data-driven verification in § 6. By virtue of
this assumption, one may infer that the mentions
Michael Jordan and Science in the example from
Fig. 1 link to entities from the realm of science.
Moreover, as illustrated for toy data in Fig. 1 and
later verified for real data (cf. § 6), gold entities
tend to form a semantically dense subset of all can-
didate entities in the document and are therefore
expected to lie in the subspace or in its proximity.

EIGENTHEMES defines a similarity function that
will output high values for entities whose embed-
dings lie in the proximity of the subspace. Even-
tually, these scores are used to perform collective
disambiguation.

Contributions.
• We propose EIGENTHEMES, a light-weight and

fully unsupervised approach possessing the capa-
bility to incorporate external signals as weights
for learning improved subspaces (§ 4).
• We propose multiple strong baselines that com-

pare favorably to (and sometimes even outper-
form) the current state of the art τMIL-ND (Le
and Titov, 2019), and showcase the superiority
of EIGENTHEMES over the considered methods
on four benchmark datasets (§ 5).
• For the first time, we provide a data-driven justifi-

cation for the popular and long-standing assump-
tion regarding the relatedness among gold enti-
ties mentioned within a document being higher
than any other subset of candidate entities (§ 6).

2 Related Work

Unsupervised EL. Recent works (Le and Titov,
2019; Logeswaran et al., 2019) have spurred inter-
est in EL with no or limited annotated data. Le and
Titov (2019) propose τMIL-ND, which uses dis-
tant supervision to compute a compatibility score
between each of the candidate entities and the con-
text of the mention. Entities are decomposed as
sets of entity properties (types) and their represen-
tations are learned simultaneously with all other
model parameters. The model is trained using a
weak signal for scoring all entities in the (posi-
tive) set of candidates of a mention higher than all
entities in a (negative) set of randomly sampled
entities. Candidate entities are ranked based on
the computed local compatibility scores. While
the setting is identical to ours, the approaches are
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radically different. A downside of τMIL-ND (Le
and Titov, 2019) is that it requires validation of a
large number (15) of hyperparameters, which be-
comes problematic if the performance relies on an
extensive hyper-parameter tuning on a per-dataset
basis. Logeswaran et al. (2019) train an entity link-
ing model using an annotated dataset and apply it
to another dataset where annotations are not avail-
able. Entities are only identified by (long) textual
descriptions, and the model relies strictly on lan-
guage understanding to resolve the new entities.
Distant supervision for EL has also been explored
by Fan et al. (2015), however, their approach relies
on features extracted from entity descriptions avail-
able from Wikipedia articles. We do not compare
to Logeswaran et al. (2019) and Fan et al. (2015),
as, unlike ours, their approach cannot be general-
ized to set-ups where such entity descriptions are
not available.

Applications of low-rank subspaces. While low-
rank subspaces have been employed in diverse ap-
plication domains, e.g., face recognition (Turk and
Pentland, 1991), link prediction (West et al., 2009),
distributional semantics (Levy and Goldberg, 2014;
Mu et al., 2017), sense disambiguation (Mu et al.,
2016), etc., to the best of our knowledge, they have
never been used for performing EL. We also empha-
size our non-obvious use of low-rank subspaces:
(1) we compute one decomposition per document,
whereas most aforementioned applications com-
pute a single corpus-wide decomposition, and (2)
we incorporate weights.

3 Problem and Notation

We first formalize the task of interest. Let D be a
single document from a collection D of documents.
Similar to most previous works in the EL literature,
with few exceptions (Sil and Yates, 2013; Kolit-
sas et al., 2018), we assume that mention spans
(usually obtained by a named entity recognizer) are
provided. Also, let MD = {m1,m2, . . . ,mN}
be the set of N mentions contained in D, and E
be the set of entities in the reference KG G. A
low-dimensional representation (embedding) can
be learned for each entity by applying node repre-
sentation learning techniques such as DEEPWALK

(Perozzi et al., 2014) to the graph G. The entity
embeddings learned by these techniques are known
to be meaningful with respect to the relatedness of
the entities they represent (Almasian et al., 2019).
The EL task consists in finding, for each mention

m ∈ MD, the entity e ∈ E to which it refers. A
key component of any EL system is the candidate
generation system. Let CT denote such a system,
which, for a given mention m, retrieves at most
T entities—typically referred to as candidate enti-
ties. In the simplest case, the candidate generation
system may retrieve all possible candidates (then
T =∞) (Yamada et al., 2016) for a given mention,
but it is common to most of the works to retrieve
a small subset of the most likely entities for that
mention based on a certain sorting criterion. There
is no consensus in the literature regarding a suitable
value of T , and previous works have used varying
values such as 7 (Ganea and Hofmann, 2017), 20
(Upadhyay et al., 2018) or 30 (Kolitsas et al., 2018).
For each mention m ∈ MD, the set of candidate
entities is given by CT (m) = {e1m, e2m, . . . , eTm},
where eim indicates the ith candidate entity for the
mention m. For the example introduced in § 1, the
candidate entities for the mentions Michael Jordan
and Science are portrayed in Fig. 1.

A second key component of any entity linker is
the disambiguation module. This module selects an
entity contained in the referent KG G for each men-
tion of a document. The disambiguation process
may be performed independently for each mention,
or collectively for all mentions in a document. In
the latter case, the fundamental assumption of all
collective disambiguation algorithms is that the set
of gold entities are topically related.

Setting. Contrary to most of the existing work,
where both the candidate generation and the dis-
ambiguation modules are dependent on annotated
data, we focus on the setting where we only know
the referent KG G and the mentions to be disam-
biguated, but have no annotated data that could
generalize to the entities contained in G.

4 Entity Linking with EIGENTHEMES

EIGENTHEMES learns a low-rank subspace from
the ensemble of embeddings corresponding to all
candidate entities for all mentions within a docu-
ment (§ 4.1). We will see in § 4.2 that the learn-
ing of the subspace may also be guided by differ-
ent weights associated with the embeddings. The
learned subspace is represented by what we refer
to as “eigenthemes”. The eigenthemes are com-
ponents that are learned so as to decompose the
ensemble of the entity embeddings as a linear com-
bination of these components.
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The vector–subspace similarity function (§ 4.3)
takes the learned low-rank subspace and the vector
representation of a candidate entity, and computes
a similarity score as a weighted sum of similarities
between the entity vector representation and each
of the eigenthemes of the subspace. The similar-
ity between the entity representation and an eigen-
theme indicates how much of the signal from the
former can be projected into the latter, and it is
weighted with a value that relates to the strength of
the eigentheme in the entity embedding ensemble
of the document. As a result, only those entities
that lie in the learned subspace or in its proxim-
ity will have a high score. It is important to note
that while the vector–subspace similarity function
is applied to each mention’s candidates indepen-
dently, the learned subspace encompasses informa-
tion from all mentions in a document. Therefore,
the disambiguation performed by EIGENTHEMES

is collective, as the subspace given by the eigen-
themes is learned at a global level in the document.

Additional details (pseudocode, architectural
overview, etc.) about EIGENTHEMES are presented
in Appendix B.

4.1 Subspace Learning
Let E be the d-dimensional embeddings for the en-
tities E in the reference knowledge graph G. Given
a document D, we build the candidate space CS
by taking the union of the candidate entities given
by CT (m) for all the mentions m ∈ MD in the
document. The nD × d document embedding ma-
trix ED results from mapping all the nD entities in
CS to their corresponding embeddings in E and
stacking them as rows.

To learn the subspace SD of ED, we use the
Singular Value Decomposition (SVD), one of the
most fundamental techniques for matrix factoriza-
tion. The SVD of ED decomposes each entity
embedding in the matrix as a linear combination
of left and right singular vectors, as well as singu-
lar values. The truncated SVD obtains a rank-k
(k < min(nD, d)) approximation ẼD to ED by
just keeping the k largest singular values and their
associated left and right singular vectors. The ap-
proximated rank-k matrix is

ẼD = UkΣkV
>
k . (1)

where Uk and Vk are the nD × k and d × k or-
thonormal matrices that preserve the k left and right
singular vectors respectively, and Σk is a k × k di-
agonal matrix of the k largest singular values.

Each entity embedding is approximated as a lin-
ear combination—with coefficients given by the
rows of UkΣk—of the right singular vectors, i.e.
the columns of Vk. The columns of Vk are the
eigenthemes that form the subspace (hyperplane)
to be used to perform collective disambiguation.
The aforementioned coefficients are determined by
Uk, whose rows are entity-specific, and Σk, which
relates to the global strength of each eigentheme in
ED. As discussed previously, the proposed simi-
larity function to score candidate entities leverages
both eigenthemes Vk and their strength Σk.

Avoiding norm induced bias. Eckart and Young
(Eckart and Young, 1936) proved that ẼD is the
solution to the following optimization problem.

arg minX||ED −X||2F subject to rank(X) = k.

That is, ẼD is the rank-k approximation to ED

that minimizes the Frobenius norm between both
matrices. Thus, the truncated SVD is affected by
the norm of the embeddings used to construct ED.
It is for this reason that, prior to the learning of the
subspace, each of the entity embeddings of the ED

matrix is normalized to have unit L2 norm. Other-
wise, the learning of the subspace would be driven
by entities whose embeddings’ norm is larger. Hav-
ing normalized all the embeddings and chosen the
number k of components to be small, only the data
points of the dense region of the embedding space
will lie in the learned subspace or in its proximity.

4.2 Incorporating Weights
Let W be a weighting scheme1 for assigning
weights to all the candidate entities in a document
based on an external signal, which may capture a
prior likelihood of an entity to be the gold entity.
The weights provided by W can serve to guide
the learning of the subspace. The weights associ-
ated with entities have an impact in the optimiza-
tion problem solved by the SVD. Consequently,
the low-rank decomposition prioritizes accurate ap-
proximation of the entity embeddings contained in
the document embedding matrix based on both the
density of the entities in the embedding space and
their associated weights.

We follow a simple approach to incorporate
weights in the subspace learning by scaling each
row of the document embedding matrix ED with
the weights given by an nD × nD diagonal ma-
trix WD. Therefore, the subspace SD is learned

1Weighting schemes are described in Appendix D.4.
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from the rank-k approximation of WDED. The
values in WD are obtained by applying the weight-
ing schemeW to each of the nD candidate entities.
The weighting scheme enriched subspace is then
learned by performing an eigendecomposition of
the weighted sums of squares and cross product
(SSCP) matrix, which is formally stated as follows:

(WDED)>(WDED) = E>DW2
DED. (2)

The benefits of this extension are: (1) each
candidate entity is enriched with some evidence
about being a gold entity, and (2) the number of
candidates per mention T can be increased with-
out having a considerable negative impact on the
learned subspace, as unlikely candidate entities
will be penalized by the weighting scheme. Em-
pirically, weighted EIGENTHEMES obtains better
performance and is more robust to the parameter T
than its vanilla unweighted version (detailed analy-
sis in Appendix D.4).

4.3 Similarity Function
The subspace SD, determined by the eigenthemes
Vk and their strength Σk, learned from all the men-
tions in a document is at the core of our similarity
function, and allows to disambiguate every mention
in the document. For each mention, we project the
embeddings of the candidate entities into the sub-
space SD and select the candidate with the largest
norm. Candidate entities close to the subspace will
score highly, while those orthogonal to the sub-
space will obtain a low score.

Formally, for a mention m, the score of the ith

candidate entity eim is computed as follows:

score(eim) = ||eimVkΣk||2, (3)

where eim is the embedding of the entity eim. We
observed that re-scaling the projection of the entity
embedding into the eigenthemes with the corre-
sponding strengths Σk leads to better performance.

5 Experiments

All the resources (code, datasets, etc.) required to
reproduce the experiments in this paper are avail-
able at https://github.com/epfl-dlab/eigenthemes.

5.1 Datasets
We present results on real-world benchmark
datasets (Table 1) that are popular in the entity
linking literature. The considered datasets consti-
tute a judicious mix of scale and domain types. For
details about the datasets, please see Appendix C.

Table 1: Datasets and their statistics. Mentions where
the gold-entity was not contained in the candidate-set
are marked ‘Not-found’. The ‘easy’ and ‘hard’ catego-
rization of mentions is discussed in § 5.1.

Dataset #Mentions #Documents Oracle
#Easy #Hard #Not-found Recall

CoNLL-Val 2645 1542 590 216 87.7%
CoNLL-Test 2555 1417 506 231 88.7%
WNED-Wiki 2731 3025 938 318 85.9%

WNED-Clueweb 4667 4711 1662 320 84.9%
Wikilinks-Random 26373 17397 10729 2336 80.3%

Candidate generation. We employ a simple and
efficient approach to generate candidates, which
is similar in design to the candidate generator
used by Le and Titov (2019). Given a mention
m, the entities that contain all the words from m
are considered candidate entities. For example,
MICHAEL JORDAN (BASKETBALL PLAYER) and
MICHAEL JORDAN (COMPUTER SCIENTIST) are
candidates for the mention MICHAEL JORDAN,
while MICHAEL JACKSON is not. Since the degree
of an entity roughly captures its popularity, the
candidate entities are sorted based on the degree
of their corresponding vertices in the undirected
version of the Wikidata KG. Although simple, the
effectiveness and practicality of the candidate gen-
erator is corroborated by the high oracle recall (per-
centage of mentions where the true entity is present
in the set of candidates) obtained across all the
datasets presented in Table 1. It is important to
note that the methodology of EIGENTHEMES is
orthogonal to the candidate generator. While the
latter could be improved (by modifying the string
matching heuristic (Sil et al., 2012; Charton et al.,
2014), or using word embeddings to match words
in entity names and words in the mention, etc.),
which will only improve the performance of any
technique, it is beyond the scope of this work.

Preprocessing. We consider Wikidata as our refer-
ent KB. The gold entity annotations for mentions
available as Wikipedia page ids in all the aforemen-
tioned datasets were appropriately mapped to their
corresponding Wikidata identifiers. To ensure that
our empirical analyses and the corresponding con-
clusions are representative of various real-world
scenarios requiring entity linking, we, similar to
Tsai and Roth (2016) and Guo and Barbosa (2018),
introduce the ‘easy’ and ‘hard’ categorization for
mentions in all the datasets. A mention is termed
as ‘easy’ if the first candidate entity (in the list of
sorted candidates returned by the candidate genera-
tor) is the ‘true’ entity, and ‘hard’ otherwise.

https://github.com/epfl-dlab/eigenthemes
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Table 2: EL quality measured using precision@1 and MRR on the CoNLL-Test dataset. The best performance is
shown in bold. For τMIL-ND and WτMIL-ND, we perform 5 independent runs and report the mean and standard
deviation. All other techniques are deterministic. Note that the parameter T was fixed to 20 candidates per
mention, and thus, ‘#Hard’ mentions reduces from 1417 to 1136 while ‘#Not-found’ increases from 506 to 787.

Category Method Precision@1 MRR

Overall# Easy Hard Overall# Easy Hard

Existent NAMEMATCH (Riedel et al., 2010) 0.412 0.645 0.174 0.415 0.645 0.184
Existent τMIL-ND (SoTA) (Le and Titov, 2019) 0.451 ± 0.019 0.700 ± 0.032 0.187 ± 0.006 0.539 ± 0.017 0.777 ± 0.029 0.353 ± 0.005

Proposed LOCAL CTXT 0.296 0.420 0.223 0.401 0.537 0.374
Proposed GLOBAL CTXT 0.303 0.403 0.289 0.423 0.542 0.448
Proposed DEGREE 0.571 1.0† 0.0 0.649 1.0† 0.312

Proposed AVG 0.488 0.658 0.445 0.593 0.756 0.636
Proposed WτMIL-ND 0.499 ± 0.022 0.778 ± 0.037 0.217 ± 0.008 0.592 ± 0.018 0.853 ± 0.030 0.415 ± 0.007

Proposed EIGEN 0.617† 0.858 0.500† 0.690† 0.910 0.674†

- Ceiling 0.824 1.0 1.0 0.824 1.0 1.0
† Indicates statistical significance (p < 0.01) between the best and the second-best method using the Student’s paired t-test.
# Overall is computed by considering all mentions (including Not-found in addition to Easy and Hard).

5.2 Methods Benchmarked

Existing methods. To the best of our knowledge,
surface name matching (NAMEMATCH) and τMIL-
ND are the only methods tried in previous work.
• NAMEMATCH (Riedel et al., 2010): For each
mention m, NAMEMATCH retrieves all Wikidata
entities whose names match exactly with the men-
tion string. In the event of multiple matching en-
tities, we choose the entity with the highest KG
degree as the prediction for mention m.
• τMIL-ND (Le and Titov, 2019): The current
state of the art (SoTA), which is trained using the
New York Times dataset provided by Le and Titov.

Newly introduced baselines. We introduce five
creative and simple, yet effective baselines.
• LOCAL CTXT: computes a representation of the
local context of a mention as the average of its sur-
rounding words’ embeddings. For each mention m,
candidate entities are ranked based on their seman-
tic similarity with the context, and the one with the
highest similarity is chosen as the prediction for
m. Entity representations are computed from their
textual descriptions (details in Appendix D.3). We
set the context window size to 52.
• GLOBAL CTXT: follows the exact same proce-
dure as LOCAL CTXT, with the only difference
being the size of the context window. Following
convention in the literature (Yamada et al., 2016),
we use all the nouns in a document to obtain the
global context representation.
• DEGREE: a natural baseline (courtesy of our
candidate generator) for performing EL without
annotated data. For each mention m, entity degree
is used to obtain a ranking of the candidate entities,

2Other window sizes were evaluated, however, the chosen
value 5 resulted in the best downstream EL performance.

and the one with the highest degree is chosen as
the prediction for m.
• Average (AVG): constructs a representation of
ED as a d-dimensional vector by computing the
average of the rows of ED. Each candidate entity is
scored by computing the cosine similarity between
its embedding and the AVG based representation.
•WτMIL-ND: extends the current SoTA τMIL-
ND by incorporating the weights used by EIGEN

into its compatibility scoring function.

EIGENTHEMES (EIGEN). Our proposed solution.
Unless stated otherwise, weights are employed

for AVG and EIGEN. Note that we opt against
purely supervised baselines as running them cor-
rectly in the “true” unsupervised setting is incon-
ceivable (cf. challenges in § 1).

5.3 Setup

Embeddings. For word embeddings, we use
the publicly available (Archive, 2013) 300-
dimensional vector representation of words ob-
tained by training WORD2VEC (Mikolov et al.,
2013) on the Google News dataset. The 128-
dimensional entity embeddings were obtained by
training DEEPWALK (Perozzi et al., 2014) on the
Wikidata knowledge graph.

Weighting scheme. The candidate entities of a
mention are weighted using their reciprocal rank,
where the ranking is induced by the candidate gen-
erator (Le and Titov, 2019).

Parameters. The maximum number of candidates
per mention T is fixed to 20. Note that restricting
T also results in a reduction in the oracle recall. We
fix the number k of components for constructing
the subspace representation using EIGEN to 10.
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Figure 2: Scatter plots for 5 documents sampled randomly from the CoNLL-Test dataset. For each document, we
project all the candidate entities on the first two components (PC1 and PC2) of the subspace learned by EIGEN.

Evaluation metrics. We use (1) precision@1, and
(2) mean reciprocal rank (MRR) to evaluate the
quality of the methods benchmarked in this study.
Following convention in the literature, we compute
Micro aggregates of the metrics over all mentions.

Additional details about the experimental setup
(effect of different embedding methods, weighting
schemes, the number of candidates T , etc.), and
hyperparameter tuning (effect of k) are present in
Appendix D and E, respectively.

5.4 Results: CoNLL

We assess the efficacy of EIGEN by comparing
its quality measured using precision@1 and MRR
with the considered methods on the CoNLL-Test
dataset. The results are presented in Table 2. Note
that Ceiling corresponds to the oracle recall of the
candidate generator and provides an upper bound
on precision@1 and MRR.

Overall performance. It is evident that EIGEN

achieves the best overall quality and significantly
outperforms all the considered methods. The key
highlights are as follows: (1) EIGEN obtains an
improvement of 15 percentage points over the ex-
isting SoTA τMIL-ND, (2) AVG, a hard-to-beat
baseline (Arora et al., 2017; Wu et al., 2019) and a
natural competitor of EIGEN, is around 12 percent-
age points inferior to EIGEN, which substantiates
our intuition (cf. § 1 and 4) about the superiority
of subspaces in capturing global topical related-
ness among entities in a document, and (3) DE-
GREE, a simple baseline that we introduce in this
work, substantially outperforms all the other con-
sidered methods—even the existing SoTA, τMIL-
ND—and is second only to EIGEN, which remains
about 5 percentage points and statistically signifi-
cantly better (p-value < 0.01) than DEGREE.

Performance on ‘easy’ and ‘hard’ mentions.
The key finding is that the closest competitors—
WτMIL-ND and DEGREE—of EIGEN lack robust-
ness to the variation in mention-types, which is
substantiated by the huge disparity of EL perfor-

mance measured using precision@1 (with similar
trends observed for MRR) for both WτMIL-ND
(78% for easy vs. 22% for hard mentions) and
DEGREE (100% for easy vs. 0% for hard men-
tions). This result highlights the key limitation of
WτMIL-ND and DEGREE that they cannot address
challenging scenarios of EL. A detailed analysis
about the potential effects of this limitation is per-
formed in § 6, while a discussion on the potential
reasons behind the existence of this disparity in
performance is presented in Appendix D.5.

6 Analysis

In this section, we perform a post-mortem analysis
on a plethora of aspects impacting the downstream
EL performance of the considered methods mea-
sured using precision@1. Results for MRR show
similar trends and are therefore omitted.

Do learned subspaces capture the relatedness
among gold entities? Fig. 2 shows that gold enti-
ties tend to form tight clusters when projected on
the first two components of the subspace learned
by EIGEN. This result provides a data-driven jus-
tification regarding the existence of relatedness
among gold entities mentioned within a document—
a key assumption used in the design of almost every
method in the EL literature. Moreover, it also show-
cases the ability of the subspaces learned by EIGEN

to capture such relatedness.

Do gold entities lie closer to the learned sub-
spaces when compared to other candidate enti-
ties? The disambiguation module of EIGEN relies
on the gold entities of a document being closer to
the learned subspace than other candidate entities.
While the strong EL performance of EIGEN por-
trayed in Table 2 provides substantive evidence in
favor of the aforementioned property, we conduct a
more direct assessment, which is described as fol-
lows. For every mention in a document, we project
all candidate entities onto the subspace learned by
EIGEN and compare the score (Eq. 3) of the gold
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entity to the average score (Eq. 3) of the non-gold
entities, finding that the gold entity’s score G is
statistically significantly higher (81% on average)
than the score N of the average non-gold entity:
G−N
N = 0.81, with bootstrapped 95% confidence

interval [0.78, 0.84]. This finding convincingly sub-
stantiates the fact that incorrect candidate entities
rarely exhibit stronger topical relatedness than gold
entities. In the event that incorrect candidates also
possess strong relatedness, EIGEN (by design) can
differentiate between the true and spurious related-
ness by leveraging weighting schemes.

Does the distribution of mention-types affect
EL performance? Inspired by the cloze test (Tay-
lor, 1953) used to assess language learning capa-
bility of individuals (Henning et al., 1983), we
perform a mutilation analysis to assess the impact
of the distribution of mention-types on the down-
stream EL performance. The test is carried out
by removing varying number of ‘easy’ mentions
from the CoNLL-Test dataset, thereby increasing
the fraction of ‘hard’ (ambiguous) mentions, and
thus, can be deemed analogous to adding noise
in the dataset. Specifically, we generate 11 dif-
ferent dataset versions by subsampling (uniformly
at random) varying fraction (between 1 and 0 in
decrements of 0.1) of easy mentions while retain-
ing all the hard mentions, and measure the ‘over-
all’ EL performance in each version. We run this
experiment 10 times and report the mean perfor-
mance. Being very small, the standard deviations
were omitted to avoid clutter.

Fig. 3a portrays that the overall EL performance
of all the techniques deteriorates with the reduction
in the fraction of easy mentions, which is natu-
ral. Interestingly, the deterioration observed for
the DEGREE baseline is much more profound—
precision@1 plummets from 0.57 (fraction-easy
= 1) to 0 (fraction-easy = 0)—when compared to
all other techniques, and it gets demoted from be-
ing the second best technique to the worst. Note
that even AVG starts outperforming DEGREE when
fraction of easy mentions are less than 0.5. On the
contrary, EIGEN consistently outperforms all other
techniques in all the subsampled versions.

This experiment establishes two important
points. (1) It shows that the performance of DE-
GREE is deceptively high. More importantly, it
unveils a key limitation of DEGREE, i.e., its inabil-
ity to address challenging scenarios of EL where
the fraction of easy mentions is low. (2) It bolsters
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Figure 3: Analyzing the (a) effect of mention-type
distribution, and (b) performance on out-of-domain
datasets using precision@1.

the superiority of EIGEN over other techniques by
showcasing its ability to reliably and consistently
perform well, even in challenging scenarios.

Robustness: Out-of-domain Datasets. It is stan-
dard practice in the EL literature (Ganea and Hof-
mann, 2017; Le and Titov, 2018) to evaluate the
robustness of the models trained on the CoNLL-
train dataset in out-of-domain datasets without any
(re)validation of hyperparameters. In the same vein,
the experiments on all the other datasets were per-
formed using the hyperparameters tuned on the
CoNLL-Val dataset. Specifically, we assess the
robustness of the techniques on the recently intro-
duced WNED-Wiki and WNED-Clueweb datasets,
and the Wikilinks-Random dataset of English
Wikipedia tables. The results are presented in
Fig. 3b. Note that τMIL-ND cannot perform EL
in the Wikilinks-Random dataset owing to the ab-
sence of sequential textual content, and therefore,
the corresponding bar in the plot is non-existent.

It is worth noting that τMIL-ND (the existing
SoTA) performs the worst in the out-of-domain
scenario, whereas all other techniques exhibit ro-
bustness. Hence, this experiment simply unveils a
limitation of τMIL-ND, i.e., its lack of robustness,
which is a noteworthy finding. Consequently, the
experiment also establishes two important proper-
ties of EIGEN: (1) robustness to hyperparameter
tuning, and (2) adaptability to newer domains.

7 Discussion

Summary of Results. A strong entity linking
method for scenarios with no annotated data should
stand strong on three pillars: efficacy towards entity
disambiguation, scalability to large datasets, and
robustness to hyperparameter tuning and mention-
type distributions. We performed an extensive com-
parison of EIGEN with 7 techniques across each
of the aforementioned features, and while a quan-
titative analysis has already been performed, we
provide a visual summary in Fig. 4.
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Figure 4: A qualitative summary of the spectrum of
unsupervised EL techniques based on their strengths.

EIGEN (classified as “RES”) stands strong on all
three pillars. (1) It is robust to the presence of noise
in the data; provides simplicity of hyperparameter
tuning as it possesses just one hyperparameter, viz.,
the number of components to construct the sub-
space; and also portrays robustness to the hyper-
parameter tuning step. (2) Its light-weight nature
provides the ability to gracefully scale to Web-scale
datasets. Empirically, EIGEN requires around 2–15
minutes, while τMIL-ND (Le and Titov, 2019)
requires around 200–220 minutes to perform en-
tity linking for the considered datasets. Thus, our
approach is approximately 10 to 100 times more
efficient. (3) It portrays the best efficacy across
all metrics, settings, and datasets. While DEGREE

(classified as “ES”) is a promising technique, its
lack of robustness to the varying easy-hard propor-
tion of queries in the datasets serves as a concerning
disadvantage. As argued in the “challenges” para-
graph of § 1, robustness is a desired characteristic
in a setting where no annotated data is available.

Some of the additional advantages of our method
include: (1) language independence owing to the
reliance on entity embeddings alone, and (2) ca-
pability to improve existing methods in settings
where annotated data is available (Appendix F). In
summary, EIGENTHEMES provides an effective, ef-
ficient, and scalable solution to the entity linking
problem in the absence of annotated data.

EIGENTHEMES vs. Clustering. While Fig. 2
shows that gold entities tend to be clustered to-
gether in the eigenspace, producing internally-tight,
mutually-far clusters (as obtained by, say, k-means
(Lloyd, 1982; MacQueen, 1967)) is neither the op-
timization objective nor a requirement for EIGEN-
THEMES to work. Moreover, using clustering to
disambiguate gold entities from other candidate
entities is easier said than done, as even with a per-
fect clustering where gold entities lie in a single
coherent cluster, it is unclear how to identify which
cluster contains these gold entities.

Domain-specific KGs. Domain-specific KGs—
associated with text corpora in niche domains such
as cinema, law, medicine, or science—are usu-
ally sparser than Web-scale KGs such as Wikidata,
which could lead to low-quality entity embeddings
(Pujara et al., 2017), thereby directly affecting the
performance of EIGENTHEMES. To this end, we
compare the information density (#relationships-
per-entity) (Pujara et al., 2017) of the Wikidata KG
variant (Appendix C.2) used in the current work to
learn entity embeddings, with a plethora of domain-
specific and Web-scale KGs. Specifically, the in-
formation density of our Wikidata KG (5.5) is sim-
ilar to that of domain-specific KGs, namely: IMDb
(4.5) (Rossi and Ahmed, 2015) and SNOMED (7.1)
(Chang et al., 2020), and much smaller than Web-
scale KGs, namely: DBpedia (26) (Auer et al.,
2007), Freebase (16) (Bollacker et al., 2008), and
Wikidata (12.5) (Vrandečić and Krötzsch, 2014).
Moving beyond aggregate statistics, even the de-
gree distribution of our Wikidata KG is similar to
that of the aforementioned domain-specific KGs.
These statistics indicate that EIGENTHEMES can
readily perform EL in domains with sparse KGs.

Unobserved Entities. In its current state, EIGEN-
THEMES cannot perform EL for KG entities that
were not observed during training of entity embed-
dings. Inductive learning (Hamilton et al., 2017)
of entity embeddings serves as a potential fix, how-
ever, such extensions constitute as future work.

8 Conclusions

In this paper, we addressed the problem of EL in
the absence of annotated data with a light-weight
method, EIGENTHEMES, that relies solely on the
availability of entity names and a referent KB. Ex-
periments on benchmark datasets portrayed the ef-
fectiveness of our proposed approach. In the future,
our aim is to validate the effectiveness of our ap-
proach in performing multi-lingual entity linking
with a special focus on low-resource languages.
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Broader Impact

Entity linking is a broad problem with diverse appli-
cation areas ranging from natural language process-
ing to web data management. A less popular yet im-
portant application of entity linkers is their ability
to act as an enabling technology for improving the
navigability of networks such as Wikipedia, which
depends heavily on the amount and diversity of
hyperlinks joining pairs of articles. Moreover, they
are also critical in facilitating users and machines
to obtain a better understanding of text corpora by
having ambiguous pieces of text linked to their cor-
responding unambiguous concepts. Entity linking
could be deemed as a solved problem in scenarios
where annotated data is available, however, there is
a scarcity of methods capable of performing entity
linking without access to annotated data. Conse-
quently, designing effective and efficient solutions
for entity linking without annotated data is an im-
portant avenue, and our current work is a step in
that direction. The core contribution of this paper
is a light-weight and language agnostic approach to
unsupervised entity linking. While we are not the
first to formulate the unsupervised entity linking
problem, we are the first to propose a solution ca-
pable of operating on Web-scale datasets, which is
a fundamental requirement for practical entity link-
ers. Moreover, we are also the first to introduce a
suite of simple and intuitive, yet effective baselines
that would serve as strong benchmarks thereby en-
abling researchers to conduct follow-up research in
this nascent but important research area.
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Appendix

A Additional Related Work

Sil et al. (2012) address a related task in a setting
similar to ours. Given a mention, they generate
a restricted number of candidate entities, which
very often contain the gold entity, by exploiting
associated structured information. Very recently,
Vashishth et al. (2021) address the same issue for
medical entity linking by pruning irrelevant candi-
date entities based on the prediction of semantic

type of a mention. We believe that these works are
complementary to EIGENTHEMES and could bring
important benefits to disambiguation techniques in
the absence of annotated data.

B Additional Details about
EIGENTHEMES

The pipeline of EIGENTHEMES and its pseudocode
are depicted in Fig. 5.

Discussion: The role of T and k in subspace
learning. As stated in Sec. 4, the eigenthemes
are components that are learned so as to decom-
pose the ensemble of the entity embeddings as a
linear combination of these components. If the
number k of eigenthemes is chosen to be small,
these components will constitute a good basis to
approximate the dense region of the document em-
bedding matrix. From the fundamental assumption
of the existence of topical relatedness across the
gold entities in a document and that such related-
ness is captured by their corresponding embeddings
(Almasian et al., 2019), the gold entities will form
a dense region and, consequently, will define the
subspace. However, this is only possible if there is
no other subset of candidate entities whose relat-
edness is larger than that of the set of gold entities.
The latter point relates to the hyperparameter T ,
which controls the maximum number of candidate
entities per mention. A low value of T reduces the
possibility of having another subset of entities with
larger relatedness as well as the recall—the number
of times that the gold entity is contained in the set
of candidate entities. A large value of T increases
both. In general, the larger the number of candidate
entities per mention, the more the learned subspace
will be affected by embeddings other than those
from the gold entities.

C Datasets

C.1 Detailed Dataset Description
• The AIDA-CoNLL dataset (Hoffart et al., 2011)
is one of the most popular datasets in the ELliter-
ature. It is based on the CoNLL 2003 shared task
(Tjong Kim Sang and De Meulder, 2003) and con-
tains high quality manual annotations for mention
strings linking them to their target named entities.
The dataset consists of three parts: training, val-
idation, and test, but, we use only the validation
(CoNLL-Val) and test (CoNLL-Test) sets owing to
the fully unsupervised nature of our approach.

https://www.wikidata.org/
https://www.wikidata.org/
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Input: A document D which contains a set of mentionsMD ,
a candidate generation system CT , a weighting schemeW ,
d-dimensional entity embeddings E, and the number of com-
ponents k to be learned by the subspace.

Output: Assignment of entities to each mention m ∈ MD

1: Candidate space CS ← {CT (m) |m ∈ MD}
2: ED ← Embeddings taken from E for entities in CS
3: WD ← Weights taken fromW for entities in CS
4: Subspace SD ← Subspace_Learning(WD,ED, k)
5: Mention2Entity = {}
6: for each m ∈ MD do
7: score = {}
8: for each e ∈ CT (m) do
9: score[e]← Compute similarity between e and SD
10: Mention2Entity[m] = argmaxe′ score[e′]
11: return Mention2Entity

Figure 5: (Left) Pipeline of EIGENTHEMES. (Right) Its pseudocode. [a; b] is row-wise concatenation of a and b.

•WNED-Wiki and WNED-Clueweb are recently
introduced benchmark datasets by Guo and Bar-
bosa (Guo and Barbosa, 2018) aimed at reducing
the bias in the AIDA-CoNLL dataset towards pop-
ular entities. Specifically, these datasets are gener-
ated by uniformly sampling mentions with different
levels of difficulty (determined by the prior scores)
from the ‘2013-06-06’ dump of English Wikipedia
and Freebase annotations of the 2012 Clueweb cor-
pora (FACC1) (Gabrilovich et al., 2013) respec-
tively.
• The Wikilinks-Random dataset (Bhagavatula
et al., 2015; Limaye et al., 2010) consists of tables
extracted from the English Wikipedia with men-
tions and their corresponding links to Wikipedia
pages. Note that a key difference between this and
the other datasets is the scarcity of textual content
in the table data.

C.2 Dataset Preprocessing Details

Referent KB. Wikidata (Vrandečić and Krötzsch,
2014) is considered as the referent KB. We use
the n-triples format of the Wikidata dump3 down-
loaded on May 3, 2019. Since the gold entity anno-
tations for mentions in all the datasets benchmarked
in this study are provided as either page-titles or
page-ids of the English Wikipedia, we restrict our
entity universe to the ones having links to English
Wikipedia resulting in about 3.7M Wikidata enti-
ties. The mapping between Wikipedia and Wiki-
data entities was extracted using the Wikimapper
tool (Klie, 2019) from the ‘page_props.sql.gz’ file
available in the ‘2019-05-20’ dump4 of English
Wikipedia. Eventually, each entity is denoted by
its unique Wikidata identifier (QID). For example,
the entity MICHAEL JORDAN (COMPUTER SCIEN-
TIST) is denoted by his Wikidata QID: Q3308285.

3The ‘latest-truthy.nt.gz’ file at https://dumps.wikimedia.
org/wikidatawiki/entities/

4https://dumps.wikimedia.org/enwiki/
Note that 1, 7, 12, and 6903 mentions were ig-

nored from the CoNLL-Val, WNED-Wiki, WNED-
Clueweb, and Wikilinks-Random datasets respec-
tively as their ground truth Wikipedia entities could
not be mapped to their corresponding Wikidata en-
tities. After investigating the reason behind this,
we found that the Wikipedia pages corresponding
to these entities do not exist any more.

Candidate generation. The starting point of most
existing techniques in the entity linking literature
is the existence of a large amount of high qual-
ity annotated data. This allows to reliably esti-
mate the probability that a mention m refers to
an entity e, formally denoted as P (e|m) and com-
monly referred to as prior probability. Thus, a
common choice for most of the works (Bhaga-
vatula et al., 2015; Yamada et al., 2016; Ganea
and Hofmann, 2017; Gupta et al., 2017; Kolitsas
et al., 2018) is to leverage the prior information
collected by Spitkovsky and Chang (Spitkovsky
and Chang, 2012), who crawled the Web for associ-
ating strings of text with entities in the underlying
English Wikipedia knowledge graph. This prior
information constitutes the basis of the candidate
generation system used by most entity linking tech-
niques. It has been shown multiple times that prior
information itself represents the bulk of the per-
formance of the entity linking methods (Ratinov
et al., 2011; Bhagavatula et al., 2015; Tsai and
Roth, 2016; Upadhyay et al., 2018), and hence,
some authors (Bhagavatula et al., 2015; Yamada
et al., 2016) have spent much effort in crawling ad-
ditional Web resources to complement Spitkovsky
and Chang’s corpus.

However, in the absence of annotated data, such
prior information is not available, and there is a
requirement of mechanisms to generate a set of
plausible candidate entities for a given mention
string. To this end, and because we do not want
to presume information more complex than what
is readily available for arbitrary knowledge graphs,

https://dumps.wikimedia.org/wikidatawiki/entities/
https://dumps.wikimedia.org/wikidatawiki/entities/
https://dumps.wikimedia.org/enwiki/
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we employ a simple and efficient approach to gener-
ate candidates. For each entity e in the knowledge
graph G, we have access to its name and a list of
aliases used to commonly refer to e. Note that the
mention strings, entity names, and aliases are tok-
enized into words. Given a mention m, the entities
that contain all the tokens from m are considered
candidate entities. For example, MICHAEL JOR-
DAN (BASKETBALL PLAYER) and MICHAEL JOR-
DAN (COMPUTER SCIENTIST) are candidates for
the mention MICHAEL JORDAN, while MICHAEL

JACKSON is not. Although simple, the recall of
this candidate generation approach is quite high
and practical (as shown in Fig. 6) for the data sets
considered in this work. The methodology to per-
form disambiguation is orthogonal to the candidate
generator, and while the latter could be improved
(Sil et al., 2012; Wang et al., 2015), which will only
improve the performance of any technique, it is not
in the scope of this work.

As the candidate generation system CT only ac-
counts for at most T most likely entities of a men-
tion, a sorting criterion is required. To this end,
candidate entities are sorted based on the degree
of their corresponding vertices in the undirected
version of the knowledge graph. The degree of an
entity roughly captures its popularity.

A naïve implementation of the aforementioned
string matching based candidate generator is im-
practical considering the sheer size of real-world
knowledge graphs. To this end, we employ an in-
verted index for scaling up the candidate generator.
Specifically, for each token we maintain a set of
entities containing that token in their name or in
one of their aliases. Thus, for a mention string, we
obtain the sets of entities corresponding to each
of its constituent tokens, and the final set of can-
didates is computed by finding an intersection of
the previously obtained sets. This ensures scala-
bility and practicality of the candidate generation
module.

We follow the aforementioned approach and use
the ‘name’ and ‘alias’ information (available for
43.7M and 6.6M entities, respectively), described
by the <http://schema.org/name> and
<http://www.w3.org/2004/02/skos/
core#altLabel> Wikidata relationships
respectively, to construct an inverted index of
tokens in the mentions to their corresponding
Wikidata QIDs. This index is then used to
generate candidate entities for each mention,
where the entities are sorted based on their degree
in Wikidata.

Fixing the maximum number of candidates per
mention T . We analyze the effect of the parameter
T on the oracle recall for the CoNLL-Val dataset.
As portrayed in Fig. 6, the simple string match-
ing based candidate generator achieves an overall
oracle recall of 76%, which is improved to 87%
by incorporating the use of alias information. Fur-
thermore, it is evident that increasing T provides
diminishing marginal gains in the oracle recall: re-
taining at most 20 candidates per mention already
results in an oracle recall of 83%, which is about
95% of the overall oracle recall. With this obser-
vation and similar to the existing techniques in the
literature (Ganea and Hofmann, 2017; Le and Titov,
2019), we fix T to be 20 for all the datasets. While
the candidate generator could be improved by em-
ploying smarter tokenization rules, fuzzy string
matching, and using word embeddings to capture
semantics, we believe the obtained oracle recall of
87% is already quite high, as even with the use of
prior information in the presence of annotated data
the oracle recall for the aforementioned datasets
are in the range of 90 to 95% (Ganea and Hofmann,
2017).

D Experimental Setup

All the experiments were done using code writ-
ten in Python on an Intel(R) Xeon(R) E5-2680
24-core machine with 2.50GHz CPU, and 256 GB
RAM running Linux Ubuntu 20.04. For EIGEN-
THEMES and WEIGHTED EIGENTHEMES, we use
the open source implementation of the singular
value decomposition and eigendecomposition, re-
spectively, available in the NumPy linear algebra
library (NumPy, 2019). We adapt the Python im-
plementation5 of τMIL-ND (Le and Titov, 2019)
made available by the authors themselves to work
with Wikidata as the referent KB instead of Free-
base. For details, please see Appendix D.2.

D.1 Code and Datasets
The code, datasets, and all the other resources such
as word and entity embeddings, required to repro-
duce the results reported in this paper are available
at https://github.com/epfl-dlab/eigenthemes.

D.2 Note on the Implementation of τMIL-ND
Le and Titov (Le and Titov, 2019) use Freebase
as the referent KB. All information pertaining

5https://github.com/lephong/dl4el

https://github.com/epfl-dlab/eigenthemes
https://github.com/lephong/dl4el
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Figure 6: Oracle recall as a function of T on the
CoNLL-Val dataset (x-axis in log scale).

to candidate entities, such as entity types, name,
aliases, description, popularity etc., was extracted
from Freebase. To make the implementation
of τMIL-ND compliant with our setup, while
at the same time ensuring the use of their
original resources as much as possible, we use
the ‘Freebase ID’, described by the property
<https://www.wikidata.org/wiki/
Property:P646>, available in the Wikidata
dump to map Freebase entities to Wikidata
entities. This enabled us to identify a mapping
from Freebase to Wikidata for approximately
1.3M entities. After obtaining the mapping, it
was straightforward to adapt the implementation
of τMIL-ND to work on our preprocessed
datasets (Sec. 5.3) using their original re-
sources. We provide modified source files for
τMIL-ND’s implementation in our GitHub repos-
itory https://github.com/epfl-dlab/eigenthemes,
which can be simply used to replace the corre-
sponding files at https://github.com/lephong/dl4el
to obtain the results for τMIL-ND reported in this
paper. Detailed instructions are provided in the
README of our GitHub repository.

D.3 Entity Embeddings
The entity embeddings can be computed using the
following two approaches:
• Graph structure: This approach presents a nat-
ural way of learning entity embeddings by building
models that preserve the neighborhood of entities
in an underlying graph. To this end, we construct
a subgraph of the Wikidata knowledge graph by
retaining only the edges existent between Wiki-
data entities that have a mapping in the English
Wikipedia. The entity embeddings are then learned
by training DEEPWALK (Perozzi et al., 2014) on the
resultant graph of 3.7M entities and 20.2M edges.

We also explored recent state of the art tech-
niques NetSMF (Qiu et al., 2019) and LouvainNE
(Bhowmick et al., 2020) for learning entity embed-

dings using the Wikidata graph. While NetSMF
(Qiu et al., 2019) crashed on our machine (with
256 GB RAM) owing to going out of memory,
LouvainNE (Bhowmick et al., 2020) was much
worse than DEEPWALK on the entity relatedness
task. Specifically, while DEEPWALK obtained an
MRR of 0.62, LouvainNE obtained that of 0.44.
Note that the authors of LouvainNE did not con-
duct any experiments on the entity relatedness task,
and while it was shown to be better than DEEP-
WALK on the node classification task, it cannot be
used, since the ability to better capture entity re-
latedness is a desired property for any embedding
technique to be useful in our setting.
• Textual descriptions: KGs usually offer a
short textual description for each entity and
Wikidata is no exception. Entity descriptions
have been used to learn entity embeddings
in the literature (Yamada et al., 2018). In
the same vein, we learn entity embeddings
by extracting entity descriptions provided by
the <http://schema.org/description>
Wikidata relationship, and computing the aver-
age of WORD2VEC embeddings of the description
words.

Moving ahead, we study the utility of embed-
dings obtained by the aforementioned approaches
on our downstream entity linking task. A recent
study (Almasian et al., 2019) indicates the ability of
node embedding based methods to better capture
relatedness when compared to word embedding
based methods, which are instead better in cap-
turing similarity. Since the objective of subspace
learning is to capture topical relatedness across
the gold entities in a document D, the subspace
SD learned over the candidate embedding matrix
ED constructed using graph-structure based em-
beddings should perform better than those obtained
using textual descriptions.

Results. We also empirically validate the afore-
mentioned intuition. Figs. 7a and 7b show that
there exists a stark difference in the entity link-
ing quality (of around 8 to 12 percentage points
in both precision@1 and MRR) for both AVG and
EIGEN when using entity embeddings obtained
by DEEPWALK than those obtained by average
of WORD2VEC embeddings of the entity descrip-
tion words. This observation provides substan-
tial evidence in favor of using DEEPWALK over
WORD2VEC embeddings for learning the subspace
representation. Therefore, we fix the method for

https://github.com/epfl-dlab/eigenthemes
https://github.com/lephong/dl4el
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Figure 7: Analyzing the effect of (a)-(b) the method for obtaining entity embeddings, and (c)-(d) the number of
components used to construct the low-rank subspace using EIGEN, on the quality of entity linking for the CoNLL-
Val dataset.
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CoNLL-Test dataset.

obtaining entity embeddings to the graph-structure
based approach using DEEPWALK.

D.4 Weighting Scheme
The weighting schemeW establishes a descending
sorting that relates to the (presumable) probability
of each of the candidate entities being linked to the
mention under consideration.

Let W(e) denote the weight for the candidate
entity e, which is computed as follows:

W(e) = rank(e)−δ (4)

where rank(e) corresponds to the position of the
entity e in the ranking computed. This is closely
related to the reciprocal rank, which is a widely
used in the information retrieval community. The
parameter δ (> 0) controls the importance of the
rank position. For large values of δ, the weights
will decay very quickly with respect to the rank
position, whereas for small values the weights will
become more uniform.

A ranking is established for the candidate entities
of each mention. Thus, for a document with 5
mentions we have 5 rankings. We explore two
different ranking mechanisms.
Ranking based on entity degree. This ranking re-
lies on graph information. It simply takes the order
provided—based on entity degree in the knowledge
graph—by the candidate generation system, and
uses that ranking to compute the weights.

Ranking based on textual coherence. This rank-
ing leverages text signals. For each entity of the
knowledge graph, a small description is available.
Examples of these descriptions are “British author
and humorist” or “Republic in Southwestern Eu-
rope” for the entities Douglas Adams and Portugal,
respectively. Similar to (Yamada et al., 2018), we
use pre-trained word embeddings to represent enti-
ties as the average of the embeddings of the words
in their description. We also use these word em-
beddings to compute a context representation as
the average of the embeddings of the words that
surround the mention under consideration. We then
compute the cosine similarity between the descrip-
tion embedding of each of the candidate entities
and the context embedding. The ranking is estab-
lished based on these similarity scores. For the con-
text embedding we consider a local context, which
only takes into account words within a window
size from the mention, and a global context, which
takes into account all the words in the document.

Analysis: Do weights enrich the quality of sub-
spaces learned by EIGEN? We empirically as-
sess the utility of the extension (Sec. 4.2) for in-
corporating weights in the subspace learning step
of EIGEN. It is evident from Figs. 8a and 8b that
EIGEN (with weights) learns improved subspace
representations and consequently, obtains better
entity linking performance than EIGEN (without
weights). Furthermore, while EIGEN (weighted) is
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Figure 9: Analyzing the effect of the maximum num-
ber of candidates per mention (T ) on the entity linking
performance of EIGEN using (a) precision@1, and (b)
MRR for the CoNLL-Test dataset.

only marginally better than EIGEN (unweighted)
for ‘hard’ mentions, it is substantially better (about
25 percentage points) for ‘easy’ mentions. This
is easily explained as the signal derived from the
entity-degree-based weighting scheme is biased to-
wards easy mentions by construction (Sec. 5.1).
Thus, EIGEN with weighting is expected to obtain
an improvement in quality for the easy mentions.
In fact, the simultaneous (though marginal) im-
provement obtained for hard mentions indicates
that EIGEN (weighted) successfully congregates
the best of both the worlds. This also reinforces
the robustness of the EIGENTHEMES framework,
as the learned weighted subspace did not get bi-
ased towards improving the performance for easy
mentions alone. Similar to EIGEN, weights also
improve AVG, i.e., AVG (weighted) is considerably
better (about 10 points) than AVG (unweighted).

Analysis: Which weighting scheme is the most
efficacious? We now empirically assess the
strength of different weighting schemes towards
improving the EL performance of other techniques,
and use EIGEN as a representative technique for the
analysis. Results for other techniques portray sim-
ilar trends and are omitted for the sake of brevity.
Figs. 8c and 8d present a comparison of the qual-
ity of three signals: (1) LOCAL CTXT, and (2)
GLOBAL CTXT (text-based), and (3) entity de-
gree (graph-based); and their impact on the quality
of EIGEN (weighted). It is evident from the bar
corresponding to ‘Weight-based Ranking’ in both
Figs. 8c and 8d, i.e., the ranking of candidates ob-
tained solely using the weighting schemes, that
the text-based signals are much weaker than the
graph-based signal. Hence, not surprisingly, the
quality of EIGEN (weighted) using text signals is
only marginally better than the unweighted EIGEN.
On the other hand, the graph-based signal results
in a substantial improvement of around 14 percent-
age points for EIGEN (weighted) over EIGEN (un-

weighted). Thus, we choose the ranking induced
by entity degree as the preferred weighting scheme.

Analysis: Effect of δ. Moving ahead, we also an-
alyze the effect of the parameter δ, which reflects
the intensity of the weights (Eq. 4) in the subspace
learning step of EIGEN. For any fixed value of T ,
Figs. 9a– 9b portray that increasing δ, and therefore
the intensity of weights, results in an improvement
at first (until δ = 1), beyond which the perfor-
mance starts to slowly decline. An in-depth analy-
sis revealed that increasing δ always results in an
improvement for easy mentions, however, the per-
formance on hard mentions improves until δ = 1
while starts to decline beyond that. We will see later
in Appendix D.5, that DEGREE (by construction)
possesses a bias towards easy mentions, and this is
exactly what is at play here. To summarize, beyond
δ = 1 EIGEN gets biased towards easy mentions
and thus, the performance on hard mentions starts
to decline, which is also reflected marginally in
the overall performance. More elaborate weighting
schemes might facilitate an even larger improve-
ment in the performance of EIGEN, however, we
leave the design of such schemes for future work.

Analysis: Effect of the number of candidates.
While in the experiments, T was fixed to 20 based
on the analysis in Appendix C.2, we now analyze
the effect of variation in this parameter on the per-
formance of EIGEN. Figs. 9a– 9b show that the per-
formance of EIGEN improves at first (up to 5 candi-
dates per mention), beyond which the performance
starts to slowly decline (barring δ = 0.25 for which
the decline is steep). This is because increasing the
number of candidates beyond a point makes the
document embedding matrix noisy, thereby affect-
ing the quality of the learned subspace. However,
it can be observed that for larger values of δ ≥ 1,
EIGEN gracefully handles the noise resulting from
an increase in the number of candidates, and we
only observe minor effects on the EL performance.

D.5 Results CoNLL: ‘Easy’ vs. ‘Hard’
We found that the average number of candidates
per mention for hard mentions is much higher than
that for easy mentions, and this phenomenon has
a stronger deteriorating effect on τMIL-ND than
EIGEN. Consequently, the improvement (around
30 points) of EIGEN over τMIL-ND is even more
profound for the hard mentions. Note that DEGREE

obtains a performance of 100% for easy and 0%
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Table 3: Supervised: precision@1 for CoNLL-Test.
We run each model 5 times and report the mean and
standard deviation.

Context F1+F2+F3 F1+F2+F3+F4 CeilingType
Local 0.848 ± 0.002 0.864 ± 0.0003 0.974

Global 0.852 ± 0.002 0.862 ± 0.002 0.974

for hard mentions, which is simply due to the way
these sets were constructed (cf. Sec. 5.1).

E Hyper-parameter Tuning

The only hyperparameter for EIGEN is the num-
ber k of components used to construct the low-
rank subspace representation of each document
D. In this section, we analyze the effect of k on
the quality of the entity linking output of EIGEN

(unweighted) using the CoNLL-Val dataset. Note
that the outcome of the analyses presented in this
section is generalizable to EIGEN (weighted) as it
is a specialized instance of EIGEN (unweighted).
Naturally, we observe similar trends for EIGEN

(weighted) and the results are therefore omitted.
It is evident from both Figs. 7c and 7d that

increasing the number of components results in
an improvement in the entity linking quality mea-
sured using precision@1 and MRR respectively.
Furthermore, the performance improves monoton-
ically and then plateaus around 10 components,
post which there is no considerable improvement.
Therefore, we fix the number of components k to
10 for obtaining all the experimental results pre-
sented in this paper.

E.1 Extraneous Parameters
We use the parameters prescribed in (Perozzi et al.,
2014) to train DEEPWALK, with the number and
length of random walks per node set to 80, and
the dimensionality of entity embeddings set to 128.
Unless stated otherwise, the ‘local’ textual context
of each word in a document D is computed as the
average of the word embeddings of its 5 surround-
ing words (to the left and right), while the ‘global’
context is computed as the average of the embed-
dings of all the nouns (Yamada et al., 2016) in D.
The Apache OpenNLP tagger (Apache, 2019) was
used to detect nouns.

F EIGENTHEMES for Supervised
Settings

Having established the superiority of EIGEN-
THEMES on the CoNLL-Test dataset for the unsu-
pervised setting, we now assess their applicability

in settings where annotated data is available. Note
that the goal of this experiment is not to design
state of the art supervised entity linking systems.
Rather, the focus is to showcase the capability of
EIGENTHEMES to improve them.

We first describe the setup, which is slightly dif-
ferent from the unsupervised case. For candidate
generation, we use the mention–entity association
dictionaries made available publicly by Ganea and
Hofmann (Ganea and Hofmann, 2017). Similar
to the unsupervised case, T was fixed to 20. In
addition to facilitating candidate generation, this
dictionary allows us to infer the prior probability
P (e|m). The availability of annotated data also al-
lows for the learning of aligned word and entity em-
beddings. We employ 300-dimensional pre-trained,
aligned entity and word embeddings (Ganea and
Hofmann, 2017). Inspired by existing state of the
art methods for supervised entity linking (Ganea
and Hofmann, 2017; Yamada et al., 2016), for each
mention–candidate pair, we use the following fea-
tures to train a supervised model: (F1) the prior
probability; (F2) textual context score: obtained by
computing the cosine similarity between the candi-
date entity embedding and the (local or global) con-
text embedding (Sec. D.4); (F3) global coherence
score: obtained by computing the cosine similarity
between the candidate entity embedding and the
global entity context (Yamada et al., 2016); and
(F4) the EIGEN score (Sec. 4.3).

We employ random forests (Breiman, 2001) as
a point-wise learning-to-rank technique to appro-
priately combine the contribution of the aforemen-
tioned features. We rely on the publicly available
implementation of random forests in scikit-learn
(Pedregosa et al., 2011). The model is trained using
the CoNLL-Train set, while the CoNLL-Test set
is used to evaluate the entity linking quality. The
results are presented in Table 3. Adding the EIGEN

score as a feature into the supervised model results
in an improvement of 1 to 2 percentage points. This
result portrays the ability of our method to improve
existing supervised entity linking systems. Further-
more, it validates the importance of an appropriate
collective disambiguation method, even in the pres-
ence of other local scores such as prior informa-
tion and contextual cues. Lastly, it is worth high-
lighting that the bulk of the improvement (more
than 5 percentage points) is obtained for the hard
mentions, which is both required and important
as existing features already facilitate obtaining the
performance of close to 100% on easy mentions.


