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Abstract

Causal inference using observational text data
is becoming increasingly popular in many re-
search areas. This paper presents the Bayesian
Topic Regression (BTR) model that uses both
text and numerical information to model an
outcome variable. It allows estimation of both
discrete and continuous treatment effects. Fur-
thermore, it allows for the inclusion of addi-
tional numerical confounding factors next to
text data. To this end, we combine a super-
vised Bayesian topic model with a Bayesian
regression framework and perform supervised
representation learning for the text features
jointly with the regression parameter train-
ing, respecting the Frisch-Waugh-Lovell the-
orem. Our paper makes two main contribu-
tions. First, we provide a regression frame-
work that allows causal inference in settings
when both text and numerical confounders are
of relevance. We show with synthetic and
semi-synthetic datasets that our joint approach
recovers ground truth with lower bias than any
benchmark model, when text and numerical
features are correlated. Second, experiments
on two real-world datasets demonstrate that
a joint and supervised learning strategy also
yields superior prediction results compared to
strategies that estimate regression weights for
text and non-text features separately, being
even competitive with more complex deep neu-
ral networks.

1 Introduction

Causal inference using observational text data is
increasingly popular across many research areas
(Keith et al., 2020). It expands the range of re-
search questions that can be explored when using
text data across various fields, such as in the social
and data sciences; adding to an extensive literature
of text analysis methods and applications Grimmer
and Stewart (2013); Gentzkow et al. (2019). Where
randomized controlled trials are not possible, ob-
servational data might often be the only source

of information and statistical methods need to be
deployed to adjust for confounding biases. Text
data can either serve as a proxy for otherwise un-
observed confounding variables, be a confounding
factor in itself, or even represent the treatment or
outcome variable of interest.

The framework: We consider the causal infer-
ence settings where we allow for the treatment vari-
able to be binary, categorical or continuous. In our
setting, text might be either a confounding factor or
a proxy for a latent confounding variable. We also
allow for additional non-text confounders (covari-
ates). To the best of our knowledge, we are the first
to provide such statistical inference framework.

Considering both text and numerical data jointly
can not only improve prediction performance, but
can be crucial for conducting unbiased statistical in-
ference. When treatment and confounders are cor-
related with each other and with the outcome, the
Frisch-Waugh-Lovell theorem (Frisch and Waugh,
1933; Lovell, 1963), described in Section 2.2, im-
plies that all regression weights must be estimated
jointly, otherwise estimates will be biased. Text
features themselves are ‘estimated data’. If they
stem from supervised learning, which estimated the
text features with respect to the outcome variable
separately from the numerical features, then the
resulting estimated (causal) effects will be biased.

Our contributions: With this paper, we intro-
duce a Bayesian Topic Regression (BTR) frame-
work that combines a Bayesian topic model with
a Bayesian regression approach. This allows us
to perform supervised representation learning for
text features jointly with the estimation of regres-
sion parameters that include both treatment and
additional numerical covariates. In particular, in-
formation about dependencies between outcome,
treatment and controls does not only inform the
regression part, but directly feeds into the topic
modelling process. Our approach aims towards es-
timating ‘causally sufficient’ text representations in
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the spirit of Veitch et al. (2020). We show on both
synthetic and semi-synthetic datasets that our BTR
model recovers the ground truth more accurately
than a wide range of benchmark models. Finally,
we demonstrate on two real-world customer review
datasets - Yelp and Booking.com - that a joint super-
vised learning strategy, using both text and non-text
features, also improves prediction accuracy of the
target variable compared to a ‘two-step’ estimation
approach with the same models. This does not
come at a cost of higher perplexity scores on the
document modelling task. We also show that rela-
tively simple supervised topic models with a linear
regression layer that follow such joint approach can
even compete with much more complex, non-linear
deep neural networks that do not follow the joint
estimation approach.

2 Background and Related Work

2.1 Causal Inference with Text

Egami et al. (2018) and Wood-Doughty et al.
(2018) provide a comprehensive conceptional
framework for inference with text and outline the
challenges, focusing on text as treatment and out-
come. In a similar vein, Tan et al. (2014); Fong and
Grimmer (2016) focus on text as treatment. Roberts
et al. (2020); Mozer et al. (2020) address adjust-
ment for text as a confounder via text matching con-
sidering both topic and word level features. Veitch
et al. (2020) introduce a framework to estimate
causally sufficient text representations via topic and
general language models. Like us, they consider
text as a confounder. Their framework exclusively
focuses on binary treatment effects and does not
allow for additional numerical confounders. We
extend this framework.
Causal inference framework with text: This
general framework hinges on the assumption that
through supervised dimensionality reduction of the
text, we can identify text representations that cap-
ture the correlations with the outcome, the treat-
ment and other control variables. Assume we ob-
serve iid data tuples Di = (yi, ri,Wi,Ci), where
for observation i, yi is the outcome, ti is the treat-
ment, Wi is the associated text, and Ci are other
confounding effects for which we have numerical
measurements. Following the notational conven-
tions set out in (Pearl, 2009), define the average

treatment effect of the treated (ATT1) as:

δ = E[y|do(t = 1), t = 1]− E[y|do(t = 0), t = 1].

In the spirit of Veitch et al. (2020), we assume that
our models can learn a supervised text represen-
tation Zi = g(Wi, yi, ti,Ci), which in our case,
together with Ci blocks all ‘backdoor path’ be-
tween yi and ti, so that we can measure the causal
effect

δ = E[E[y|Z,C, t = 1]− E[y|Z,C, t = 0]|t = 1].

Intuitively, to obtain such Zi and consequently an
unbiased treatment effect, one should estimate the
text features in a supervised fashion taking into
account dependencies betweenWi, yi, ti, and Ci.

2.2 Estimating Conditional Expectations
To estimate the ATT, we need to compute the con-
ditional expectation function (CEF): E[y|t,Z,C].
Using regression to estimate our conditional expec-
tation function, we can write

E[y|t,Z,C] = f(t, g(W,y, t, C; Θ),C; Ω).
(1)

Let f() be the function of our regression equation
that we need to define, and Ω be the parameters
of it. Section 2.3 covers text representation func-
tion g(). For now, let us simply assume that we
obtain Z in a joint supervised estimation with f().
The predominant assumption in causal inference
settings in many disciplines is a linear causal effect
assumption. We also follow this approach, for the
sake of simplicity. However, the requirement for
joint supervised estimation of text representations
Z to be able to predict y, t (and if relevantC) to be
considered ‘causally sufficient’ is not constrained
to the linear case (Veitch et al., 2020). Under the
linearity assumption, the CEF of our regression can
take the form

y = E[y|t,Z,C] + ε = tωt +ZωZ +CωC + ε,
(2)

where ε ∼ N(0, σ2ε ) is additive i.i.d. Gaussian.
When the CEF is causal, the regression estimates
are causal (Angrist and Pischke, 2008). In such a
case, ωt measures the treatment effect.
Regression Decomposition theorem: The Frisch-
Waugh-Lovell (FWL) theorem (Frisch and Waugh,
1933; Lovell, 1963), implies that the supervised

1depicted is the ATT of a binary treatment. The same logic
applies for categorical or continuous treatments.
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learning of text representations Z and regression
coefficients ω cannot be conducted in separate
stages, but instead must be learned jointly. The
FWL theorem states that a regression such as in
(2) can only be decomposed into separate stages,
and still obtain mathematically unaltered coeffi-
cient estimates, if for each partial regression, we
were able to residualize both outcome and regres-
sors with respect to all other regressors that have
been left out. In general, for a regression such
as y = Xω + ε, we have a projection matrix
P = X(XᵀX)−1Xᵀ that produces projections
ŷ when applied to y. Likewise, we have a ‘resid-
ual maker’ matrix M which is P ’s complement
M = I − P . FWL says that if we could estimate

M c,zy = M c,ztω̂t + ε̂, (3)

the estimates ω̂t of treatment effect ωt in equations
(2) and (3) would be mathematically identical (full
theorem and proof in Appendix A). Here, M c,z

residualizes t from confounders C and Z. This
is however infeasible, since Z itself must be esti-
mated in a supervised fashion, learning the depen-
dencies towards y, t and C. Equation (2) must
therefore be learned jointly, to infer Z and the
CEF in turn. An approach in several stages in
such a setup cannot fully residualize t from all con-
founders and estimation results would therefore be
biased. What is more, if incorrect parameters are
learned, out of sample prediction might also be
worse. We demonstrate this both on synthetic and
semi-synthetic datasets (section 5 and 6).

2.3 Supervised topic representations

Topic models are a popular choice of text repre-
sentation in causal inference settings (Keith et al.,
2020) and in modelling with text as data in social
sciences in general (Gentzkow et al., 2019). We
focus on this text representation approach for func-
tion g() in our joint modelling strategy.

BTR: We create BTR, a fully Bayesian super-
vised topic model that can handle numeric metadata
as regression features and labels. Its generative pro-
cess builds on LDA-based models in the spirit of
Blei and McAuliffe (2008). Given our focus on
causal interpretation, we opt for a Gibbs Sampling
implementation. This provides statistical guaran-
tees of providing asymptotically exact samples of
the target density while (neural) variational infer-
ence does not (Robert and Casella, 2013). Blei et al.
(2017) point out that MCMC methods are prefer-

able over variational inference when the aim of the
task is to obtain asymptotically precise estimates.

rSCHOLAR: SCHOLAR (Card et al., 2018)
is a supervised topic model that generalises both
sLDA (Blei and McAuliffe, 2008) as it allows
for predicting labels, and SAGE (Eisenstein et al.,
2011) which handles jointly modelling covariates
via ‘factorising’ its topic-word distributions (β)
into deviations from the background log-frequency
of words and deviations based on covariates.
SCHOLAR is solved via neural variational infer-
ence (Kingma and Welling, 2014; Rezende et al.,
2014). However, it was not primarily designed
for causal inference. We extend SCHOLAR with
a linear regression layer (rSCHOLAR) to allow
direct comparison with BTR. That is, its down-
stream layer is y = Aω, where A = [t,C,θ] is
the design matrix in which θ represents the esti-
mated document-topic mixtures. ω represents the
regression weight vector. This regression layer is
jointly optimized with the main SCHOLAR model
via backpropagation using ADAM (Kingma and
Ba, 2015), replacing the original downstream cross-
entropy loss with mean squared error loss.

Other recent supervised topic models that can
handle covariates are for example STM (Roberts
et al., 2016) and DOLDA (Magnusson et al., 2020).
DOLDA was not designed for regression nor for
causal inference setups. Topics models in the spirit
of STM incorporate document metadata, but in or-
der to better predict the content of documents rather
than to predict an outcome. Many approaches on
supervised topic models for regression have been
suggested over the years. (Blei and McAuliffe,
2008) optimize their sLDA model with respect
to the joint likelihood of the document data and
the response variable using VI. MedLDA (Zhu
et al., 2012) optimizes with respect to the maximum
margin principle, Spectral-sLDA (Wang and Zhu,
2014) proposes a spectral decomposition algorithm,
and BPsLDA (Chen et al., 2015) uses backward
propagation over a deep neural network. Since BP-
sLDA reports to outperform sLDA, MedLDA and
several other models, we include it in our bench-
mark list for two-stage models. We include a Gibbs
sampled sLDA to have a two-stage model in the
benchmark list that is conceptually very similar to
BTR in the generative topic modelling part. Un-
supervised LDA (Blei et al., 2003; Griffiths and
Steyvers, 2004) and a neural topic model counter-
part GSM (Miao et al., 2017) are also added for
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comparison.

3 Bayesian Topic Regression Model

3.1 Regression Model
We take a Bayesian approach and jointly estimate
f() and g() to solve equation (2). To simplify nota-
tion, encompass numerical features of treatment t
and covariatesC in data matrixX ∈ RD×(1+dimC).
All estimated topic features are represented via
Z̄ ∈ RD×K , where K is the number of topics. Fi-
nally, y ∈ RD×1 is the outcome vector. Define
A = [Z̄,X] as the overall regression design ma-
trix containing all features (optionally including
interaction terms between topics and numerical fea-
tures). With our fully Bayesian approach, we aim to
better capture feature correlations and model uncer-
tainties. In particular, information from the numeri-
cal features (labels, treatment and controls) directly
informs the topic assignment process as well as
the regression. This counters bias in the treatment
effect estimation, following the spirit of ‘causally
sufficient’ text representations (Veitch et al., 2020).
Following the previous section, we outline the case
for f() being linear. Our framework could however
be extended to non-linear f(). Assuming Gaussian
iid errors ε ∼ N (0, σ2I), the model’s regression
equation is then y = Aω + ε, such that

p(y|A,ω, σ2) = N (y|Aω, σ2I). (4)

The likelihood with respect to outcome y is then

p(y|A,ω, σ2) =

D∏
d=1

N (yd|adω, σ
2I), (5)

where ad is the dth row of design matrix A. We
model our prior beliefs about parameter vector ω
by a Gaussian density

p(ω) = N (ω|m0,S0) (6)

where meanm0 and covariance matrix S0 are hy-
perparameters. Following Bishop (2006), we place
an Inverse-Gamma prior on the conditional vari-
ance estimate σ2 with shape and scale hyperparam-
eters a0 and b0

p(σ2) = IG(σ2|a0, b0). (7)

Placing priors on all our regression parameters al-
lows us to conduct full Bayesian inference, which
not only naturally counteracts parameter over-
fitting but also provides us with well-defined poste-
rior distributions over ω and σ2 as well as a predic-
tive distribution of our response variable.

Due to the conjugacy of the Normal-Inverse-
Gamma prior, the regression parameters’ posterior
distribution has a known Normal-Inverse-Gamma
distribution (Stuart et al., 1994)

p(ω, σ2|y,A) ∝ p(ω|σ2,y,A)p(σ2 | y,A)

=N
(
ω|mn, σ

2S−1
n

)
IG
(
σ2|an, bn

)
.

(8)

mn, Sn, an, bn follow standard updating equations
for a Bayesian linear regression (Appendix B).

3.2 Topic Model

The estimated topic features Z̄, which form part
of the design regression matrix A, are generated
from a supervised model that builds on an LDA-
based topic structure (Blei et al., 2003). Figure
1 provides a graphical representation of BTR and
brings together our topic and regression model.

We have d documents in a corpus of size D, a
vocabulary of V unique words and K topics. A
document has Nd words, so that wd,n denotes the
nth word in document d. The bag-of-words repre-
sentation of a document iswd = [wd,1, . . . , wd,Nd

],
so that the entire corpus of documents is described
by W = [w1, . . . ,wD]. zd,n is the topic assign-
ment of word wd,n, where zd and Z mirror wd

and W in their dimensionality. Similarly, z̄d de-
notes the estimated average topic assignments of
the K topics across words in document d, such
that Z̄ = [z̄1, . . . , z̄D]ᵀ ∈ RD×K . β ∈ RK×V ,
describes the K topic distributions over the V di-
mensional vocabulary. θ ∈ RD×K describes the
K topic mixtures for each of the D documents.
η ∈ RV and α ∈ RK are the respective hyperpa-
rameters of the prior for β and θ. The generative
process of our BTR model is then:

1. ω ∼ N (ω|m0,S0) and σ2 ∼ IG(σ2|a0, b0)
2. for k = 1, . . . ,K:

(a) βk ∼ Dir(η)

3. for d = 1, . . . , D:
(a) θd ∼ Dir(α)
(b) for n = 1, . . . , Nd:

i. topic assignment zd,n ∼Mult(θd)
ii. term wd,n ∼Mult(βzd,n)

4. y ∼ N
(
Aω, σ2I

)
.

Straightforward extensions also allow multiple doc-
uments per observation or observations without
documents, as is described in Appendix C.1.4.
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Figure 1: Graphical model for BTR.

4 Estimation

4.1 Posterior Inference
The objective is to identify the latent topic structure
and regression parameters that are most probable
to have generated the observed data. We obtain the
joint distribution for our graphical model through
the product of all nodes conditioned only on their
parents, which for our model is

p(θ,β,Z,W ,y,ω, σ2|X, α, η,m0,S0, a0, b0) =

D∏
d=1

p(θd|α)
K∏

k=1

p(βk|η)
D∏

d=1

Nd∏
n=1

p(zd,n|θd)p(wd,n|zd,n,β)

D∏
d=1

p(yd|xd,zd,ω, σ
2)

L∏
l=1

p(ωl|m0,S0)p(σ
2|a0, b0).

(9)

The inference task is thus to compute the poste-
rior distribution of the latent variables (Z, θ, β,
ω, and σ2) given the observed data (y,X andW )
and the priors governed by hyperparameters (α, η,
m0,S0, a0, b0). We will omit hyperparameters for
sake of clarity unless explicitly needed for com-
putational steps. The posterior distribution is then

p(θ,β,Z,ω, σ2|W ,y,X) =
p(θ,β,Z,W ,X,y,ω, σ2)

p(W ,X,y)
.

(10)

In practice, computing the denominator in equa-
tion (10), i.e. the evidence, is intractable due to
the sheer number of possible latent variable config-
urations. We use a Gibbs EM algorithm (Levine
and Casella, 2001) set out below, to approximate
the posterior. Collapsing out the latent variables
θ and β (Griffiths and Steyvers, 2004), we only
need to identify the sampling distributions for topic
assignments Z and regression parameters ω and
σ2, conditional on their Markov blankets

p(Z,ω, σ2|W ,X,y) =

p(Z|W ,X,y,ω, σ2)p(ω, σ2|Z,X,y).
(11)

Once topic assignments Z are estimated, it is
straightforward to recover β and θ. The expected
topic assignments are estimated by Gibbs sampling

in the E-step, and the regression parameters are
estimated in the M-step.

4.2 E-Step: Estimate Topic Parameters
In order to sample from the conditional posterior
for each zd,n we need to identify the probability of
a given wordwd,n being assigned to a given topic k,
conditional on the assignments of all other words
(as well as the model’s other latent variables and
the observed data)

p(zd,n = k|Z−(d,n),W ,X,y,ω, σ2), (12)

where Z−(d,n) are the topic assignments of all
words apart from wd,n. This section defines this
distribution, with derivations in Appendix C. By
conditional independence properties of the graph-
ical model, we can split this joint posterior into

p(Z|W ,X,y,ω, σ2) ∝ p(Z|W )p(y|Z,X,ω, σ2).
(13)

Topic assignments within one document are inde-
pendent from topic assignments in all other doc-
uments and the sampling equation for zd,n only
depends on it’s own response variable yd, hence

p(zd,n = k|Z−(d,n),W ,X,y,ω, σ2) ∝
p(zd,n = k|Z−(d,n),W )p(yd|zd,n = k,Z−(d,n),xd,ω, σ

2).
(14)

The first part of the RHS expression is the sam-
pling distribution of a standard LDA model. Fol-
lowing Griffiths and Steyvers (2004), we can ex-
press it in terms of count variables s (topic assign-
ments across a document) and m (assignments of
unique words across topics over all documents).2

The second part is the predictive distribution for
yd. This is a Gaussian distribution depending on
the linear combination ω(ad|zd,n = k), where ad
includes the topic proportions z̄d and xd variables
(and any interaction terms), conditional on zd,n =
k. We can write this in a convenient form that
preserves proportionality with respect to zd,n and
depends only on the data and the count variables.

First, we split theX features into those that are
interacted,X1,d, and those that are not,X2,d such
that the generative model for yd is then

yd ∼ N (ωᵀ
z z̄d + ωᵀ

zx(x1,d ⊗ z̄d) + ω
ᵀ
xx2,d, σ

2), (15)

2For example, sd,k denotes the total number of words in
document d assigned to topic k and sd,k,−n the number of
words in document d assigned to topic k, except for word n.
Analogously, mk,v measures the total number of times term
v is assigned to topic k across all documents and mk,v,−(d,n)

measures the same, but excludes word n in document d.
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where ⊗ is the Kronecker product. Define ω̃z,d as
a length K vector such that

ω̃z,d,k = ωz,k + ωᵀ
zx,kx1,d. (16)

Noting that ω̃ᵀ
z,dz̄d =

ω̃ᵀ
z,d

Nd
(sd,−n + sd,n), gives us

the sampling distribution for zd,n stated in equation
(14): a multinomial distribution parameterised by

p(zd,n = k|z−(d,n),W,X, y, α, η, ω, σ
2
) ∝ (sd,k,−n + α)×

mk,v,−(d,n) + η∑
v mk,v,−(d,n) + V η

exp

{
1

2σ2

(
2ω̃z,d,k

Nd

(yd−

ω
ᵀ
xx2,d −

ω̃ᵀ
z,d

Nd

sd,−n −
(
ω̃z,d,k

Nd

)2 )}
.

(17)

This defines the probability for each k that zd,n
is assigned to that topic k. These K probabilities
define the multinomial distribution from which zd,n
is drawn.

4.3 M-Step: Estimate Regression Parameters
To estimate the regression parameters, we hold
the design matrix A = [Z̄,X] fixed. Given the
Normal-Inverse-Gamma prior, this is a standard
Bayesian linear regression problem and the poste-
rior distribution for which is given in equation (8)
above. To prevent overfitting to the training sample
there is the option to randomly split the training
set into separate sub-samples for the E- and M-
steps, following a Cross-Validation EM approach
(Shinozaki and Ostendorf, 2007). We use the pre-
diction mean squared error from the M-step sample
to assess convergence across EM iterations.

4.4 Implementation
We provide an efficient Julia implementation for
BTR and a Python implementation for rSCHOLAR
on Github to allow for reproducibility of the results
in the following experiment sections.3

5 Experiment: Synthetic Data

5.1 Synthetic Data Generation
To illustrate the benefits of our BTR approach, we
generate a synthetic dataset of documents which
have explanatory power over a response variable,
along with an additional numerical covariate that
is correlated with both documents and response.

We generate 10, 000 documents of 50 words
each, following an LDA generative process, with
each document having a distribution over three top-
ics, defined over a vocabulary of 9 unique terms.

3BTR: github.com/julianashwin/BTR.jl
rSCHOLAR: github.com/MaximilianAhrens/scholar4regression

A numerical feature, x = [x1, ..., xD]ᵀ, is gener-
ated by calculating the document-level frequency
of the first word in the vocabulary. As the first topic
places a greater weight on the first three terms in
the vocabulary, x is positively correlated with z̄1.
The response variable y = [y1, ..., yD] is gener-
ated through a linear combination of the numer-
ical feature x and the average topic assignments
Z̄ = {z̄1, z̄2, z̄3},

y = −z̄1 + x+ ε. (18)

where ε is an iid Gaussian white noise term. The
regression model to recover the ground truth is then

y = ω1z̄1 + ω2z̄2 + ω3z̄3 + ω4xd + ε. (19)

The true regression weights are thus ω∗ =
[−1, 0, 0, 1]. In accordance with the FWL theo-
rem, we cannot recover the true coefficients with a
two-stage estimation process.

5.2 Synthetic Data Results

We compare the ground truth of the synthetic
data generating process against: (1) BTR: our
Bayesian model, estimated via Gibbs sampling.
(2) rSCHOLAR: the regression extension of
SCHOLAR, estimated via neural VI. (3) LR-
sLDA: first linearly regress y on x, then use the
residual of that regression as the response in an
sLDA model, estimated via Gibbs sampling. (4)
sLDA-LR: First sLDA, then linear regression. (5)
BPsLDA-LR and (6) LR-BPsLDA: replace sLDA
with BPsLDA, which is sLDA estimated via the
backpropagation approach of Chen et al. (2015).

Figure 2 shows the true and estimated regression
weights for each of the six models. LR-sLDA and
sLDA-LR estimate inaccurate regression weights
for both the text and numerical features, as do the
BPsLDA variants. Similarly, rSCHOLAR fails to
recover the ground truth. However, BTR estimates
tight posterior distributions around to the true pa-
rameter values. The positive correlation between
z1 and x makes a joint estimation approach cru-
cial for recovering the true parameters. Standard
supervised topic models estimate the regression
parameters for the numerical features separately
from the topic proportions and their associated re-
gression parameters, violating the FWL theorem
as outlined in section 2.2. A key difference be-
tween rSCHOLAR and BTR lies in their poste-
rior estimation techniques (neural VI vs Gibbs).
rSCHOLAR’s approach seems to have a similarly

6
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Figure 2: Comparing recovery of true regression weights across different topic models. For each panel, the true
regression weights are shown as red points and the estimated 95% posterior credible (or bootstrap, depending on
model) interval in blue. Only BTR contains the true weights within the estimated intervals.

detrimental effect as the two-stage approaches. We
suspect further research into (neural) VI assump-
tions and their effect on causal inference with text
could be fruitful.

6 Experiment: Semi-Synthetic Data

6.1 Semi-Synthetic Data Generation

We further benchmark the models’ abilities to
recover the ground truth on two semi-synthetic
datasets. In those datasets, we still have access to
the ground truth (GT) as we either synthetically
create or directly observe the correlations between
treatment, confounders and outcome. However,
the text and some numeric metadata that we use
is empirical. We use customer review data from
(i) Booking.com4 and (ii) Yelp5, and analyse two
different ‘mock’ research questions. For both
datasets, we randomly sample 50, 000 observations
and select 75% in Yelp, 80% in Booking for
training.6

Booking: Do people give more critical rat-
ings (yi) to hotels that have high historic ratings
(av_scorei), once controlling for review texts?

GTB : yi = −hotel_avi + 5prop_posi (20)

4Available at kaggle.com/jiashenliu
5Available at yelp.com/dataset, Toronto subsample
6Appendix F for full data summary statistics.

Data samples used for experiments available via:
github.com/MaximilianAhrens/data

where prop_posi is the proportion of positive
words in a review. The textual effect is estimated
via topic modelling in our experiment. The
treatment in question is the average historic
customer rating, being modelled as continuous.

Yelp: Do people from the US (USi=1) give
different Yelp ratings (yi) than customers from
Canada (USi=0), controlling for average restau-
rant review (stars_av_bi) and the review text?

GTY : yi = −USi + stars_av_bi + senti. (21)

To create the binary treatment variable USi, we
compute each review’s sentiment score (senti) us-
ing the Harvard Inquirer. This treatment effect is
correlated with the text as

Pr(USi = 1) =
exp(γ1senti)

1 + exp(γ1senti)
, (22)

where γ1 controls the correlation between text and
treatment.7

6.2 Semi-Synthetic Data Results
On both semi-synthetic datasets and across all
benchmarked models, BTR estimates the regres-
sion weights that are the closest to the ground truth.
This consistently holds true across all tested num-
bers of topics K (see Figure 3). For Yelp, we also
vary the correlation strength between treatment and

7When γ1 = 1, correlation between USi and senti is
0.23. For γ1 = 0.5 it is 0.39.
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Figure 3: Estimated TE semi-synthetic Booking (left panel), Yelp (middle and right panel). Intervals are either
95% credible interval of posterior distribution, or based on 20 run bootstrap, depending on model.

confounder. The middle panel in Figure 3 shows
the estimation results with a very high correlation
between confounder and treatment (γ1 = 1). The
RHS panel shows the results when this correlation
is lower (γ1 = 0.5). As expected, a higher correla-
tion between confounder and treatment increases
the bias as outlined in the section 2.2. If the corre-
lation between confounder and treatment is zero, a
two-stage estimation approach no longer violates
FWL and all models manage to estimate the ground
truth (see Appendix E). Since the topic modelling
approach is an approximation to capture the true ef-
fect of the text and its correlation with the metadata
- and since this approximation is not perfect - some
bias may remain. Overall, BTR gets substantially
closer to the ground truth than any other model.

7 Experiment: Real-World Data

The joint supervised estimation approach using text
and non-text features, not only counteracts bias in
causal settings. It also improves prediction perfor-
mance. We use the real-world datasets of Booking
and Yelp for our benchmarking. For both datasets,
we predict customer ratings (response) for a busi-
ness or hotel given customer reviews (text features)
and business and customer metadata (numerical
features).8

7.1 Benchmarks

We add the following models to the benchmark list
from the previous section:9 LDA+LR (Griffiths
and Steyvers, 2004) and GSM+LR (Miao et al.,
2017) unsupervised Gibbs sampling and neural VI

8full specifications for each case are given in Appendix F
9We also tested sLDA+LR and a pure sLDA, which per-

formed consistently worse, see Appendix G.1

based topic models. LR+rSCHOLAR: the two-
step equivalent for rSCHOLAR, estimating covari-
ate regression weights in a separate step from the
supervised topic model.

An alternative to topic based models are word-
embedding based neural networks. We use (7)
LR+aRNN: a bidirectional RNN with attention
(Bahdanau et al., 2015). Since the model does not
allow for non-text features, we use the regression
residuals of the linear regression as the target. And
(8) LR+TAM: a bidirectional RNN using global
topic vector to enhance its attention heads (Wang
and Yang, 2020) - same target as in LR+aRNN. 10

7.2 Prediction and Perplexity Results

We evaluated all topic models on a range from
10 to 100 topics, with results for 50 and 100 in
Table 2.11 Hyperparameters of benchmark models
that have no direct equivalent in our model were
set as suggested in the pertaining papers. We find
that our results are robust across a wide range of
hyperparameters (extensive robustness checks in
Appendix G).

We assess the models’ predictive performance
based on predictive R2 (pR2 = 1 − MSE

var(y) ). The
upper part of Table 2 shows that BTR achieves
the best pR2 in the Yelp dataset and and very
competitive results in the Booking dataset, where
our rSCHOLAR extension outperforms all other
models. Even the non-linear neural network mod-

10Wang and Yang (2020) use 100-dimensional word em-
beddings in their default setup for TAM and pre-train those on
the dataset. We follow this approach. RNN and TAM results
were very robust to changes in the hidden layer size in these
setups, we use a layer size of 64. Full details of all model
parametrisations are provided in Appendix G.2.

11Hyperparameters of displayed results: α = 0.5, η = 0.01
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Dataset Booking

K 50 100

pR2 (higher is better)

OLS 0.315
aRNN 0.479 (0.007)
LR+ TAM 0.479 (0.014) 0.487 (0.014)
LDA+LR 0.426 (0.003) 0.437 (0.002)
GSM+LR 0.386 (0.004) 0.395 (0.005)
LR+sLDA 0.432 (0.002) 0.438 (0.004)
LR+BPsLDA 0.419 (0.009) 0.455 (0.001)
LR+rSCHOLAR 0.469 (0.002) 0.465 (0.002)
rSCHOLAR 0.494 (0.004) 0.489 (0.003)
BTR 0.454 (0.003) 0.460 (0.002)

Perplexity (lower is better)

LR+TAM 521 (2) 522 (2)
LDA+LR 454 (1) 432 (1)
GSM+LR 369 (8) 348 (5)
LR+sLDA 436 (2) 411 (1)
LR+rSCHOLAR 441 (20) 458 (11)
rSCHOLAR 466 (19) 464 (9)
BTR 437 (1) 412 (1)

Table 1: Booking: mean pR2 and perplexity, standard
deviation in brackets. 20 model runs. Best model bold.

els aRNN and TAM cannot achieve better results.
Importantly, rSCHOLAR and BTR perform sub-
stantially better than their counterparts that do
not jointly estimate the influence of covariates
(LR+rSCHOLAR and LR+sLDA).

To assess document modelling performance, we
report the test set perplexity score for all models
that allow this (Table 2, bottom panel) . Perplex-

ity is defined as exp
{
−

∑D
d=1 log p(wd|θ,β)∑D

d=1Nd

}
. The

joint approach of both rSCHOLAR and BTR does
not come at the cost of increased perplexity. If
anything, the supervised learning approach using
labels and covariates even improves document mod-
elling performance when compared against its un-
supervised counterpart (BTR vs LDA).

Assessing the interpretability of topic models is
ultimately a subjective exercise. In Appendix G.4
we show topics associated with the most positive
and negative regression weights, for each dataset.
Overall, the identified topics and the sign of the
associated weights seem interpretable and intuitive.

8 Conclusions

In this paper, we introduced BTR, a Bayesian topic
regression framework that incorporates both numer-
ical and text data for modelling a response variable,
jointly estimating all model parameters. Motivated

Dataset Yelp

K 50 100

pR2 (higher is better)

OLS 0.451
aRNN 0.582 (0.008)
LR+ TAM 0.585 (0.012) 0.587 (0.008)
LDA+LR 0.586 (0.006) 0.606 (0.007)
GSM+LR 0.495 (0.004) 0.517 (0.007)
LR+sLDA 0.571 (0.002) 0.574 (0.001)
LR+BPsLDA 0.603 (0.002) 0.609 (0.001)
LR+rSCHOLAR 0.550 (0.034) 0.557 (0.027)
rSCHOLAR 0.571 (0.01) 0.581 (0.009)
BTR 0.630 (0.001) 0.633 (0.001)

Perplexity (lower is better)

LR+TAM 1661 (7) 1655 (7)
LDA+LR 1306 (4) 1196 (2)
GSM+LR 1431 (34) 1387 (14)
LR+sLDA 1294 (5) 1174 (3)
LR+rSCHOLAR 1515 (34) 1516 (30)
rSCHOLAR 1491 (9) 1490 (9)
BTR 1291 (5) 1165 (3)

Table 2: Yelp: mean pR2 and perplexity, standard devi-
ation in brackets. 20 model runs. Best model bold.

by the FWL theorem, this approach is designed to
avoid potential bias in the regression weights, and
can provide a sound regression framework for sta-
tistical and causal inference when one needs to con-
trol for both numerical and text based confounders
in observational data. We demonstrate that our
model recovers the ground truth with lower bias
than any other benchmark model on synthetic and
semi-synthetic datasets. Experiments on real-world
data show that a joint and supervised learning strat-
egy also yields superior prediction performance
compared to ‘two-stage’ strategies, even compet-
ing with deep neural networks.
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A Causal Inference with Text

For D observations, we have outcome y ∈ RD×1, treatment t ∈ RD×1, text data W ∈ RD×V (where
V is the vocabulary size) and numerical confounders C ∈ RD×P (where P is the number of numerical
confounders).

As established in the main part of the paper, in order to estimate the ATT, we need to compute
the conditional expectation function (CEF) E[y|t,Z] or if we have additional numerical confounders
E[y|t,Z,C]. Using regression to estimate our conditional expectation function, we can write

E[y|t,Z,C] = f(t,Z,C; Ω). (23)

Let f() be the function of our regression equation that we need to define, and Ω be the parameters of
it. The predominant assumption in causal inference settings in many disciplines is a linear causal effect
assumption. We follow this approach, also for the sake of simplicity. However, the requirement for
joint supervised estimation of text representations Z to be able to predict y,t (and if relevant C) to
be considered ‘causally sufficient’ is not constrained to the linear case (Veitch et al., 2020). Under the
linearity assumption, the CEF of our regression can take the form

y = E[y|t,Z,C] + ε = tωt +ZωZ +CωC + ε, (24)

where ε ∼ N(0, σ2ε ) is additive iid Gaussian noise, ie. E[ε|t,Z,C] = 0 (see for example Angrist and
Pischke (2008), chapter 3). Thus, σε represents the conditional variance V ar(y|t,Z,C). The regression
approximates the CEF. Hence, when the CEF is causal, the regression estimates are causal (Angrist and
Pischke, 2008). In such a case, ωt measures the treatment effect. Assuming that Z and C block all
‘backdoor’ paths, the CEF would allow us to conduct causal inference of the ATT of t on y (Pearl, 2009).

We now shall revisit under which conditions, a decomposition of equation (24) into several separate
estimation steps is permitted as described in the Frisch-Waugh-Lovell (or regression decomposition)
theorem (Lovell, 2008), so that the regression estimates for ωt remain unchanged and hence can still be
considered as causal.

A.1 Regression Decomposition Theorem
The regression decomposition theorem or Frisch-Waugh-Lovell (FWL) theorem (Frisch and Waugh, 1933;
Lovell, 1963) states that the coefficients of a linear regression as stated in equation (24) are equivalent to
the coefficients of partial regressions in which the residualized outcome is regressed on the residualized
regressors - this residualization is in terms of all regressors that are not part of this partial regression.

For a moment, let us assume there are no confounding latent (that is to be estimated) text features Z.
Our observational data only consist of outcome y, our treatment variable t and other observed confounding
variables C,

y = tωt +CωC + ε. (25)

The FWL theorem states that we would obtain mathematically identical regression coefficients ωt and
ωC is we decomposed this regression and estimated each part separately, each time residualizing (ie.
orthogonalizing) outcomes and regressors on all other regressors.

More generally, for a linear regression define

y = Xβ + ε

with y ∈ RD×1, β ∈ RK×1, X ∈ RD×M , which we could arbitrarily partition into X1 ∈ RD×K and
X2 ∈ RD×J so we could also write

y = X1β1 +X2β2 + ε,

define projection (or prediction) matrix P such that

P = X(XᵀX)−1Xᵀ. (26)
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P produces predictions ŷ when applied to outcome vector y,

ŷ = Xβ̂ = X(XᵀX)−1Xᵀy = Py. (27)

Also define the complement of P , the residual maker matrixM

M = I − P = I −X(XᵀX)−1Xᵀ (28)

such thatM applied to an outcome vector y yields

My = y −X(XᵀX)−1Xᵀy = y − Py = y −Xβ̂ = ε̂. (29)

Theorem:
The FWL theorem states that equivalent to estimating

y = X1β̂1 +X2β̂2 + ε̂ (30)

we would obtain mathematically identical regression coefficients β̂1 and β̂2 if we separately estimated

M2y = M2X1β̂1 + ε̂ (31)

and

M1y = M1X2β̂2 + ε̂ (32)

whereM1 andM2 correspond to the data partitionsX1 andX2.

Proof of Theorem:
This proof is based on the original papers (Frisch and Waugh, 1933; Lovell, 1963). Given

y = X1β̂1 +X2β̂2 + ε̂ (33)

left-multiply byM2, so we obtain

M2y = M2X1β̂1 +M2X2β̂2 +M2ε̂. (34)

We obtain from equation (28) that

M2X2β̂2 = (I −X2(X
ᵀ
2X2)

−1Xᵀ
2)X2β̂2 = X2β̂2 −X2β̂2 = 0. (35)

Finally, M2ε̂ = ε̂. X2 is orthogonal to ε by construction of the OLS regression. Therefore, the
residualized residuals are the residuals themselves. Which leaves us with

M2y = M2X1β̂2 + ε̂ . (36)

The same goes through forM1 by analogy.

A.2 E[y|t,C], where t ⊥ C, no Z
In the simplest case assume there was no confounding text. Our observational data only consist of outcome
y, our treatment variable t and other potential confounding variables C. The conditional expectation
function is E[y|t,C]. We can estimate it via one joint regression as

y = tωt +CωC + ε0. (37)

Now, assuming that the linearity assumption is correct, the fact that t ⊥ C implies thatC is not actually a
confounder in this setup. We would obtain the exact same regression coefficient estimates for ωt and ωC
if we followed a two-step process, in which we first regress y on t

y = tωt + ε1. (38)

y = CωC + ε1. (39)

This is holds only true, if and only if t ⊥ C. Because in this case, t and C are already orthorgonal to
each other. They already fulfill the requirements of the FWL and therefore such two-step process would
yield mathematically equivalent regression coefficients ω to the joint estimation in equation (37). Put in
terms of the conditional expectations, given linearity, E[y|t,C] = E[y|t] + E[y|C], since t and C are
uncorrelated and therefore C is not an actual confounder under the linear CEF setup.
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A.3 E[y|t,C], where t 6⊥ C, no Z
In this case, t 6⊥ C. We now have E[y|t,C] 6= E[y|t] in the linear CEF setup, since C is a confounder.
However, according to the FWL, we can still conduct separate stage regressions and obtain mathematically
equivalent regression coefficients ω if we residualize outcomes and regressors on all regressors that are
not part of the partial regression. We can estimate

MCy = MCtω̂t + ε̂1 (40)

and
M ty = M tCω̂C + ε̂2 (41)

and the obtained estimates ω̂t and ω̂C will be equivalent to those obtained from the joint estimation.

A.4 E[y|t,C,Z], where t 6⊥ C,Z
We now consider the case where part (or all) of our confounders are text or where text is a proxy for
otherwise unobserved confounders. The joint estimation would be

y = tω̂t +Cω̂C +Zω̂Z + ε̂ (42)

where Z itself is obtain through supervised learning via text representation function

Z = g(W ,y, t,C; Θ).

We therefore cannot decompose this joint estimation into separate parts. As long as the text features Z
are correlated with the outcome and the other covariates, we would need to apply the orthogonalization
via the respective M matrices for each partical regression. Since Z needs to be estimated itself (it is
‘estimated data’), we cannot residualize on Z though. Nor can Z be residualized on the other covariates.
A separate-stage approach will therefore lead to biased estimates of ω.

B Regression Model

Due to the conjugacy of the Normal-Inverse-Gamma prior, the posterior distribution of the regression
parameters conditional onA has a known Normal-Inverse-Gamma distribution:

p(ω, σ2|y,A) ∝ p(ω|σ2,y,A)p(σ2 | y,A) = N
(
ω|mn, σ

2S−1n
)
IG
(
σ2|an, bn

)
(43)

wheremn, Sn, an and bn follow standard updating equations for a Bayesian Linear Regression (Bishop
2006)

mn = (AᵀA+ S0)
−1(S0m0 +Aᵀy) (44)

Sn = (AᵀA+ S0) (45)

an = a0 +N/2 (46)

bn = b0 + (yᵀy +mᵀ
0S0m0 −mᵀ

nSnmn) /2. (47)

C Topic Model

C.1 Gibbs-EM algorithm
C.1.1 Sampling distribution for z
The probability of a given word wd,n being assigned to a given topic k (such that zd,n = k), conditional
on the assignments of all other words (as well as the model’s other latent variables and the data) is

p(zd,n = k|Z−(d,n),W ,X,y,ω, σ2), (48)

where Z−(d,n) are the topic assignments for all words apart from wd,n. By the conditional independence
properties implied by the graphical model, we can split this joint posterior into

p(Z|W ,X,y,ω, σ2) ∝ p(Z|W )p(y|Z,X,ω, σ2). (49)
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As topic assignments within one document are independent from topic assignments in all other documents,
the sampling equation for the nth word in document d should only depend it’s own response variable, yd,
such that

p(zd,n = k|Z−(d,n),W ,X,y,ω, σ2) ∝ p(zd,n = k|Z−(d,n),W )p(yd|zd,n = k,Z−(d,n),xd,ω, σ
2).

(50)

The first part of the RHS expression is just the sampling distribution of a standard LDA model, so it can
be expressed in terms of the count variables s (the topic assignments across a document) and m (the
assignments of unique words across topics over all documents). sd,k measures the total number of words
in document d assigned to topic k and sd,k,−n the number of words in document d assigned to topic k,
except for word n. Analogously, mk,v measures the total number of times term v is assigned to topic k
across all documents and mk,v,−(d,n) measures the same, but excludes word n in document d.

p(zd,n = k|Z−(d,n),W ) ∝ (sd,k,−n + α)
mk,v,−(d,n) + η∑
vmk,v,−(d,n) + V η

. (51)

C.1.2 Regression
Given that the residuals are Gaussian, the probability of the response variable for a given document d is

p(yd|zd,xd,ω, σ2) =
1√

2πσ2
exp

{
−(yd − ωᵀad)

2

2σ2

}
. (52)

We can write this in a convenient form that preserves proportionality with respect to zd,n such that it
depends only on the data and count variables used in the other two terms. First, we split the xd features
into those that are interacted, x1,d, and those that are not, x2,d. The generative model for yd is then

yd ∼ N (ωᵀ
z z̄d + ωᵀ

zx(x1,d ⊗ z̄d) + ωᵀ
xx2,d, σ

2). (53)

where ⊗ is the Kronecker product. Noting thatX is observed, so we can think of this as a linear model
with document-specific regression parameters. Define ω̃z,d as a length K vector such that

ω̃z,d,k = ωz,k + ωᵀ
zx,kx1,d. (54)

Noting that ω̃ᵀ
z,dz̄d =

ω̃z,d
ᵀ

Nd
(sd,−n + sd,n), the probability density of y conditional on zd,n = k is

therefore proportional to

p(yd|zd,n = k,z−(d,n),xd,ω, σ
2) ∝

exp

{
1

2σ2

(
2ω̃z,d,k
Nd

(
yd − ωᵀ

xxd −
ω̃ᵀ
z,d

Nd
sd,−n

)
−
(
ω̃z,d,k
Nd

)2
)}

. (55)

This gives us the sampling distribution for zd,n stated in equation (50): a multinomial distribution
parameterised by

p(zd,n = k|Z−(d,n),W ,X,y, α, η,ω, σ2) ∝

(sd,k,−n + α)
mk,v,−(d,n) + η∑
vmk,v,−(d,n) + V η

exp

{
1

2σ2

(
2ω̃z,d,k
Nd

(
yd − ωᵀ

xx2,d −
ω̃ᵀ
z,d

Nd
sd,−n

)
−
(
ω̃z,d,k
Nd

)2
)}

. (56)

This defines for each k ∈ {1, ...,K} the probability that zd,n is assigned to that topic. These K
probabilities define the multinomial distribution from which zd,n is drawn.
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Figure 4: Graphical model for BTR with multiple documents per observation

C.1.3 θ and β
Given topic assignments z, we can recover the latent variables θ and β from their predictive distributions
via

θ̂d,k =
sd,k + α∑
k(sd,k + α)

(57)

and

β̂k,v =
mk,v + η∑
v(mk,v + η)

. (58)

C.1.4 Observations without documents
A straightforward extension allows for some observations to be associated with an X and y, but no
document. This is often the case in a social science context, for example time-series may be associated
with documents at irregular intervals. If an observation is not associated with any documents, the priors
on the document topic distributions suggest that the topic assignment for topic K is set to αk/

∑
k αk.

These observations may still be very useful in estimating the relationship betweenX and y so they are
worth including in the estimation.

C.1.5 Multiple paragraphs
If, as is often the case in the context of social science applications, we have relatively few observations but
the documents associated with those observations are relatively long, we can exploit the structure of the
documents by estimating the model at a paragraph level. Splitting up longer documents into paragraphs
brings one of the key advantages of topic modelling to the fore: that the same word can have different
meanings in different contexts. For example, the word “increase" might have quite a different meaning if
it is in a paragraph with the word “risk" than if it is alongside “productivity". Treating the entire document
as a single bag of words makes it hard for the model to make this distinction.

If there are observations with multiple documents, we can treat these as Pd separate paragraphs
of a combined document, indexed by p, each with an independent θp distribution over topics. These
paragraphs may also have different associated xd,p that interact with the topics, for example we may wish
to interact topics with a paragraph specific sentiment score, but the response variable yd is common to all
paragraphs in the same document and the M-step estimated at the document level. Figure 4 shows the
extended graphical model.

If xd,p only enters linearly into the regression then some document-level average will have to be used and
this transformation can be performed prior to estimation, converting it into an x1,d, and so the algorithm
will remain unchanged. However, if any of the xd,p variables are interacted with z̄d,p then we may wish
for this interaction to be at the paragraph level. For example, if we think that a topic might have a different
effect depending on the sentiment of the surrounding paragraph. In this case, we still need to aggregate the
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interaction to the document level, but aggregate after interacting rather than interacting after aggregating.
We therefore define

xd,p ⊗ zd,p =
1

Nd

∑
p∈[Pd]

∑
n∈[Nd,p]

[xd,p ⊗ sd,p,n] (59)

where [N ] denotes the set of integers {1, ..., N} and ⊗ represents the Kronecker product. The design
matrixA is then

A =


z̄1 x1,1,p ⊗ z1,p x2,1
...

...
...

z̄1 x1,d,p ⊗ zd,p x2,d
...

...
...

z̄1 x1,D,p ⊗ zD,p x2,D

 (60)

and the predictive model for yd will be

y ∼ N (Aω, σ2) where ω = (ωz,ωzx,ωx). (61)

The simplest way to aggregate from paragraphs to documents is simply to give each word in the document
equal weight as above. This will mean that longer paragraphs have greater weight than shorter ones.

As before, we can collapse out the latent variables θ and β so that we only need to sample for
the topic assignments z in an E-step and then for ω and σ2 in an M-step.

In the E-step, we need to sample from the conditional posterior for the topic assignment of
each word

Pr[zd,p,n = k|Zd,−(p,n),W , α, η,y,X,ω, σ2]. (62)

By the conditional independence properties of the graphical model, we can split this into p(Z|W , α, η)
and p(y|Z,X,ω, σ2). The sampling equation for the nth token in the pth paragraph of the dth document
d will have the form

Pr[zd,p,n = k|Zd,−(p,n),W , α, η,y,X,ω, σ2] ∝
Pr[zd,p,n = k|Zd,p,−(n),W , α, η] × Pr[yd|zd,p,n = k,Zd,−(p,n),xd, ω, σ

2].
(63)

The topic assignment each document is independent, but there are dependencies across paragraphs.
Crucially, these paragraphs have are independent with respect to θ, so p(Z|W , α, η) is paragraph specific.

Pr[zd,p,n = k|Zd,p−(n),W , α, η] ∝ (sd,p,k,−n + α)
mk,v,−(d,p,n) + η∑
vmk,v,−(d,p,n) + V η

. (64)

However, the regression part is at the document level to p(y|Z,X,ω, σ2) will condition on all the
paragraphs in a given document. Given that the residuals are Gaussian, the probability of the outcome
variable for a given document d is

p(yd|zd,xd,ω, σ2) =
1√

2πσ2
exp

[
−

(yd − ωᵀ
z z̄d − ωᵀ

zx(x1,d,p ⊗ zd,p)− ωᵀ
xx2,d)

2

2σ2

]
. (65)

We can write this in a convenient form that preserves proportionality with respect to zd,p,n such that it
depends only on the data and count variables used in the other two terms and the document-wide counts.
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First we can break the prediction for yd into the section that depends on paragraph p and the section that
depends on other paragraphs and document wide x1,d.

yd − ωᵀ
z z̄d − ωᵀ

zx(x1,d,p ⊗ zd,p) =

yd − ωᵀ
xx2,d −

ωᵀ
z

Nd
sd,−p −

ωᵀ
zx

Nd

∑
q∈{[Pd]\p}

[x1,d,q ⊗ sd,q]


−
(
ωᵀ
z

Nd
(sd,p,−n + sd,p,n)− ω

ᵀ
zx

Nd
x1,d,p ⊗ (sd,p,−n + sd,p,n)

)
(66)

where Nd is the total number of words in the document.

Define ŷd,−p as the predicted yd without paragraph p,

ŷd,−p = ωᵀ
xx2,d +

ωᵀ
z

Nd
sd,−p +

ωᵀ
zx

Nd

∑
q∈{[Pd]\p}

[x1,d,q ⊗ sd,q] . (67)

We then have a predictive distribution that depends only on paragraph p.

yd ∼ N
(
ŷd,−p −

ωᵀ
z

Nd
(sd,p,−n + sd,p,n)− ω

′
zx

Nd
x1,d,p ⊗ (sd,p,−n + sd,p,n), σ2

)
. (68)

We can then follow the same steps as for the single paragraph document case to derive the third term in
the sampling distribution, defining ω̃z,d,p,k = ωz,k + ω′zx,kx1,d,p analogously to ω̃ defined for the single
paragraph case.

This gives us the sampling distribution for z, which is a Multinomial parameterised by

Pr[zd,n = k|Z−(d,n),W ,y, α, η,ω, σ2] ∝(sd,p,k,−n + α)
mk,v,−(d,p,n) + η∑
vmk,v,−(d,p,n) + V η

exp

[
1

2σ2

(
2ω̃z,d,p,k

Nd

(
yd − ŷd,−p −

ω̃′z,d,p
Nd

sd,−n

)
−
(
ω̃z,d,p,k

Nd

))2
]
.

(69)

In the M-step we can then still use the average z̄d,p estimated in the E-step, but we need to weight each
paragraph by the number of words in that paragraph to be consistent with the E-step,

z̄d =
1

Nd

∑
p∈[Pd]

[Nd,pz̄d,p] (70)

(x1,d,p ⊗ zd,p) =
1

Nd

∑
p∈[Pd]

[Nd,px1,d,p ⊗ zd,p] . (71)

D Synthetic Data Experiments

Figure 5 shows the topic-vocabulary distribution from which the synthetic documents are generated.
Table 3 shows the hyperparameter settings used in the synthetic data section. We observed that the

settings of the prior did hardly effect results, given the strong signal in the synthetic dataset.

Table 3: Synthetic example hyperparameters

K α η µntm σntm a0 b0 m0 S0

LDA 3 1.0 1.0 - - - - - -
sLDA 3 1.0 1.0 - - - - - -
BPsLDA 3 1.0 1.0 - - - - - -
BTR 3 1.0 1.0 - - 0.2 4 0 2
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Figure 5: Ground truth topic distribution for synthetic documents.

E Semi-Synthetic Data Experiments

Figure 6: Without correlation between confounders and treatments, the regression can be dissected into two sepa-
rate parts (supervised topic estimation and regression weight estimation of the non-text features) without inducing
bias in the estimators, as described in the section on the Frisch-Waugh-Lovell theorem. In such a case, all models
manage to recover the ground truth.

F Real-World Datasets and Data Pre-Processing

The Yelp dataset contains over 8 million customer reviews of businesses, which we restrict to reviews for
businesses in Toronto. The Booking dataset contains around 500, 000 hotel reviews. For both datasets,
we randomly sample 50, 000 observations and randomly select 75% in Yelp, 80% in Booking of our
sample for training, holding out the remainder for testing. We then further split the training set equally
for training in the E-step and validation in the M-step. The features are normalized on the training data
statistics and the response variable is de-meaned. We do this because the K topic features sum to one and
therefore implicitly already add a constant to the regression (Blei and McAuliffe, 2008). We preprocess
the text corpora by removing stopwords and then tokenizing and stemming the data.

Table 4: Summary statistics of the review datasets

Statistics #train #val #test #vocab #max words #avg words

Yelp 18,750 18,750 12,500 24,680 572 61.2
Booking 20,000 20,000 10,000 6,968 305 18.7

The Booking.com dataset allows consumers to enter the positive and negative parts of their reviews in
separate boxes. We combine these two reviews for all our exercises, but we do use information on the
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word count in each of these sections (see below).

For the prediction exercises in Section 7, we use the number of stars associated with each re-
view as the target variable. We also use the numerical metadata described in Table 5as covariates.

Table 5: Numerical covariates for prediction experiments

Dataset Variable Description
c

Yelp

stars_av_u historic avg. rating by user
stars_av_b historic avg. rating of business
sentiment Harvard Inquirer sentiment score

c

Booking

AverageScore historical averge hotel score
Review_Total_Negative_Word_Counts total number of words in the negative part of review
Review_Total_Positive_Word_Counts total number of words in the positive part of review

Total_Number_of_Reviews_Reviewer_Has_Given total num of reviews by customer
Total_Number_of_Reviews total num of reviews of hotel

For the semi-synthetic exercise on the Booking data, we construct

pos_propi =
Review_Total_Positive_Word_Countsi

Review_Total_Positive_Word_Countsi +Review_Total_Negative_Word_Countsi

This variable is correlated with the treatment (Average_Scorei) and with the outcome, and so the text
can act as a confounder.

G Real-World Data Experiments

G.1 Empirical data evaluation across different K

Table 6: Mean pR2 and perplexity over 20 runs per model, standard deviation in brackets

Dataset Booking Yelp

K 10 20 30 50 10 20 30 50

pR2 (higher is better)

LDA+LR 0.400 (0.003) 0.410 (0.004) 0.417 (0.005) 0.426 (0.003) 0.498 (0.005) 0.530 (0.009) 0.561 (0.010) 0.586 (0.006)
GSM+LR 0.387 (0.003) 0.390 (0.004) 0.389 (0.006) 0.386 (0.004) 0.502 (0.013) 0.505 (0.011) 0.503 (0.008) 0.495 (0.004)
LR+sLDA 0.416 (0.007) 0.426 (0.003) 0.430 (0.004) 0.432 (0.002) 0.533 (0.007) 0.564 (0.003) 0.567 (0.006) 0.571 (0.002)
LR+BPsLDA 0.394 (0.004) 0.396 (0.005) 0.400 (0.005) 0.419 (0.009) 0.593 (0.003) 0.597 (0.002) 0.597 (0.002) 0.603 (0.002)
rSCHOLAR 0.494 (0.005) 0.495 (0.003) 0.495 (0.003) 0.494 (0.004) 0.520 (0.02) 0.548 (0.02) 0.563 (0.01) 0.571 (0.01)
BTR 0.439 (0.008) 0.447 (0.005) 0.453 (0.003) 0.454 (0.003) 0.586 (0.007) 0.615 (0.006) 0.627 (0.004) 0.630 (0.001)

Perplexity (lower is better)

LDA+LR 538 (3) 498 (2) 476 (2) 454 (1) 1544 (5) 1447 (4) 1388 (4) 1306 (4)
GSM+LR 371 (6) 359 (11) 356 (14) 369 (8) 1500 (52) 1444 (29) 1463 (21) 1431 (34)
LR+sLDA 535 (2) 491 (1) 463 (1) 436 (2) 1544 (6) 1444 (6) 1382 (5) 1294 (5)
rSCHOLAR 941 (134) 1429 (163) 2110 (396) 5014 (1314) 1744 (158) 1918 (138) 2216 (164) 2814 (383)
BTR 535 (2) 490 (1) 463 (2) 437 (1) 1540 (5) 1443 (4) 1379 (4) 1291 (5)

Table 7: Best model in bold. Second best model in italics.

We also tested sLDA+LR and a pure sLDA, which performed consistently worse so they are not included
for the sake of brevity. For example, for K = 50, sLDA+LR achieved pR2 of 0.420 and 0.564 for
Booking and Yelp respectively, compared to 0.432 and 0.571 for LR+sLDA. Standalone sLDA achieves
0.356 and 0.526 respectively.

G.2 Model parametrisations
This section provides an overview over all used and tested hyperparameter settings across all models in
our benchmark list. Table 8 lists all hyperparameter settings pertaining to topic model components. Table
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9 provides an overview over all used neural network hyperparameters. 10 summarises the iteration and
stopping criteria for all models.

Table 8: Topic model hyperparameters

K α η µntm σntm a0 b0 m0 S0

LDA [10,20,30,50] [0.1,0.5,1] [0.001,0.01,0.1] - - - - - -
sLDA [10,20,30,50] [0.1,0.5,1] [0.001,0.01,0.1] - - - - - -
BPsLDA [10,20,30,50] [0.1,0.5,1] [0.001,0.01,0.1] - - - - - -
BTR [10,20,30,50,100] [0.1,0.5,1] [0.001,0.01,0.1] - - [0,1.5,3,4] [0,2,4] 0 2
GSM [10,20,30,50] - - 0 1 - - - -
TAM 100 - - 0 1 - - - -
Bold parameter specifications were used for reported results in paper, unless stated otherwise. For Booking default a0 = 3, for Yelp a0 = 4.

Table 9: Neural network hyperparameters

HidLaySize DropOut HidLaySize nHidLayers
θ BatchSize LearnRate KeepRate EmbedSize RNN TAM-thresh BPsLDA

GSM 64 64 1.00E-03 [0.5,0.8,1]* - - - -
TAM 64 64 1.00E-03 0.8 100 64 1/K -
aRNN - 64 1.00E-03 0.8 100 64 - -

BPsLDA - 1050 1.00E-02 - - - - 10
* best results (which occurred under no dropout) were reported in benchmarks

Table 10: Iteration parameters

E-step iters M-step iters max. EM-iters burn-in max. epochs Gibbs iters (thinning)

LDA - - 50*** 100 - 1000 (5)
sLDA [100,250,500]** 2500 50*** 20 - -
BTR [100,250,500]** 2500 50*** 20 - -
GSM - - - - 100*** -
TAM - - - - 100*** -

BPsLDA - - - - 50*** -
** no noticeable performance difference observed, therefore all results reported based on 100 E-step.

*** best model achieved substantially before max. iterations reached.

Further notes on benchmark model specifications:

For TAM and aRNN, the sequence length in the RNN component (ie. the maximum number
of words per document) is 305 for Booking and 572 for Yelp which corresponds to the longest review in
each respective data set. We therefore work with the full text of each review.

BPsLDA changes its behaviour quite drastically when α is set in an area 1 ≤ α ≤ 2, where it strongly
increases its predictive performance (pR2) at the cost of its document modelling performance (perplexity).
This can be seen in the original paper (Chen et al., 2015). We included α = 1 in the robustness test range
and BTR is still generally on par with BPsLDA in this specific case for low K and does better for K > 30.
Even when including α = 1 in the robustness test range, BTR still outperforms BPsLDA and all other
models across all hyperparameter settings, except K = 10 in the Yelp dataset, where BTR is a close
second.
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G.3 Robustness Tests
Robustness test across all topic models with LDA-like structure and Dirichlet hyperparameters for
document-topic and word-topic distributions.

We assess the robustness of our findings to changes in the Dirichlet hyperparameters α and η. These
hyperparameters act as priors on the topic-document distributions (β) and word-topic distributions (θ),
respectively. Table 11 shows the results.

In terms of pR2, BTR continues to perform best for all settings. We generally find that the BTR
prediction performance is robust to hyperparameter changes. Evaluating the perplexity scores, we see
more fluctuation across all models, which is unsurprising since those hyperparameter directly affect the
generative topic modelling processes. BTR remains on par with its sLDA counterpart.

Table 11: Sensitivity to hyperparameters α and β (K = 20)

α η
Metric Model 0.1 0.5 1 0.001 0.01 0.1

Yelp pR2

LR-LDA 0.473 0.530 0.550 0.316 0.530 0.521
LR-sLDA 0.558 0.564 0.559 0.562 0.564 0.568

LR-BPsLDA 0.602 0.597 0.608 0.607 0.597 0.608
BTR 0.611 0.615 0.613 0.611 0.615 0.624

Yelp perplexity
LR-LDA 1511 1448 1445 1472 1447 1470
LR-sLDA 1497 1444 1431 1441 1444 1491

BTR 1490 1443 1441 1456 1443 1478

Booking pR2

LR-LDA 0.397 0.410 0.409 0.405 0.410 0.406
LR-sLDA 0.430 0.426 0.432 0.422 0.426 0.433

LR-BPsLDA 0.409 0.396 0.453 0.395 0.396 0.393
BTR 0.451 0.447 0.452 0.443 0.447 0.455

Booking perplexity
LR-LDA 515 498 514 505 498 512
LR-sLDA 502 491 504 484 491 516

BTR 503 491 503 489 491 515
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G.3.1 Further Robustness Tests - Booking

Table 12 provides an extended robustness test on the predictive performance of the benchmark topic
models across hyperparameters. BTR continues to be the best performing model throughout. Table 13
summarises robustness tests in terms of perplexity scores. BTR achieves almost identical perplexity scores
as sLDA whilst achieving higher pR2 throughout.

Table 12: Booking - pR2 for different hyperparameter settings across topic benchmark models, best model in bold.

(K=10) α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.378 0.4 0.408 0.397 0.4 0.398
LR-sLDA 0.42 0.416 0.403 0.401 0.416 0.422

LR-BPsLDA 0.396 0.394 0.439 0.393 0.394 0.396
BTR 0.446 0.439 0.435 0.418 0.439 0.452 0.439 0.435 0.437 0.446

(K=20) α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.397 0.41 0.409 0.405 0.41 0.406
LR-sLDA 0.43 0.426 0.432 0.422 0.426 0.433

LR-BPsLDA 0.409 0.396 0.453 0.395 0.396 0.393
BTR 0.451 0.447 0.452 0.443 0.447 0.455 0.447 0.45 0.45 0.443

(K=30) α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.399 0.417 0.423 0.417 0.417 0.413
LR-sLDA 0.434 0.43 0.428 0.417 0.43 0.427

LR-BPsLDA 0.424 0.4 0.451 0.401 0.4 0.402
BTR 0.455 0.453 0.455 0.444 0.453 0.459 0.453 0.453 0.447 0.449

(K=50) α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.415 0.426 0.428 0.418 0.426 0.420
LR-sLDA 0.434 0.432 0.43 0.429 0.432 0.436

LR-BPsLDA 0.461 0.419 0.449 0.411 0.419 0.418
BTR 0.461 0.454 0.459 0.446 0.454 0.459 0.454 0.455 0.452 0.451

Default model was α = 0.5, η = 0.01, a0 = 3, b0 = 2.
Robustness tests kept all hyperparameters at default, then changing one hyperparameter at a time.

Table 13: Booking - perplexity scores for different hyperparameter settings across topic benchmark models, best
model in bold.

K=10 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 562 538 539 539 538 545
LR-sLDA 557 535 539 534 535 554
BTR 556 535 538 528 535 548 535 535 537 536

K=20 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 515 498 514 505 498 512
LR-sLDA 502 491 504 484 491 516
BTR 503 490 503 489 490 515 490 491 490 491

K=30 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 479 476 502 484 476 492
LR-sLDA 471 463 486 454 463 499
BTR 470 463 483 457 463 500 463 463 463 463

K=50 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (3,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 442 454 494 460 454 476
LR-sLDA 431 436 466 421 436 492
BTR 430 437 467 423 437 492 437 436 439 437

Default model was α = 0.5, η = 0.01, a0 = 3, b0 = 2.
Robustness tests kept all hyperparameters at default, then changing one hyperparameter at a time.
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G.3.2 Further Robustness Tests - Yelp

Table 14 provides an extended robustness test on the predictive performance of the benchmark topic
models across hyperparameters. BTR continues to be the best performing model throughout, apart from
the K=10 case, where it is a close second. Table 15 summarises robustness tests in terms of perplexity
scores. BTR achieves almost identical perplexity scores as sLDA whilst achieving higher pR2 throughout.

Table 14: Yelp - pR2 for different hyperparameter settings across topic benchmark models, best model in bold.

K=10 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.476 0.498 0.515 0.503 0.498 0.49
LR-sLDA 0.523 0.533 0.539 0.52 0.533 0.527

LR-BPsLDA 0.596 0.593 0.606 0.595 0.593 0.592
BTR 0.592 0.586 0.593 0.575 0.586 0.596 0.586 0.588 0.578 0.59

K=20 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.473 0.53 0.55 0.483 0.53 0.521
LR-sLDA 0.558 0.564 0.559 0.562 0.564 0.568

LR-BPsLDA 0.602 0.597 0.608 0.607 0.597 0.608
BTR 0.611 0.615 0.613 0.611 0.615 0.624 0.615 0.62 0.593 0.621

K=30 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.499 0.561 0.563 0.547 0.561 0.565
LR-sLDA 0.565 0.567 0.563 0.567 0.567 0.56

LR-BPsLDA 0.609 0.597 0.607 0.599 0.597 0.599
BTR 0.624 0.627 0.612 0.608 0.627 0.622 0.627 0.623 0.627 0.626

K=50 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LR-LDA 0.523 0.586 0.591 0.571 0.586 0.582
LR-sLDA 0.573 0.571 0.564 0.556 0.571 0.573

LR-BPsLDA 0.612 0.603 0.606 0.604 0.603 0.604
BTR 0.632 0.630 0.623 0.621 0.630 0.632 0.630 0.629 0.629 0.628

Table 15: Yelp - perplexity scores for different hyperparameter settings across topic benchmark models, best model
in bold.

K=10 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 1586 1544 1532 1557 1544 1552 1544
LR-sLDA 1583 1544 1530 1561 1544 1554 1544

BTR 1588 1540 1534 1565 1540 1546 1540 1539 1548 1547

K=20 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 1511 1447 1445 1472 1447 1469 1447
LR-sLDA 1497 1444 1431 1441 1444 1491 1444

BTR 1490 1443 1441 1456 1443 1478 1443 1443 1445 1441

K=30 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 η = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 1434 1388 1390 1412 1388 1415 1388
LR-sLDA 1436 1382 1383 1395 1382 1442 1382

BTR 1434 1379 1385 1390 1379 1448 1379 1378 1389 1379

K=50 α = 0.1 α = 0.5 α = 1 η = 0.001 η = 0.01 eta = 0.1 a,b = (4,2) a,b = (0,0) a,b = (3,4) a,b = (1.5,4)

LDA 1352 1306 1325 1334 1306 1356 1306
LR-sLDA 1349 1294 1310 1309 1294 1404 1294

BTR 1338 1291 1303 1288 1291 1405 1291 1293 1294 1292
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G.4 Estimated Topics
The below tables are an extended version of the corresponding table in the paper. The show the top
3 negative and positive topics for K = [10, 30, 100]. Inspecting the top words in each of these topics
compared with its regression coefficient, BTR models highly interpretable topics - at least as interpretable
as LDA or sLDA. At the same time BTR achieves substantially better prediction performances throughout
all model specifications (see previous section).
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Table 16: Top 3 positive and negative topics for Yelp (K
= 10)

Pos1 Pos2 Pos3 Neg3 Neg2 Neg1

BTR topics

food restaur time store food order
great dish hair locat chicken us
place lobster back like good ask
servic menu work can order servic
friend food will price rice wait
love order day go dish food

BTR regr. weights 4.3 1.7 1.5 -0.1 -0.5 -8.8

sLDA topics

food time locat coffe us like
place hair store tea order place
great back can tri ask go
servic work find place servic much
good will place ice tabl im
time day staff cream time realli

sLDA regr. weights 2.7 1.7 1.2 0.1 -3.7 -4.5

LDA topics

food place place store fri order
great coffe great like burger us
servic good good locat order food
restaur tri friend can like servic

dish tea bar find good time
menu great drink go chees ask

LDA regr. weights 1.2 0.7 0.5 -0.1 -0.4 -2.6

Table 17: Top 3 positive and negative topics for Yelp (K
= 30)

Pos1 Pos2 Pos3 Neg3 Neg2 Neg1

BTR topics

best great restaur us ask like
plac friend menu order said disappoint

alway servic dish tabl custom better
love staff wine food told tast
ever recommend steak server never noth

toronto amaz perfect came say bad

BTR regr. weights 6.9 6.0 2.1 -3.9 -8.4 -13.3

sLDA topics

great time im seem ask like
love alway review like never food
amaz go place much custom good

recommend year star make said place
servic never go think servic tast
friend everi give thing told better

sLDA regr. weights 3.7 3.1 3.1 -2.3 -6.4 -7.1

LDA topics

great toronto restaur us ask like
friend visit menu tabl custom tast
love make dish order said disappoint
amaz love wine food servic better
place made dessert came told bad
servic best dinner server manag noth

LDA regr. weights 3.0 1.6 1.3 -1.2 -4.9 -8.3

Table 18: Top 3 positive and negative topics for Yelp (K
= 100)

Pos1 Pos2 Pos3 Neg3 Neg2 Neg1

BTR topics

love definit best custom never disappoint
delici ever amaz ask worst tast
definit toronto everi said ever bland
perfect citi friend manag money dri

tri far free rude bad better
super amaz alway servic terribl lack

BTR regr. weights 5.9 5.2 5.0 -8.4 -12.5 -14.5

sLDA topics

alway will amaz ask tast disappoint
time definit definit said like bad
usual servic love told felt cold
come friend great back disappoint worst
never return place went better dri
everi back everyth want wasnt lack

sLDA regr. weights 4.1 4.0 3.9 -7.0 -8.0 -11.3

LDA topics

love best experi money never tast
amaz toronto made go bad like
delici ever make will ever disappoint
place citi feel never worst meat

absolut far first pay terribl bland
super visit felt spend experi dri

LDA regr. weights 5.4 4.6 3.8 -5.9 -10.8 -10.9

Table 19: Top 3 positive and negative topics for Book-
ing (K = 10)

Pos1 Pos2 Pos3 Neg3 Neg2 Neg1

BTR topics

hotel room room room check hotel
stay locat great bed book room
staff staff love shower room locat

would good hotel bathroom us small
help clean view small hotel good

everyth comfort bar clean arriv price

BTR regr. weights 2.8 1.7 1.5 -1.0 -1.1 -5.7

sLDA topics

hotel room room room room room
stay good great bed night hotel
staff locat love bathroom window locat

would staff hotel shower work small
help clean view small floor staff
like breakfast nice comfort air posit

sLDA regr. weights 2.4 1.3 1.3 -0.4 -0.6 -5.6

LDA topics

hotel hotel neg check room room
stay great staff room shower hotel
staff love locat book bathroom good
help room friendli hotel work locat

would view great us bed breakfast
noth locat help time air price

LDA regr. weights 1.3 1.2 1.0 -1.3 -1.4 -2.0

Table 20: Top 3 positive and negative topics for Book-
ing (K = 30)

Pos1 Pos2 Pos3 Neg3 Neg2 Neg1

BTR topics

us stay room room ask room
staff would locat small us hotel
made hotel great bed day old

upgrad staff staff size recept poor
stay love bit locat call star

welcom recommend littl bathroom back bad

BTR regr. weights 2.7 2.5 2.3 -2.5 -3.0 -9.0

sLDA topics

staff hotel us book room hotel
friendli love upgrad charg need room
great beauti staff hotel locat bad
help decor room pay old star
locat modern stay check look poor
neg great love day smell posit

sLDA regr. weights 2.1 1.8 1.7 -1.4 -2.1 -9.7

LDA topics

stay stay hotel us room hotel
hotel hotel love ask locat like
made would beauti one good star
like recommend great recept need realli
feel definit decor day old much

realli love staff call valu best

LDA regr. weights 2.4 2.1 1.9 -2.5 -2.7 -3.4

Table 21: Top 3 positive and negative topics for Book-
ing (K = 100)

Pos1 Pos2 Pos3 Neg3 Neg2 Neg1

BTR topics

staff hotel love old room poor
help wonder great look small posit

friendli beauti staff carpet tini servic
excel love littl tire bathroom bad
especi experi fab furnitur noisi never
wonder fabul especi need far rude

BTR regr. weights 4.3 4.1 3.3 -6.1 -7.3 -14.2

sLDA topics

love room great old hotel bad
beauti small locat dirti star poor
amaz posit neg bathroom expect recept

fantast size perfect carpet rate posit
fabul bit awesom wall thi even

wonder expect super look basic never

sLDA regr. weights 3.7 3.6 2.8 -5.8 -6.0 -14.3

LDA topics

love great bit hotel old recept
amaz locat littl star dirti manag

everyth neg nice rate carpet rude
noth staff locat expect look receptionist

perfect awesom breakfast disappoint wall check
absolut perfect good thi furnitur guest

LDA regr. weights 3.6 3.1 2.8 -5.3 -6.6 -7.6
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G.5 Computation Times
Table 22 shows the time taken for 100 E-step iterations on a single 2.8GHz processor on the Booking
data and 300-400 seconds on the Yelp data. We found that 100 E-step iterations is typically sufficient for
the best performance and the model typically converges after between 10-25 EM iterations. A typical
30 topic model on Yelp data thus took around 1 hour to converge, and around 20 minutes for Booking.
Computation time scales roughly linearly in the number of topics and total number of words across all
documents. This is because the evaluation of the K-dimensional multinomial distribution for each zd,n
(equation (50)) is the principle computational challenge.

Table 22: Computational time

Dataset K 100 E-step iters

Yelp

10 50s
20 110s
30 200s
50 320s
100 740s

Booking

10 18s
20 33s
30 50s
50 79s
100 200s

Note: Yelp data has roughly 3 times as many words as Booking.com data
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