
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8410–8434
November 7–11, 2021. c©2021 Association for Computational Linguistics

8410

Machine Translation Decoding beyond Beam Search

Rémi Leblond
DeepMind

Jean-Baptiste Alayrac
DeepMind

Laurent Sifre
DeepMind

Miruna Pislar
DeepMind

Jean-Baptiste Lespiau
DeepMind

Ioannis Antonoglou
DeepMind

Karen Simonyan
DeepMind

Oriol Vinyals
DeepMind

Abstract

Beam search is the go-to method for decod-
ing auto-regressive machine translation mod-
els. While it yields consistent improvements in
terms of BLEU, it is only concerned with find-
ing outputs with high model likelihood, and is
thus agnostic to whatever end metric or score
practitioners care about. Our aim is to es-
tablish whether beam search can be replaced
by a more powerful metric-driven search tech-
nique. To this end, we explore numerous de-
coding algorithms, including some which rely
on a value function parameterised by a neu-
ral network, and report results on a variety
of metrics. Notably, we introduce a Monte-
Carlo Tree Search (MCTS) based method and
showcase its competitiveness. We provide a
blueprint for how to use MCTS fruitfully in
language applications, which opens promising
future directions. We find that which algo-
rithm is best heavily depends on the character-
istics of the goal metric; we believe that our
extensive experiments and analysis will inform
further research in this area.

1 Introduction

Sequence to sequence model decoding remains
something of a paradox. The most widely adopted
training method for these models is maximum like-
lihood estimation (MLE), which aims at maximis-
ing the probability of the ground truth outputs pro-
vided in the training datasets. Consequently, decod-
ing from MLE-trained models is done by trying to
find the output to which the model assigns maxi-
mum likelihood. Unfortunately, as models usually
predict tokens one by one, exact search is not fea-
sible in the general case and practitioners resort to
heuristic mechanisms instead.

The most popular of these heuristics is beam
search (Reddy, 1977), which maintains several hy-
potheses in parallel and is guaranteed to find a more
likely output than the more basic greedy decoding.
This approach has some obvious flaws: for one,

it is completely agnostic to the actual metrics (or
scores) practitioners actually want to optimise.

Even more crucially, in most cases beam search
fails at the one thing it is supposed to do: find-
ing the optimal output sequence (w.r.t the model),
as shown by Stahlberg and Byrne (2019). Also
alarming are the findings of Welleck et al. (2020),
proving that traditional search mechanisms can
yield infinite-length outputs, to which the model
assigns zero probability. Finally, the use of likeli-
hood as a training objective has a spectacular side-
effect: it causes trained models to have an inordi-
nate fondness for empty outputs. By using exact
search on the output likelihood in machine trans-
lation, Stahlberg and Byrne (2019) show that in
more than half of cases the highest scoring output
according to the model is the empty sentence!

All told, we rely on models placing a surpris-
ing emphasis on empty outputs, and on a decoding
mechanism which usually fails to find optimal out-
puts; and both ignore the relevant metrics. One
can then justifiably wonder why we observe im-
pressive MT results. Stahlberg and Byrne (2019)
provide an apparently paradoxical explanation: it is
precisely because the decoding mechanisms are im-
perfect that models produce outputs of high quality.
Meister et al. (2020a) elaborate on this assumption;
they show that beam search optimises for a slightly
modified likelihood objective, promoting uniform
distribution probability inside sentences.

This state of affairs seems highly unsatisfactory.
While a whole body of work has been devoted
to alleviating these issues, most approaches have
been concerned with training (Bengio et al., 2015;
Ranzato et al., 2016; Shen et al., 2016; Norouzi
et al., 2016; Bahdanau et al., 2017; Edunov et al.,
2018; Leblond et al., 2018), or making the search
mechanism differentiable (Collobert et al., 2019).
These have resulted in performance increase, but
they still rely on likelihood as an objective for de-
coding. Further, Choshen et al. (2019) shows that

8411

performance improvements using RL are limited
and poorly understood.

In this paper, we focus instead on contrasting
the performance of beam search to alternative de-
coding algorithms aimed at optimising various met-
rics of interest directly, via a value function (or
the metric itself when available). Notably, we
experiment with variants of the powerful Monte
Carlo Tree Search (MCTS) (Coulom, 2006; Koc-
sis and Szepesvári, 2006) mechanism, which has
a proven track record in other sequential applica-
tions (Browne et al., 2012; Silver et al., 2017). We
investigate whether, by optimising the metric of in-
terest at test time, one can obtain improved perfor-
mance compared to likelihood-based approaches,
and whether performance scales with the amount
of computation – as opposed to that of beam search
which has been shown to degrade with large beam
sizes (Cohen and Beck, 2019).

We concentrate on machine translation (MT),
an emblematic, well-studied sequence to sequence
task, with readily available data and benchmarks.

Contributions. (i) We recall that there are two
different types of metrics: reference-based scores,
which rely on ground truth translations, in contrast
to reference-less ones. We design a new score, Mul-
tilingual BERTScore, as an imperfect but illustra-
tive example of the latter. (ii) We introduce several
new decoding algorithms, detailing their implemen-
tation and how best to use them for MT. We provide
a blueprint for how to use MCTS profitably in NLP
(with pseudocode for a batched Numpy-based (Har-
ris et al., 2020) implementation), which opens the
door for many exciting applications. (iii) We run
extensive experiments to study the performance of
decoding mechanisms for different metrics. We
show that beam search is the best option only for
reference-based metrics. For those, value-based
alternatives falter as the value problem is too hard
– since it ultimately relies on reconstructing hid-
den information. For reference-less scores, beam
search is outperformed by its competitors, includ-
ing MCTS.

Outline. We go over the related work in Section 2.
In Section 3, we contrast several types of metrics,
and introduce illustrative examples. We review
beam search and introduce alternative algorithms
in Section 4. We explain how we train the re-
quired value function for value-based methods in
Section 5. In Section 6 go over experimental details
and results. Finally, we discuss our results, their

limitations and possible next steps in Section 7.

2 Related Work

Autoregressive models for sequence generation typ-
ically output more coherent sequences (Gu et al.,
2018), as each token prediction takes into account
its predecessors. However, this gain comes at a
cost: finding the sequence with maximum proba-
bility according to the model – argmaxy∈Yπ(y|x)
– becomes an intractable search problem over the
combinatorial space Y . Given the size of the (to-
ken) action space A, exact search appears out of
the realm of possibility. So we resort to incremen-
tal prediction; picking individual tokens, without
knowing how these choices will impact the final
likelihood. We describe the three most widely used
methods, which all pick tokens one by one from
left to right.

The sampling method predicts tokens by directly
sampling from the model policy π(yt+1|x, y1...yt),
computed via a softmax operator applied to the
model logits (Ackley et al., 1985) – possibly with a
temperature parameter. The greedy search method
incrementally picks the tokens with highest prob-
ability according to the model (akin to sampling
with very low temperature). This inexpensive ap-
proach can be seen as a special case of the sam-
pling method, with very low temperature. Finally,
beam search maintains a beam of k possible trans-
lations, updating them incrementally by ranking
their extensions via the model likelihood. While k
times more expensive than the previous approaches,
beam search has stood the test of time, resulting in
steady performance improvements on MT tasks.

Building on these methods, a number of improve-
ments have been proposed. Welleck et al. (2019)
explore out-of-order decoding, where the model
additionally learns the order in which to decode
tokens. This provides benefits in a variety of tasks,
but unfortunately not MT. Wang et al. (2020) use
look-ahead in the beam search to take into account
future likelihood, which yields improvements on
low-data tasks, but again does not outperform beam
search on MT. Meister et al. (2020b) speeds up
beam search for monotonous scores.

Several works focus on the interplay between
the incremental models and beam search. Cohen
and Beck (2019) shows that performance is not
monotonically increasing with beam size, but de-
grades after a fairly small value of k. Stahlberg
and Byrne (2019) devise a clever exact search

8412

mechanism, relying on the fact that likelihoods are
monotonically decreasing with size. While still pro-
hibitively expensive, this approach underlines sev-
eral key facts. First, beam search does not recover
argmaxy∈Yπ(y|x) in most cases, whatever the
computational budget. Second, argmaxy∈Yπ(y|x)
is the empty sequence more than half the time in
MT. Eikema and Aziz (2020) propose an interest-
ing explanation for this observation: while models
are good at spreading probability mass over a large
quantity of acceptable outputs, they are unable to
effectively pick the best one. Indeed, the mode
of the distribution might even be disjoint from the
area where the models assigns the majority of prob-
ability mass. They propose using minimum Bayes
risk decoding, which leverages the whole distri-
bution rather than only its mode, and can outper-
form vanilla beam search in low-resource scenar-
ios. Borgeaud and Emerson (2019), in a similar
vein, develop an additional voting-based step on
top of beam search to select more representative
sequences, based on similarity measures.

A large body of work has been dedicated to im-
proving sampling diversity, which plays a key role
in many NLP applications – though not usually in
machine translation. Fan et al. (2018) propose only
sampling from the top k tokens according to the
policy to avoid sampling from the tail of the dis-
tribution. Holtzman et al. (2019) adopt a similar
approach, but instead of fixing k they fix p, the
size of the ‘nucleus’ of the distribution from which
sampling is allowed to select tokens. This performs
better on open-ended tasks. Kool et al. (2019) pro-
pose a search mechanism in-between sampling and
beam search, which produces provably unique sam-
ples by leveraging the Gumbel-Max trick (Gumbel,
1954). Yu et al. (2020) use a different, much more
expensive flavor of MCTS to add diverse samples
to a larger NMT system: instead of relying on
direct value estimation, they rely on (expensive)
rollouts to estimate node values.

Finally, the most closely related method to our
proposed MCTS decoding is value-guided beam
search, as developed by He et al. (2017); Ren et al.
(2017) for MT and image captioning. Contrary to
all other methods presented in this section, this ap-
proach does not solely rely on model likelihood. In
both papers a value network – estimating the even-
tual score from an unfinished sample – is trained
in addition to the policy network. Then instead
of following the likelihood to select the hypothe-

ses on the beam, one uses a linear combination of
the policy logits and the value. This approach has
shown improved performance compared to vanilla
beam search; notably, it is less sensitive to the cho-
sen beam size. While this method uses the value
exclusively for one-step look-aheads, MCTS can
be leveraged to explore further in the future. Ad-
ditionally, it requires evaluating the value score of
all tokens at each step, which can be prohibitively
expensive if the action space is big (in MT, one rou-
tinely uses vocabularies of size larger than 30000).

3 Machine Translation metrics

There are two main evaluation strategies for MT
outputs. The first one crucially relies on having ac-
cess to a held-out test set of high quality (input, out-
put) sentence pairs (x, yx)x∈X . One can then com-
pute a monolingual similarity score between the
system’s outputs (ŷx)x∈X and the ground truth out-
puts (yx)x∈X . Common metrics include BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2014) which takes into account synonyms;
or BERTScore (Zhang et al., 2019). This type of
metrics are referred to as reference-based, as they
require access to ground truth translations.

The second is concerned with assessing trans-
lation quality for source sentences for which one
does not have reference translations. To determine
whether machine-generated outputs are accurate
enough or require human modification, one relies
on multilingual quality estimation metrics (Specia
et al., 2018). These do not rely on ground truth
sequences; instead comparing produced samples
to sources sentences directly. Expert human evalu-
ation is perhaps the most relevant such score, but
many automated alternatives exist (Martins et al.,
2017); see e.g. Bhattacharyya et al. (2021). These
metrics are referred to as reference-less.

Reference-based metrics provide high quality
evaluation signal, and are well-suited to comparing
average model performance (trusting that results
on the unseen test set generalise to other domains
of interest). However, they rely on the quality of
the test set translations (which are usually unique,
hence somewhat arbitrary), and cannot be used
to evaluate the quality of models’ prediction for
specific unseen inputs. In contrast, reference-less
metrics are harder to access or approximate but can
be used without ground truth translations.

We use two reference-based metrics in our ex-
periments: BLEU and BERTScore. We intro-

8413

duce another, reference-less metric: Multilingual
BERTScore. Note that while a translation model
likelihood can be considered a reference-less met-
ric, it comes with the unusual property that it is
decomposable. We thus treat it as a special case.

BLEU (Papineni et al., 2002). The BLEU score
computes modified precisions for n-grams (typi-
cally 1 ≤ n ≤ 4) between a corpus of candidate
sentences and a reference corpus. These precisions
are averaged geometrically, and multiplied by a
brevity penalty. This metric is meant to be used at
the corpus level; it is unstable at the sentence level.
It is the de facto gold standard for comparing MT
algorithms, though as it crucially relies on access to
a dataset of reference translations, it is not available
to assess translation quality at decoding time.

BERTScore (Zhang et al., 2019). By contrast,
BERTScore is a sentence-level metric to compare
a candidate sentence to a reference translation. It
relies on several consecutive steps: first, comput-
ing contextual embeddings for each token in both
sentences with a shared BERT (Devlin et al., 2019)
model; second, computing all pairwise cosine simi-
larities between embeddings of the two sentences;
third, greedily aligning tokens based on these sim-
ilarities; finally, averaging the similarities of the
aligned tokens. Compared to BLEU, BERTScore
is found to correlate slightly better with human
judgement. Importantly for decoding purposes, it
is a sentence-level metric (which is averaged to
produce a corpus-level statistic).

Multilingual BERTScore. While BERTScore is
designed as a monolingual metric, we repurpose
it as a multilingual one by using it to compare a
candidate to its source sentence (instead of refer-
ence translation). Both sentences are in different
languages, but this is fine as long as the underly-
ing BERT model is itself multilingual.1 We call
this new metric Multilingual BERTScore. Its per-
formance relies on the underlying BERT model’s
ability to map related tokens in different languages
to similar embeddings. Because of the one-to-one
nature of the alignment phase, we expect it to score
more highly translation pairs that have a one-to-
one token correspondence, rather than syntactically
different pairs. We thus expect it to make sense for
pairs of syntactically similar languages. We stress
that we do not advocate widespread adoption of this

1We use the multilingual, 12-layer, 768 hidden dimension-
ality BERT model available at https://github.com/
google-research/bert (23/11/2018 entry).

Dataset Random GT Greedy Beam search

ENDE 68.13 81.36 83.02 83.40
ENFR 68.00 82.83 83.85 84.00

Table 1: Multilingual BERTScore for random text, ground
truth sentences (GT), greedy and beam search decoding from
a supervised model (guided by likelihood). We see that (i)
random translation scores are lower than those of reference
translations or that of supervised policy samples (though it is
not 0, as for standard BERTScore, as both rely on continuous
embeddings similarities); (ii) the scores are smaller than the
corresponding monolingual BERTScore (87.88 and 90.55 for
greedy decoding from a supervised model, respectively) and
(iii) beam search outputs outperform greedy outputs consis-
tently (as is the case for BLEU).

imperfect score for MT; we consider it however a
convenient illustrative example of a reference-less
metric. In practice, we observe that it behaves
reasonably for our two evaluation language pairs
(WMT ’14 English/German and English/French)
as shown in Table 1. Interestingly, it scores trained
model outputs higher than ground truth outputs.
We hypothesise that the former follow the source
sentence more closely than the latter.

4 Decoding algorithms

In this section, we go over the details of each algo-
rithm, and its adaptations to better suit reference-
based or reference-less metrics. We separate them
in three categories: (i) algorithms based on likeli-
hood maximisation, (ii) value-based mechanisms
which rely on approximating metrics via a value
function, and (iii) ranking-based methods which
access the metrics directly and pick the highest-
scoring example out of a pool of finished can-
didates. Of course, ranking-based methods are
only usable for reference-less metrics, as reference-
based metrics are not computable at test time. We
provide a high-level comparison of all algorithms
in Table 2.

4.1 Likelihood-based decoding

Greedy decoding (GD) is our first baseline. It con-
sists in picking the token with maximum likelihood
at each step.

Sampling-based approaches – e.g. nucleus or
top-k sampling – are not considered because they
do not perform better than plain GD. Indeed, we
found that the best hyperparameters for these meth-
ods make them equivalent to GD. This is not very
surprising on a heavily conditioned task such as

https://github.com/google-research/bert
https://github.com/google-research/bert

8414

MT.

Beam search (BS) maintains a beam of k possible
translations prefixes at each time step t, (pit)

k
i=1.

Prefixes are updated incrementally as follows: for
each prefix pit one adds each of the corresponding
k most probable tokens (given pit), resulting in at
most k × k new prefixes of size increased by 1.
Then among these the k prefixes with the highest
likelihood are selected, thus obtaining (pit+1)

k
i=1.

This method aims at optimising likelihood, and is
agnostic to any metric of interest. It is therefore
at a disadvantage if we change the objective of the
search. Consequently, we also study the perfor-
mance of value- or score-based variants.

4.2 Value-based decoding
To motivate the introduction of value functions in
our decoding mechanisms, it is helpful to under-
stand how machine translation can be construed
of as a Reinforcement Learning task, with an un-
derlying Markov Decision Process (MDP). In MT,
we work with a vocabulary V of tokens, and a
dataset contains pairs of sentences (x, yx) where
x, yx ∈ V+. We can define a simple MDP, where:

• the states consist in a pair containing a source
sentence x ∈ V+ and a sample in construction
ŷ1...ŷt ∈ V+,

• the action space A is the output vocabulary
V (taking an action means adding a specific
token to the sample),

• the transitions are deterministic: picking to-
ken ŷt+1 ∈ A in state st = (x, ŷ1...ŷt)
leads to the unique possible successor state
st+1 = (x, ŷ1...ŷtŷt+1),

• the reward is 0 for any non-terminal state; for
terminal states, it is m(yx, ŷ) for reference-
based metrics and m(x, ŷ) for reference-less
metrics of interest. Entering a terminal state
is done by picking a special <EOS> token.

A value function v for a policy π approximates
the final score one might expect to obtain, starting
from a non-terminal state s, and following π there-
after. It thus provides forward-looking guidance
during decoding, as opposed to likelihood (accessi-
ble during decoding but myopic) or a score (only
computable on finished sentences).

Value-guided beam search (VGBS), as devel-
oped by He et al. (2017); Ren et al. (2017), aug-
ments the decision mechanism in beam search

(when picking the top k prefixes amongst k × k
candidates) with a value network v. The internal
score is a linear combination between the (length-
normalised) log-likelihood of a prefix and its value
approximated by the value network, with a contri-
bution factor α: bs(st, at) = α

t log
(
π(st, at)

)
+

(1 − α)v(st, at).2 Note that this method does not
use the score; thus it is applicable to both reference-
less and reference-based metrics.

Value-guided MCTS (V-MCTS) indicates the
version of Monte Carlo Tree Search as used by Sil-
ver et al. (2017). This search method combines
both a policy π and a value network v. For every
decoding step, a fixed budget of simulations is allo-
cated to build a tree of possible future trajectories.
Each simulation consists in 3 steps:

• selection: recursively picking children nodes
according to the pUCT formula, starting at the
root and until reaching an unopened (i.e. not
expanded yet) node so:

argmax
a∈A

(
Q(s, a) + cpuctπτ (a|s)

√∑
bN

b
s

1 +Na
s

)
where Q(s, a) is a statistic representing the
value of taking action a in state s, updated
online during the search, cpuct is a tunable
constant, τ is a temperature parameter applied
to the policy πτ (a|s) = π(a|s)1/τ/

∑
b π(b|s)1/τ

and Na
s is the number of times action a has

been chosen from state s while building the
tree (also called visit count);

• expansion: opening the selected node so by
computing the policy π(a|so)a∈A at the asso-
ciated new state, as well as the value v(so);

• backup: updating the Q statistics encountered
during the tree traversal leading to so via an
aggregation mechanism (such as averaging
the previous statistic with v(so), or taking
their maximum: Q← max(Q, v(so))).

Once the tree is finished, the decision for the cur-
rent decoding step is made according to the statis-
tics of the root’s children nodes. A popular option
consists in picking the root child with the most
visit counts, but one may also select the one with
maximum aggregated value instead.

While it is customary to allow MCTS to use
the score directly when encountering a terminal

2Using the logarithm of the value instead, as in He et al.
(2017), yields no practical gains. So we opt for the simpler
formulation.

8415

state, we opt for a pure value implementation in-
stead (i.e. using the value instead of the score on
terminal nodes). This makes V-MCTS applicable
to reference-based metrics, which it wouldn’t be
otherwise.

One of the keys to successful MCTS perfor-
mance is properly balancing the breadth and depth
of the exploratory trees. We found two adaptations
to be helpful. First, we used an adaptive value
scale as described by Schrittwieser et al. (2020,
Appendix B): in the selection phase, we rescale
Q(s, a) in the [0, 1] interval by replacing it with
Q(s,a)−minQ
maxQ−minQ , where minQ and maxQ correspond
to the minimum and maximum value observed in
the tree, updated online. Second, we tune the
logits temperature τ jointly with the cpuct hyper-
parameter.

4.3 Reranking-based decoding

Value-driven decoding methods are well-suited to
optimise metrics which we cannot evaluate at test
time, such as reference-based metrics. One might
also prefer them for especially expensive reference-
less metrics, e.g. expert human evaluation. For
tractable reference-less metrics though, we can di-
rectly compute the scores of finished candidate sen-
tences, without having to resort to approximation.
We study two specific decoding mechanisms that
take advantage of this option.

Sampling and reranking (S+R, S+RV) consists
in sampling a fixed number of finished candidate
sentences ŷ1, ..., ŷn from the policy (with a care-
fully tuned temperature applied to its logits), scor-
ing all of them and picking the highest-performing
one: argmaxni=1m(x, ŷi). To measure the loss of
performance associated with using a value, we also
introduce a variant, S+RV that ranks candidates
according to the value (rather than the score).

MCTS with rollouts (MCTS+Roll) is a variant of
V-MCTS where we replace the value approxima-
tion for a given node s by a more expensive one
based off the actual score. From s, we perform
a greedy rollout (w.r.t. the policy π) until we ar-
rive at a terminal node sT . We then compute the
score with the finished sample and the source as
inputs, use this scalar as the value of node s, and
continue as in V-MCTS. Of course greedy rollouts
are expensive in MT, so this method is not directly
comparable to V-MCTS. It is however useful as a
proof of concept which enables us to measure how
much performance we lose by relying on a value

Uses a value Uses the score directly

Greedy 7 7
Beam Search 7 7
VGBS 3 7
V-MCTS 3 7
S + RV 3 7
S + R 7 3
MCTS + Roll 7 3

Table 2: Decoding algorithms characteristics.

function rather than directly on the score.

4.4 Complexity analysis

For all the algorithms we consider, the complex-
ity of the methods themselves – both in time and
space – is negligible compared to the cost of run-
ning the necessary neural network inference steps.
We can thus reduce the complexity analysis to this
simple question: how many inference steps does
each method require?

For a sequence of length T , greedy decoding
requires only T inferences (here we’re assuming
that the lengths of both input and output sequences
are equal, which is a reasonable assumption for
comparing complexities). It is the cheapest method.
Beam search requires k × T inferences, where k is
the beam size, making it k times more expensive.
Value-guided beam search adds calls to the value
network for all considered extensions, which means
its final complexity is k2 × T . V-MCTS on the
other hand uses the same network call to compute
both policy and value, and hence requires S × T
inference steps, where S is the simulation budget
per token. Sampling-based methods require N ×
T network inferences, where N is the number of
samples taken per sequence.

To ensure fair comparison between methods we
make it so the total number of inferences is the
same across algorithms, except for methods whose
performance degrades with more inferences (such
as plain beam search).

5 Training a value network

Several of the algorithms we detail in Section 4
make use of a value network. We train these by:

• First, training a plain supervised policy model
πsup on our bilingual datasets.

• Second, updating each data item (x, yx),
which contains a source x and a reference sen-
tence yx, by replacing yx with a sample ŷx ob-

8416

tained via greedy decoding3 from our trained
policy πsup, and adding a score m comparing
either ŷx to yx (for reference-based metrics)
or ŷx to x (for reference-less metrics).

• Finally, training a dual-headed network on the
augmented dataset, with a shared transformer
encoder-decoder torso (Vaswani et al., 2017)
taking source x and sample ŷx as inputs, and
two heads, one predicting the policy πd and
the other the value v. This approach provides
a powerful regulariser for the value, greatly re-
ducing its tendency to overfitting (Silver et al.,
2017).

The second step is mandatory to obtain a score dis-
tribution to train the value model on, in the case
of reference-based metrics. Indeed, the scores of
the optimal supervised policy are all perfect (com-
paring yx to yx), thus uninformative, making it
impossible to train a value network on. Relying on
a sample rather than on the ground truth sentence
to compute the score has another advantage: the
samples follow the policy πsup so the value will
be the one associated with a trained policy, as the
one we use during decoding, rather than with the
optimal supervised policy.

Losses. We train the policy by minimising its
Kullback-Leibler divergence with the initial super-
vised policy πsup: Lπ = DKL(π||πsup).

We reframe the value regression problem as clas-
sification by discretising the score interval into
buckets. We emulate training our value function
on unfinished samples by adding a value loss term
at every step, and reusing the transformer decoder
causality mask. The prediction target is the same
across all time-steps: the one-hot vector indicating
in which bucket the final score m falls. We use the
cross-entropy loss function.

The trouble with reference-based metrics. In
practice, we find that learning a value function
for reference-based metrics (such as BLEU or
BERTScore) is difficult. To understand why, we
run an ablation to distinguish between the three
subtasks a value function must perform: (i) ap-
proximate the score, (ii) predict the end of a trajec-
tory from an unfinished prefix, and (iii) assess the
translation quality of a pair of finished sentences
in different languages. To separate concerns, we
run the following experiments: for (i), we train

3We also tried sampling one or more sentences instead, but
did not detect any improvements from doing so.

Decoder inputs

Encoder inputs Sample prefix Finished sample

Source 0.112 (full setup) 0.111 (iii)
Reference Target 0.065 (ii) 0.002 (i)

Table 3: `1 error of BLEU value networks trained on different
encoder inputs and outputs on our sample dataset based on
WMT14 ENDE. Scores (and hence `1 error) are between 0
and 1.

our network to predict BLEU given ground truth
targets (rather than source sentences) and finished
samples (instead of prefixes). For (ii), we give the
network ground truth targets and unfinished sam-
ples. Finally, for (iii), we give the network source
sentences and finished samples (thus removing the
need to predict the future of trajectories). We ob-
serve that: the error is very low for (i); higher, but
significantly improved over the full setup for (ii);
and surprisingly, roughly identical to the full setup
for (iii). Thus the real difficulty lies in (iii).

One possible explanation for this result is that
the value network is missing a key input. Indeed,
in the case of reference-based metrics, the score is
computed between a sample ŷx and a ground truth
reference yx; but the value network only has access
to the source sentence x and a prefix of ŷx. Thus
before it can compute a precise score approxima-
tion, it first has to infer yx from x. But of course,
inferring yx from x is exactly the original machine
translation problem, which makes the value prob-
lem empirically harder than its policy counterpart
on our dataset.

6 Experiments

We detail our general setup, then report results for
all 3 metrics we consider, and finally study how
they scale with increasing search budget. Detailed
tuning methodology can be found in Appendix B.

6.1 Experimental setup
We consider two established machine translation
datasets: WMT’14 English to German (ENDE)
and WMT’14 English to French (ENFR). The first
dataset contains roughly 4.5 million training sen-
tence pairs, while the second is much bigger with
just under 41 million training sentence pairs, which
enables us to account for scale in our experiments.
All dev and test sets contain about 3000 sentences.

Our joint policy/value model is based on the
Transformer encoder-decoder (Vaswani et al.,
2017), which is typically used in machine trans-
lation studies. Encoder and decoder have 6 atten-

8417

ENDE ENFR
Target score BLEU BERTScore MLBERTScore BLEU BERTScore MLBERTscore

Random 0 69.59 68.13 0 70.55 68.00
Ground Truth 100 100.0 81.36 100 100.0 82.83

Vaswani et al. (2017), beam search 27.30 – – 38.10 – –
Greedy 25.99 87.88 83.02 38.70 90.55 84.22

Beam search 27.75 88.48 83.40 39.24 90.76 84.48
VGBS 27.17 88.47 85.10 39.33 90.87 85.80

S+R (value) 26.03 88.39 84.49 38.67 90.93 85.68
V-MCTS 27.47 88.45 84.97 39.12 90.80 86.31

S+R (score) – – 85.11 – – 86.12
MCTS + rollouts – – 85.76 – – 86.87

Table 4: Comparison of decoding mechanisms on ENDE and ENFR. Top row contains general metric statistics and the original
transformer baseline; the second row performance of supervised models with likelihood-based decodings; the third results for
value-based algorithms with joint policy/value models (a specific one for each metric); the last one numbers for score-based
methods. Best overall performance is in bold; best value-based performance in blue. Beam search performs strongly for
reference-based metrics, while value-based methods prevail for reference-less scores. Score-based methods outperform their
value-based counterparts, but V-MCTS remains competitive.

tion blocks, hidden dimensionality 512, 16 heads
and our dictionary size is about 32k. As we test
inference-intensive methods, we use a few adapta-
tions detailed in Appendix A.

Finally, we allow a budget of 50 inferences per
token in the sampled solutions for all methods;
compared to 1 for greedy decoding, and 4 for beam
search. We use incremental sampling for speed.
Both running time and memory footprint are di-
rectly proportional to the amount of inferences for
all methods.

6.2 Main results analysis

Reference-based metrics: BLEU and
BERTScore. We report our results on reference-
based metrics in Table 4. Plain beam search is
a strong contender in this setup, often matching
or outperforming other methods, while using a
fraction of the inference budget (unfortunately
performance degrades rapidly with larger beam
sizes so we cannot leverage more compute). In this
setup, value-based methods struggle to justify their
higher complexity and cost.

Value-based algorithms for reference-less met-
rics. The results for this alternative use case, also
presented in Table 4, paint a completely different
picture. We see that while regular beam size obtains
a small but consistent improvement, value-guided
methods perform significantly better. Between the
latter, MCTS is particularly promising, as its per-
formance scales nicely with the size of the dataset.

We observe that the policies of our joint poli-
cy/value models perform slightly worse than their
supervised counterparts (see Table 12 in Appendix).
If we use the initial supervised model policy in con-
junction with the multilingual value (see Table 13

in Appendix), we obtain promising results: notably
40.31 BLEU when optimising MLBERTScore with
MCTS on the ENFR dataset – more than a full
BLEU point above the performance of beam search.
From a qualitative point of view, we see a confir-
mation of our conjecture: multilingual BERTScore
is not perfectly aligned with BLEU. It seems to
encourage word-for-word translations, which has
a positive effect initially (more consistency be-
tween the source and the sample sentences), but
ultimately leads to less natural translations if used
with enough budget.

Score-based approaches for reference-less met-
rics. The bottom of Table 4 gives results when
we allow direct access to our two reference-less
metrics, without having to go through a value ap-
proximation. They reinforce our finding that the
choice of algorithm heavily depends on the use
case.

Two additional properties stand out. First, all
the methods that access the score directly perform
significantly better than their value-guided counter-
parts.

Second, the purely value-based V-MCTS is com-
petitive with and can even outperform the score-
based approach, S+R. This is promising, as MCTS
is more widely applicable (as some scores are
expensive to get). However S+R performs sur-
prisingly well, which may warrant more explo-
rations of sampling methods optimising for diver-
sity (e.g. Fan et al. (2018); Holtzman et al. (2019);
Kool et al. (2019)).

6.3 Scaling search with computating budget

We study how our decoding algorithms scale with
their search computational budget. We report re-
sults on MLBERTScore in Table 5 and more de-

8418

Data ENDE ENFR

Alg. VGBS S+R MCTS VGBS S+R MCTS

1 82.82 81.77 82.82 84.22 82.94 84.22
10 84.48 84.25 84.47 85.38 85.35 85.76
25 84.87 84.77 84.81 85.69 85.82 86.10
50 85.10 85.10 84.97 85.80 86.12 86.31
75 85.34 85.31 85.07 85.75 86.33 86.44
100 85.39 85.40 85.14 85.78 86.44 86.51
200 85.64 85.69 85.27 85.77 86.76 86.62
300 85.79 85.89 85.27 85.79 86.90 86.66

Table 5: Comparison of how our methods scale with
search budget (from 1 to 100 inferences per token) on ML-
BERTScore.

tailed numbers in Appendix C. Our findings are
fairly unsurprising: the more quality score data al-
gorithms can leverage, the better they scale. We
see that on reference-based metrics – where value
networks are hard to train and thus quite imperfect
– performance quickly stops increasing with more
computation and start degrading instead. When us-
ing higher quality value networks (in the reference-
less metrics setup), performance increases more
steadily with computation (almost everywhere),
plateauing rather than degrading. Finally, when
accessing the score directly (for the ranking ap-
proaches), the more computation, the better and per-
formance keeps increasing with more inferences.

7 Discussion

The main takeaway from our experiments is that
which algorithm is best depends heavily on the met-
ric to optimise. This reinforces the notion that one
should carefully consider when picking a decod-
ing mechanism for a machine translation pipeline,
rather than default to beam search.

Second, we find that optimising reference-based
metrics (e.g. BLEU) via a value function is sur-
prisingly hard. While distinguishing large gaps in
quality is easier than modelling the policy, discrim-
inating between good candidates is in practice as
hard as the policy problem, since a first required
step is estimating the ground truth sentence. Indeed,
empirically we observe relatively low quality value
networks, and comparatively little improvements
with value-based decoding methods (especially on
the small ENDE dataset). Using a value function to
optimise reference-less metrics is more promising.

Third, we show that MCTS is not only a valid
way of decoding for machine translation tasks, but
also the best option in some use cases. We study its
strengths and weaknesses, and demonstrate that its
performance is crucially linked to the ease of learn-

ing a good value function. We include pseudo-code
for an easily reproducible Numpy implementation
in Appendix F. All told, we provide a blueprint for
how to use MCTS efficiently in NLP with state-of-
the-art transformer models.

Finally and somewhat surprisingly, we find that
whenever access to the score is possible, the simple
S+R method performs well. More experimentation
is required to understand why; but at any rate, it
should be a strong contender in this specific setup.

Future directions. We have shown that optimis-
ing for reference-less metrics is easier than for
reference-based ones. The ultimate reference-less
metric for machine translation is human transla-
tion assessment. Thus it seems natural to consider
training a score directly from human evaluation of
translation pairs, and to later focus on optimising it
via MCTS.

Another natural extension is a full-blown RL
algorithm; iteratively improving policies via value-
guided search and training value functions on
search-improved policies, getting closer to the opti-
mal policy and value at each step.

Acknowledgements

We want to thank our colleagues David Silver,
Chris Dyer, Wang Ling, Julian Schrittwieser and
Thomas Hubert for fruitful conversations, guidance,
contributions to the paper and help with technical
support.

References
David H. Ackley, Geoffrey E. Hinton, and Terrence J.

Sejnowski. 1985. A learning algorithm for boltz-
mann machines. Cognitive Science.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2017. An Actor-
Critic Algorithm for Sequence Prediction. In Pro-
ceedings of the 5th International Conference on
Learning Representations (ICLR).

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled Sampling for Se-
quence Prediction with Recurrent Neural Networks.
In Advances in Neural Information Processing Sys-
tems 28 (NIPS).

Sumanta Bhattacharyya, Amirmohammad Rooshenas,
Subhajit Naskar, Simeng Sun, Mohit Iyyer, and An-
drew McCallum. 2021. Energy-based reranking:
Improving neural machine translation using energy-
based models. arXiv.

https://openreview.net/forum?id=SJDaqqveg
https://openreview.net/forum?id=SJDaqqveg
https://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks
https://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks
http://arxiv.org/abs/2009.13267
http://arxiv.org/abs/2009.13267
http://arxiv.org/abs/2009.13267

8419

Sebastian Borgeaud and Guy Emerson. 2019. Lever-
aging sentence similarity in natural language gener-
ation: Improving beam search using range voting.
arXiv.

Cameron Browne, Edward Powley, Daniel Whitehouse,
Simon Lucas, Peter Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez Liebana, Spyridon
Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Trans-
actions on Computational Intelligence and AI in
Games.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri
Abend. 2019. On the weaknesses of reinforcement
learning for neural machine translation. In Proceed-
ings of the 8th International Conference on Learn-
ing Representations (ICLR).

Eldan Cohen and J. Christopher Beck. 2019. Empirical
analysis of beam search performance degradation
in neural sequence models. In Proceedings of the
36th International Conference on Machine Learning
(ICML).

Ronan Collobert, Awni Hannun, and Gabriel Synnaeve.
2019. A fully differentiable beam search decoder.
In Proceedings of the 36th International Conference
on Machine Learning (ICML).

Rémi Coulom. 2006. Efficient selectivity and backup
operators in monte-carlo tree search. In Proceedings
of the 5th International Conference on Computers
and Games (ICCG).

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to se-
quence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL).

Bryan Eikema and W. Aziz. 2020. Is map decoding
all you need? the inadequacy of the mode in neural
machine translation. ArXiv, abs/2005.10283.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

J. Gu, J. Bradbury, C. Xiong, V. O. Li, , and R. Socher.
2018. Non-autoregressive neural machine transla-
tion. In Proceedings of the 6th International Con-
ference on Learning Representations (ICLR).

E. J. Gumbel. 1954. Statistical theory of extreme val-
ues and some practical applications: a series of lec-
tures.

Charles R. Harris, K. Jarrod Millman, St’efan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fern’andez del
R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature.

Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2017. Decoding with value net-
works for neural machine translation. In Advances
in Neural Information Processing Systems.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In Proceedings of the 7th International
Conference on Learning Representations (ICLR).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

L. Kocsis and C. Szepesvári. 2006. Bandit based
monte-carlo planning. In Proceedings of the
15th European Conference on Machine Learning
(ECML).

Wouter Kool, Herke Van Hoof, and Max Welling. 2019.
Stochastic beams and where to find them: The
Gumbel-top-k trick for sampling sequences without
replacement. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML).

Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin,
and Simon Lacoste-Julien. 2018. SEARNN: training
rnns with global-local losses. In Proceedings of the
6th International Conference on Learning Represen-
tations (ICLR).

André F. T. Martins, Marcin Junczys-Dowmunt,
Fabio N. Kepler, Ramón Astudillo, Chris Hokamp,
and Roman Grundkiewicz. 2017. Pushing the limits
of translation quality estimation. Transactions of the
Association for Computational Linguistics.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020a.
If beam search is the answer, what was the ques-
tion? In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2173–2185. Association for Com-
putational Linguistics.

Clara Meister, Tim Vieira, and Ryan Cotterell. 2020b.
Best-first beam search. Transactions of the Associa-
tion for Computational Linguistics.

http://arxiv.org/abs/1908.06288
http://arxiv.org/abs/1908.06288
http://arxiv.org/abs/1908.06288
http://aclweb.org/anthology/N18-1033
http://aclweb.org/anthology/N18-1033
http://aclweb.org/anthology/N18-1033
https://openreview.net/forum?id=HkUR_y-RZ
https://openreview.net/forum?id=HkUR_y-RZ

8420

Mohammad Norouzi, Sammy Bengio, Zhifeng Chen,
Navdeep Jaitly, Mike Schuster, Yonghui Wu, and
Dale Schuurmans. 2016. Reward Augmented Max-
imum Likelihood for Neural Structured Prediction.
In Advances in Neural Information Processing Sys-
tems 29 (NIPS).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence Level
Training with Recurrent Neural Networks. In Pro-
ceedings of the 5th International Conference on
Learning Representations (ICLR).

Raj Reddy. 1977. Speech understanding systems: A
summary of results of the five-year research effort.
Carnegie Mellon University.

Z. Ren, X. Wang, N. Zhang, X. Lv, and L. Li. 2017.
Deep reinforcement learning-based image caption-
ing with embedding reward. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Julian Schrittwieser, Ioannis Antonoglou, Thomas
Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis
Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. 2020. Mastering atari, go, chess and
shogi by planning with a learned model. Nature.

Noam Shazeer. 2019. Fast transformer decoding: One
write-head is all you need. arXiv, abs/1911.02150.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
Risk Training for Neural Machine Translation. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis. 2017. Mastering the
game of Go without human knowledge. Nature.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018. Quality estimation for machine
translation. Synthesis Lectures on Human Language
Technologies.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Yu-Siang Wang, Yen-Ling Kuo, and B. Katz. 2020.
Investigating the decoders of maximum likelihood
sequence models: A look-ahead approach. ArXiv,
abs/2003.03716.

Sean Welleck, Kiante Brantley, Hal Daumé, III, and
Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML).

Sean Welleck, Ilia Kulikov, Jaedeok Kim,
Richard Yuanzhe Pang, and Kyunghyun Cho.
2020. Consistency of a recurrent language model
with respect to incomplete decoding. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv.

Lei Yu, Laurent Sartran, Po-Sen Huang, Wojciech
Stokowiec, Domenic Donato, Srivatsan Srinivasan,
Alek Andreev, Wang Ling, Sona Mokra, Agustin
Dal Lago, Yotam Doron, Susannah Young, Phil
Blunsom, and Chris Dyer. 2020. The DeepMind
Chinese–English document translation system at
WMT2020. In Proceedings of the Fifth Conference
on Machine Translation.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. BERTScore:
Evaluating text generation with BERT. In Proceed-
ings of the 7th International Conference on Learn-
ing Representations (ICLR).

https://papers.nips.cc/paper/6547-reward-augmented-maximum-likelihood-for-neural-structured-prediction
https://papers.nips.cc/paper/6547-reward-augmented-maximum-likelihood-for-neural-structured-prediction
https://www.aclweb.org/anthology/P02-1040.pdf
https://www.aclweb.org/anthology/P02-1040.pdf
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1911.02150
http://arxiv.org/abs/1911.02150
http://www.aclweb.org/anthology/P16-1159
http://www.aclweb.org/anthology/P16-1159
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

8421

Outline

Appendix A provides details about the network ar-
chitectures and the optimisation hyper-parameters
used in our work. We also describe the hybrid ar-
chitecture that is used to improve the training of
value networks in the hard case of reference-based
metrics. In Appendix B, we lay out the details of
the tuning of the different decoding mechanisms
used throughout the paper. In Appendix C, we give
results about how performance of our decoding al-
gorithms scale with more computational budget.
In Appendix D, we discuss the trade offs between
learning a joint policy and value network on sam-
pled (or distilled) trajectories, versus training a
separate value network to predict the value of a
policy network trained on supervised trajectories.
In Appendix E, we give a few examples of MCTS
exploratory trees. Finally, in Appendix F we pro-
vide a simple implementation of a batched version
of MCTS in plain Numpy.

A Network architectures and training

In this section, we detail our basic dual-headed
architecture, our training regimen and our optimisa-
tion hyper-parameters. We also describe our hybrid
architecture (which we use for reference-based met-
rics) in more depth.

Dual-head transformer architecture. We start
from the original transformer encoder-decoder
architecture (Vaswani et al., 2017), with a few
modifications. Both encoder and decoder have
num_layers = 6 attention layers. The hidden size
is 512. The embedding vocabulary size is just short
of 32000 tokens for both language pairs. The unroll
length of our models is 128. We use “normal GPT-
2"-style initialisers, i.e. initial values are sampled
from a Gaussian distribution with mean 0 and stan-
dard deviation 0.02√

num_layers . The one exception to
this rule is for embeddings, where we use truncated
normal initialisers with standard deviation 1.0.

On top of the decoder, we add two “heads". The
first one is the policy head. It consists in a linear
projection from the hidden dimensionality to the
vocabulary size, followed by a softmax operator
to output a distribution over the whole vocabulary.
The second head is the value head: a linear projec-
tion from the hidden dimensionality to the amount
of value buckets we define (|B| = 500 in our exper-
iments), followed by a softmax operator. We com-
pute the value loss as the cross-entropy between the

softmax distribution (vi)i∈B and a one-hot encod-
ing of the target value of the same dimension. To
output the value, we compute the sum of the soft-
max distribution multiplied by the average value in
each bucket

∑
i∈B vib̄i.

Compared to the original architecture, we apply
several changes related to inference speed. First,
instead of 8 attention heads we use 16. Second,
the dimensionality of the keys and values is 128,
compared to 64 in the original architecture, thus
avoiding a costly padding operation on our hard-
ware accelerators, TPUv3. Finally, we use multi-
query attention (Shazeer, 2019), only computing
a single set of keys and values per attention block
and sharing them across all attention heads. This
reduces the memory footprint of the keys and val-
ues by a factor of the number of attention heads (16
here), considerably decreasing the time spent read-
ing and writing from memory, which ultimately
results in a near-linear inference speedup with re-
spect to the number of attention heads (as some-
what counter-intuitively, the performance bottle-
neck for small transformer architectures on our
hardware of choice, TPUv3, is memory access by
a very large margin). As this alternative attention
mechanism requires less trainable weights than the
more conventional one, we reallocate some of those
in the feedforward layer of the attention blocks by
using a bigger internal hidden dimensionality of
3072 instead of 2048.

Optimisation. We use the Adam (Kingma and
Ba, 2015) optimiser with learning rate 0.001, and
the following hyper-parameters: b1 = 0.9; b2 =
0.98; ε = 1e−9. Our batch size is 4096, and we
train for 100000 steps for the ENDE dataset and
300000 steps for the larger ENFR dataset. As reg-
ularisation, we use dropout with a weight 0.1, but
no weight decay. We also use label smoothing with
hyper-parameter 0.1 (although we see little impact
when removing it).

The last difference with the original transformer
encoder-decoder is where we place the layer norm
operator. We put it at the beginning of the attention
and the feed-forward layers, rather than at the end,
which allows for fully-residual layers.

Hybrid architecture for reference-based met-
rics. In Section 5, we show that learning good
value functions on reference-based metrics such as
BLEU and BERTScore is very difficult. This is
mainly due to the fact that our value networks are

8422

lacking access to the ground truth targets which are
required for precise score computation. Our abla-
tion study show that if we remove this difficulty
by allowing the value model to “cheat” by using
the ground truth targets rather than the source sen-
tences as encoder inputs, we obtain much more pre-
cise values. Downstream results using MCTS with
such a “cheating” value show very large BLEU im-
provements. Unfortunately, in practice one cannot
rely on such a trick when decoding.

Our idea is to try to leverage “cheating” infor-
mation indirectly at training time to shape the rep-
resentation of a regular (i.e. non-cheating) value
network. Another way to look at it is that we try to
distill the knowledge of the cheating value model
into the regular one.

To achieve this, we propose a new training regi-
men, as detailed in Figure 1. The basic idea is to
compute the final layer of a cheating value model,
and to use it as an auxiliary target for the final layer
of a regular value model, in addition to its normal
value loss. We thus have two pathways. On the
left, the regular value model encoder receives the
source sentence as input (which is available at test
time). On the right, the cheating value model en-
coder receives the ground truth target sentence as
input (which is not available at test time). For both
pathways, the decoder’s input is a sample sentence.
Crucially, both pathways rely on the same trans-
former encoder-decoder: they share all weights, the
only difference is in their inputs.

To train such a model, we use four losses. First,
we apply the regular policyLπ and value lossLv on
the regular pathway. Second, we apply a value loss
Lvc on the cheating pathway. Finally, we add an
`2 loss D between the final layer of both pathways,
with a stop gradient for the cheating one – so that
its representation is not directly affected by D.

We do not add a policy loss on the cheating
pathway. This seems natural, as such a loss would
only encourage the model to reproduce its inputs
exactly, effectively pushing it towards the identity
function.

At inference time, we only compute the regular
pathway, which does not cheat. In practice, with
careful tuning of the loss hyper-parameters we are
able to significantly reduce the gap in performance
between this new hybrid model and the cheating
one (as in (ii)), so we use this training regimen for
our experiments on reference-based metrics.

Using such a hybrid architecture yields perfor-

Architecture Normal Cheating Hybrid

Greedy 26.11 – 25.99
MCTS 26.40 (38.52) 27.47

Greedy 87.92 – 87.88
MCTS 88.01 (90.70) 88.48

Table 6: Greedy vs MCTS (50 simulations) perfor-
mance on the ENDE dataset for BLEU (top rows) and
BERTScore (bottom rows). Using the normal architec-
ture, improvements are very small. Using the hybrid ar-
chitecture yields more significant improvements. The
middle column contains (greyed-out) results when us-
ing a cheating model which takes ground truth targets
as inputs. Improvements are enormous in this prohib-
ited setting, which is unsurprising at the value function
receives optimal output as its own inputs.

mance improvements when using the value model
with MCTS, as shown in Table 6.

We find that to obtain best performance, three
things need to be combined: (i) sharing weights
across both pathways, (ii) the distillation `2 loss
and (iii) the cheating value loss. Each loss is added
with a linear weight. Proper tuning of these weights
is important. We find that using weights 1.0 for Lπ
and Lvc , as well as 0.1 for Lv and D leads to best
performance.

B Experimental details and ablations

B.1 Algorithms tuning and ablations

We detail how we tuned each algorithm for best
performance in this section, yielding Table 4. We
used the dev datasets to determine which options
were best. Wherever we report numbers, we com-
pute those on the test set for comparison purposes,
but the experiments were run after dev set selec-
tion. In practice, we find a very good correla-
tion between observations on the dev and on the
test sets (although absolute values were lower on
the dev set, rankings remained mostly unchanged).
Unless otherwise indicated, our findings hold for
both ENDE and ENFR datasets, and for all 3 met-
rics we consider (BLEU, BERTScore, Multilingual
BERTScore).

Beam Search. As this method is known for de-
grading with large beam sizes, we add a length nor-
malisation term, as advocated by Wu et al. (2016).
The resulting score for a candidate y1..yt is thus:
bs(y1..yt) = (6

t+5)θ log
(
π(y1..yt)

)
We tuned three hyper-parameters for beam

8423

Transformer
Encoder

Input
(source language)

Transformer
Encoder

(cheating)

shared
weights

Cheating input
(GT target language)

Transformer
Decoder

Transformer
Decoder

(cheating)

shared
weights

Output shifted right
(distilled trajectory

target language)

Output shifted right
(distilled trajectory

target language)

stop
gradient

Figure 1: Hybrid architecture. Since learning a good value
network is hard when dealing with reference-based metrics,
we propose a training mechanism to distill the information
from a cheating network that has access to the full reference
information in order to predict the value score. In details, we
have two encoder/decoder networks that share their weights.
The first network (left) is a regular network that takes as input
the input sentence in the source language and is trained to
output (i) a policy predicting the words of the output sentence
in the target language and (ii) a value score for that output
via a policy and a value loss Lπ and Lv , respectively. The
second network (right), dubbed cheating, is given as input
the ground truth sentence in the target language and is trained
to output the value score of the output sentence in the target
language against that ground truth via the loss Lvc . This
simplifies its task considerably, as it has direct access to the
reference information to compute the value. A distillation loss
D is added to transfer knowledge from the cheating model
to the regular network. Results in Table 6 shows that such
an approach yields significant improvements by easing the
training of the value network.

ENDE ENFR

2 27.22 38.88
4 27.75 39.24
6 28.03 39.37
8 28.03 39.29

10 28.01 39.29
20 28.02 39.21

Table 7: BLEU results as a function of beam size for
plain beam search.

search:

• the beam size: we tried 2, 4, 6, 8, 10 and
20. We find that the best performance is at-
tained at 6, plateaus until 10 and starts slowly
decreasing by 20 (see Table 7).

• the logits temperature: we tried 0.6, 0.8, 1.0,
1.2, 1.4. 1.0 performs best by a wide margin.
Low values degrade to greedy search perfor-
mance while high values yield non-sensical
sentences.

• the normalisation temperature parameter θ:
we tried 0.4, 0.6, 0.8 and 1.0. We find θ =
0.6 performs best, as in the original paper
(θ = 0.4 is on par but slightly worse, and
performance degrades as soon as θ ≥ 0.8).

We found that the best performance was
achieved with the default hyper-parameters for
most metrics.

Value-guided beam search. The score for a can-
didate y1..yt for this method is:

bs(y1..yt) =
α

t
log
(
π(y1..yt)

)
+(1−α)v(y1..yt).

The hyper-parameters to tune are slightly differ-
ent than those of plain beam search. As we do not
see performance decrease with larger beam size,
we no longer need to find the optimal one. Which
one to use is largely dependent on how much com-
putation one can afford to use. Performance as a
function of this quantity are reported in Section C.

Further, because of the additional value term, we
have a new linear combination weight α to tune.
Here are the hyper-parameter ranges we consider:

• the logits temperature: as for plain beam
search, we tried 0.6, 0.8, 1.0, 1.2, 1.4. We
find similar results: 1.0 is the best-performing

8424

ENFR

Score BERTScore MLBERTScore

0.0 90.74 84.41
0.1 90.77 84.42
0.2 90.80 84.44
0.3 90.80 84.51
0.4 90.83 84.62
0.5 90.84 84.77
0.6 90.71 84.90
0.7 89.91 85.10
0.8 87.17 85.44
0.9 82.25 85.44
0.95 79.47 85.55
1.0 76.22 79.30

Table 8: VGBS performance on the ENFR dataset as a
function of the linear weight α.

temperature by a significant margin; the re-
liance on the value mitigates the effect for
reference-less metrics (where the value is a
good approximation).

• the value normalisation: we tried us-
ing the logarithm of the value instead of
the value itself, with appropriate scaling:
log(v(y1..yt)−dD−d). We find that by carefully tun-
ing the minimum and maximum bounds d and
D we can match the performance we obtain
with the plain value, but not outperform it. As
a result we opt for the simpler formulation.

• the linear combination weights α: we swept
between 0 and 1 by 0.1 increments (with an ad-
ditional measure at 0.95). For reference-based
metrics, we find α = 0.5 to perform best (on
both datasets). For Multilingual BERTScore
on the other hand, much larger values are re-
quired to achieve best performance: α = 0.9
for ENDE and α = 0.95 for ENFR. Our hy-
pothesis is that the quality of our value func-
tion is much higher for this last reference-less
metric, which allows us to lean more heavily
on its guidance. See Table 8 for illustrative
results.

MCTS variants. MCTS is a complex algorithm
with a large number of hyper-parameters. We found
that three main aspects are important for perfor-
mance: making sure the policy and the value terms
are well-balanced in the UCT formula, picking

Action selection argmax(vc) argmax(v)

Value aggregation avg. max. avg. max.

BLEU 27.47 26.82 22.48 25.52
MLBERTScore 83.76 83.81 84.08 84.97

Table 9: BLEU and Multilingual BERTScore perfor-
mance when using different value aggregation mecha-
nisms and action selection rules. We observe that on the
reference-less metric, the best option rely more heavily
on the value function; contrary to what we see for the
reference-based metric.

the best value aggregation mechanism during the
backup phase, and selecting the best acting criteria
(once the tree is finished).

To ensure balance in the UCT formula, we tuned
two things:

• we optimised for the logits temperature τ and
the multiplicative constant cpuct jointly. We
tried temperatures 0.9, 1.1 and 1.3, in con-
junction with cpuct in 1.0, 2.0, 3.0, 4.0, 6.0,
8.0. For reference-based metrics, the pair
(τ = 0.9; cpuct = 3.0) performed best across
both datasets and both metrics; while for Mul-
tilingual BERTScore the best performer was
(τ = 1.1; cpuct = 8.0) across both datasets.
Note that both larger temperature and larger
cpuct encourage exploration in the UCT for-
mula, thus reducing the relative weight of the
policy in favour of the value; that we can use
larger scalars for reference-less metrics is yet
another indication that the associated value
functions are more trustworthy.

• as we detailed in the main text, we rescale the
values dynamically during the tree construc-
tion so that all the values encountered until
the current step are more evenly distributed in
the [0, 1] interval by mapping the minimum
value to 0 and the maximum value to 1.

We tested two value aggregation operators: run-
ning average and maximum. We also tried two
action selection mechanisms: picking among the
root’s children nodes the one with maximum visit
count, or the one with maximum aggregated value.

Our observation once again underline the con-
trast between reference-based and reference-less
metrics, as is illustrated in Table 9. For the for-
mer, the best choice is to use the running av-
erage as value aggregation operator during the
backup phase, and to pick the root child with max-
imum visit counts. Conversely, for Multilingual

8425

S+R S+RV

MLBERT BLEU BERT MLBERT

0.15 83.97 26.17 88.31 83.69
0.25 84.35 26.23 88.32 84.02
0.35 84.60 25.85 88.31 84.22
0.45 84.82 25.47 88.29 84.37
0.55 84.91 24.96 88.14 84.44
0.65 85.02 24.28 88.04 84.48
0.75 85.11 23.79 87.91 84.48
0.85 85.07 22.77 87.69 84.21
0.95 84.95 21.32 87.23 83.66

Table 10: Sampling + ranking performance as a func-
tion of policy logits temperature, for both score and
value-based variants.

BERTScore we found that we obtained best per-
formance with the maximum aggregation operator
and by picking the root child with maximum aggre-
gated value. We thus see that for our reference-less
metric we can rely on the value function aggres-
sively; while for reference-based metrics we need
to limit our exposure to it.

Sampling + Ranking variants. For these al-
gorithms, we really only have a single hyper-
parameter to tune: the policy temperature τ . Small
temperatures lead to little diversity across different
samples, but ensure that samples are highly ranked
by the model and hence are syntactically correct.
On the other hand, large temperature encourage
diversity, at the price of correctness. We sweep
over the [0.15, 0.95] interval by 0.1 increments,
and report results in Table 10. We find that for the
score-based S+R, balancing diversity with correct-
ness means we have to use τ = 0.75.

The story is more nuanced for S+RV. As this vari-
ant relies on the value function rather than the score
to rerank samples, we can use it even for reference-
based metrics. We observe that for these, the opti-
mal temperature is much smaller (τ = 0.25), which
in effect means that the algorithm relies more heav-
ily on the policy, compared to the value. The rea-
son why is once again that the value for this type
of metrics is of lower quality.

In contrast, the optimal temperature for our
reference-less metric is τ = 0.75, similar to what
we find for the score-based S+R.

C Scaling search with computational
budget

We present more detailed scaling results in this
section. These confirm our main observation: the
higher the quality of the metric signal we use, the
better the method scales with additional computa-
tion.

We see for instance that on reference-based met-
rics, where value functions are hard to train, the
performance of value-based methods reaches its
peak quickly and start degrading. Comparatively,
on reference-less metrics, value-based methods
keep improving with more inferences, eventually
plateauing. Finally, score-based methods do not
even plateau. As a result, S+R ends up outper-
forming MCTS after 200 simulations per token,
although MCTS remains the best performer under
100 simulations. This motivates investigating a
variant of MCTS which is allowed to use the score
on completed sentences (our current algorithm is
purely value-based).

Beam search, which does not use the metric at
all, behaves thus more similarly across all metrics,
quickly reaching its peak performance and then
plateauing. The length penalty is crucial to prevent
performance degradation.

Another interesting observation is that S+RV,
the value-based alternative of S+R, performs worse
than VGBS or MCTS. It appears that the crucial in-
gredient to S+R good performance is direct access
to the score, rather than its simple search mecha-
nism.

Finally, we note that for VGBS, each token costs
k + k2 inferences (k to compute the policy for
every beam, k2 to compute the value for the k2

possible follow-up tokens). As a result, we use the
smallest k such that k + k2 ≥ n when allowing n
simulations for other decoding algorithms.

D Supervised policy vs Distilled policy

As we study decoding mechanisms on reference-
based metrics based on the ground truth, we cannot
train our value networks on the initial supervised
dataset (where the value target would be 1 for all
items, as the ground truth targets are considered
optimal). As a result we go through an intermediate
step, first training a supervised policy model, and
then replacing ground truth targets by a greedy sam-
ple from the said policy to create a new distillation
dataset.

8426

BLEU BERTScore MLBERTScore

BS VGBS S+RV MCTS BS VGBS S+RV MCTS BS VGBS S+R S+RV MCTS

1 38.16 38.16 28.54 38.16 90.52 90.52 87.98 90.52 84.22 84.22 82.94 82.97 84.22
10 38.95 39.30 34.46 38.96 90.71 90.83 90.23 90.81 84.36 85.38 85.35 85.07 85.76
25 38.81 39.25 35.01 39.12 90.76 90.87 90.40 90.85 84.42 85.69 85.82 85.44 86.10
50 38.67 39.33 35.19 38.95 90.76 90.85 90.37 90.80 84.46 85.80 86.12 85.68 86.31
75 38.62 39.41 35.56 38.89 90.76 90.86 90.31 90.74 84.48 85.75 86.33 85.86 86.44

100 38.55 39.42 35.13 38.84 90.76 90.86 90.37 90.67 84.48 85.78 86.44 85.95 86.51
200 38.54 39.39 35.31 38.30 90.76 90.84 90.26 90.33 84.48 85.77 86.76 86.22 86.62
300 38.45 39.36 35.00 37.70 90.74 90.83 90.16 89.83 84.49 85.79 86.90 86.33 86.66

Table 11: Comparison of how decoding algorithms scale with computational budget, on the ENFR dataset, for both
reference-based and reference-less metrics.

Policy model Supervised Distilled

ENDE 25.99 25.95
ENFR 38.70 38.16

Table 12: Greedy decoding performance for plainly su-
pervised policy model and dual-headed distilled ones.

We observe is the performance of the policy mod-
els trained on the distillation datasets is slightly
lower than that of their plainly supervised counter-
parts, as illustrated in Table 12. The effect is larger
for the bigger dataset, ENFR.

This prompts another line of investigation: what
happens if at decoding time we use a value model
(trained on a distillation dataset) together with a
policy model trained on a supervised dataset? We
present BLEU results for MCTS in Table 13. On
the larger dataset, we see that MCTS decoding out-
performs any other type of decoding. Interestingly,
we obtain an improvement of more than 1 BLEU
point over the supervised baseline when using a
Multilingual BERTScore value function; and we
obtain this result with a relatively low amount of
simulations (25). Unfortunately adding more com-
putational budget does not help, as the decoding is
targeting a different metric than BLEU. But with
a low enough amount of simulations, we see that
trying to optimise our reference-less metric yields
benefits.

While this result is close to the state of the art for
such a small policy model, the comparison is not
fair as the approach requires double the amount of
parameters (since the value net is another network).
This could be alleviated by training a supervised
policy, fixing its weights, and adding a lightweight
value head on top in a second training step. We
leave this for future work.

Beam search Value type

BLEU BERT MLBERT

ENDE 27.75 27.33 27.42 27.17
ENFR 39.24 39.67 39.46 40.31

Table 13: MCTS (25 simulations) BLEU performance,
using a supervised policy model and a distinct value
model.

8427

E MCTS examples

8428

Figure 2: MCTS tree when translating “Open-air concert accompanied by high summer temperatures" from En-
glish to German, first step.

8429

Figure 3: MCTS tree when translating “Open-air concert accompanied by high summer temperatures" from En-
glish to German, sixth step.

8430

Figure 4: MCTS tree when translating “Open-air concert accompanied by high summer temperatures" from En-
glish to German, ninth step.

8431

F Batched Numpy-friendly MCTS

Accelerator hardware such as GPUs or TPUs allow us to execute neural networks faster; but to fully
leverage their computing power, we have to run on batches of several inputs. This is not very easily mixed
with an algorithm such as MCTS, as it requires a queuing mechanism between the search itself and the
neural network computations, potentially leading to inefficiencies. To circumvent this issue, we introduce
a Numpy-compatible version of MCTS, which can then be run completely on the accelerator device.

The basic idea is that we use storage tensors which are indexed by the number of the current node or
simulation in the MCTS tree. The root node has index 0 for all elements in a batch, and we then build all
subsequent elements recursively.

We start by creating a NumpyMCTS object, whose fields store all the necessary tree information to
compute a single batched instance of search (i.e. MCTS for one token, not MCTS applied to the full
sequence). In details, for each node, for each item in the batch we store:

• visit_counts: the amount of times said nodes have been visited during the search,

• raw_values: the initial value of the node as returned by our value network,

• values: the aggregated value of the node at this point in the search,

• parents: which node is its parent in the tree,

• action_from_parents: which action was taken to transition from the parent to the node itself,

• depth: the tree depth of each node in the tree,

• is_terminal: whether or not they are a terminal node.

All these variables are tensors are of size (B,S) where B is the batch size and S is the amount of
simulation plus one.

For ease of tree manipulation, we also store for each node the indices of its children, its prior over
its possible children, the values of each child, and the visit count of each child. The associated tensors
should be of shape (B,S, V), where V is the total number of possible actions. However this makes for
large tensors, on which Numpy operations can become costly. To alleviate this issue we store a sparse
version of these tensors instead, only keeping the top A children according to the policy for each node.
The shapes are thus (B,S,A) instead. We maintain a mapping from 0 to A− 1 in the topk_mapping
tensor, of shape (B,S,A) itself too.

Finally, the object also stores for each node its associated transformer state, so that we can use
incremental inference during the search. These states can be kept on the accelerator device itself.

class NumpyMCTS():

def __init__(self, root_fun, rec_fun, batch_size, num_simulations, num_actions, num_sparse_actions,
pb_c_init):

self._batch_size = batch_size
self._num_simulations = num_simulations
self._num_actions = num_actions
self._num_sparse_actions = min(num_sparse_actions, num_actions)
self._pb_c_init = pb_c_init

self._root_fun = root_fun # a function called at the root
self._rec_fun = rec_fun # a function called in the tree
self._adaptive_min_values = np.zeros(batch_size, dtype=np.float32)
self._adaptive_max_values = np.zeros(batch_size, dtype=np.float32)

Allocate all necessary storage.
For a given search associated to a batch-index, node i is the i-th node
to be expanded. Node 0 corresponds to the root node.
num_nodes = num_simulations + 1
batch_node = (batch_size, num_nodes)
self._num_nodes = num_nodes
self._visit_counts = np.zeros(batch_node, dtype=np.int32)
self._values = np.zeros(batch_node, dtype=np.float32)
self._raw_values = np.zeros(batch_node, dtype=np.float32)
self._parents = np.zeros(batch_node, dtype=np.int32)
action_from_parents[b, i] is the action taken to reach node i.

8432

Note that action_from_parents[b, 0] will remain -1, as we do not know,
when doing search from the root, what action led to the root.
self._action_from_parents = np.zeros(batch_node, dtype=np.int32)
The 0-indexed depth of the node. The root is the only 0-depth node.
The depth of node i, is the depth of its parent + 1.
self._depth = np.zeros(batch_node, dtype=np.int32)
self._is_terminal = np.full(batch_node, False, dtype=np.bool)

To avoid costly numpy ops, we store a sparse version of the actions.
We select the top k actions according to the policy, and keep a mapping
of indices from 0 to k-1 to the actual action indices in the
self._topk_mapping tensor.
batch_node_action = (batch_size, num_nodes, self._num_sparse_actions)
self._topk_mapping = np.zeros(batch_node_action, dtype=np.int32)
self._children_index = np.zeros(batch_node_action, dtype=np.int32)
self._children_prior = np.zeros(batch_node_action, dtype=np.float32)
self._children_values = np.zeros(batch_node_action, dtype=np.float32)
self._children_visits = np.zeros(batch_node_action, dtype=np.int32)
self._states = {}
self._batch_range = np.arange(batch_size)
self._reset_tree()

def _reset_tree(self):
"""Resets the tree arrays."""
self._visit_counts.fill(0)
self._values.fill(0)
self._parents.fill(-1)
self._action_from_parents.fill(-1)
self._depth.fill(0)

self._topk_mapping.fill(-1)
self._children_index.fill(-1)
self._children_prior.fill(0.0)
self._children_values.fill(0.0)
self._children_visits.fill(0)
self._states = {} # Indexed by tuples (batch index, node index)

We now define a method to perform the search itself. As stated in the main text, MCTS consists in
applying the same three steps for each simulation, so we iterate over S. First, we use the simulate()
method to select which new nodes to explore. Second, we expand these new nodes (calling our neural
network to compute both the policy and the value at these nodes). Finally, we back the newly computed
values up the tree.

The dense_visit_counts method allows us to map back our sparse action representation into the
original action space.

def search(self, raw_states):
self._reset_tree()

Evaluate the root.
prior, values, states = self._root_fun(raw_states)

self._adaptive_min_values = values
self._adaptive_max_values = values + 1e-6

root_index = 0
self._create_node(root_index, prior, values, states, np.full(self._batch_size, False, dtype=np.bool))

Do simulations, expansions, and backwards.
leaf_indices = np.zeros((self._batch_size), np.int32)
for sim in range(self._num_simulations):
node_indices, actions = self.simulate()
next_node_index = sim + 1 # root is 0, therefore we offset by 1.
self.expand(node_indices, actions, next_node_index)
leaf_indices.fill(next_node_index)
self.backward(leaf_indices)

return self.dense_visit_counts()

def dense_visit_counts(self):
root_index = 0
root_visit_counts = self._children_visits[:, root_index, :]
dense_visit_counts = np.zeros((self._batch_size, self._num_actions))
dense_visit_counts[self._batch_range[:, None], self._topk_mapping[:, root_index, :]] = root_visit_counts
return dense_visit_counts

The simulate method consists in applying the UCT formula recursively until we have reached a new
node to open for each element of the batch. The UCT formula itself can be computed in a fully batched
fashion, as demonstrate by method uct_select_action.

8433

def simulate(self):
"""Goes down until all elements have reached unexplored actions."""
node_indices = np.zeros((self._batch_size), np.int32)
depth = 0
while True:
depth += 1
actions = self.uct_select_action(node_indices)
next_node_indices = self._children_index[self._batch_range, node_indices, actions]
is_unexplored = next_node_indices == -1
if is_unexplored.all():
return node_indices, actions

else:
node_indices = np.where(is_unexplored, node_indices, next_node_indices)

def uct_select_action(self, node_indices):
"""Returns the action selected for a batch of node indices of shape (B)."""
node_children_prior = self._children_prior[self._batch_range, node_indices, :] # (B, A)
node_children_values = self._children_values[self._batch_range, node_indices, :] # (B, A)
node_children_visits = self._children_visits[self._batch_range, node_indices, :] # (B, A)
node_visits = self._visit_counts[self._batch_range, node_indices] # (B)

node_policy_score = np.sqrt(node_visits[:, None]) * self._pb_c_init * node_children_prior /
(node_children_visits + 1) # (B, A)

Remap values between 0 and 1.
node_value_score = node_children_values
node_value_score = (node_value_score != 0) * node_value_score + (node_value_score == 0) *

self._adaptive_min_values[:, None]
node_value_score = (node_value_score - self._adaptive_min_values[:, None]) /

(self._adaptive_max_values[:, None] - self._adaptive_min_values[:, None])

node_uct_score = node_value_score + node_policy_score # (B, A)
actions = np.argmax(node_uct_score, axis=1)
return actions

Once we have selected nodes to expand, we can proceed. The expand method is where we call our
neural networks to compute policies and values. We then create the nodes in the object fields through the
create_node method. Finally, we update the tree topology to connect the new nodes to the tree.

def expand(self, node_indices, actions, next_node_index):
"""Creates and evaluate child nodes from given nodes and unexplored actions."""

Retrieve states for nodes to be evaluated.
states = [self._states[(b, n)] for b, n in enumerate(node_indices)]
previous_node_is_terminal = self._is_terminal[self._batch_range, node_indices[self._batch_range]] # (B)

Convert sparse actions to dense actions for network computation
dense_actions = self._topk_mapping[self._batch_range, node_indices, actions]

Evaluate nodes.
(prior, values, next_states, expanded_node_is_terminal) = self._rec_fun(states, dense_actions)

Create the new nodes.
self.create_node(next_node_index, prior, values, next_states, expanded_node_is_terminal)

Update the min and max values arrays
self._adaptive_min_values = np.minimum(self._adaptive_min_values, values)
self._adaptive_max_values = np.maximum(self._adaptive_max_values, values)

Update tree topology.
self._children_index[self._batch_range, node_indices, actions] = next_node_index
self._parents[:, next_node_index] = node_indices
self._action_from_parents[:, next_node_index] = actions
self._depth[:, next_node_index] = self._depth[self._batch_range, node_indices] + 1

def create_node(self, node_index, prior, values, next_states, expanded_node_is_terminal):
Truncate the prior to only keep the top k logits
prior_topk_indices = np.argpartition(prior, -self._num_sparse_actions, axis=-1)[:,

-self._num_sparse_actions:]
prior = prior[self._batch_range[:, None], prior_topk_indices] # (B, A)

Store the indices of the top k logits
self._topk_mapping[self._batch_range, node_index, :] = prior_topk_indices

Update prior, values and visit counts.
self._children_prior[:, node_index, :] = prior
self._values[:, node_index] = values
self._raw_values[:, node_index] = values
self._visit_counts[:, node_index] = 1
self._is_terminal[:, node_index] = expanded_node_is_terminal

Update states.
for b, next_state in enumerate(next_states):

8434

self._states[(b, node_index)] = next_state

Finally, we back the newly computed values up using the backward method, which can again be
done in a fully batched fashion.

def backward(self, leaf_indices):
"""Goes up and updates the tree until all nodes reached the root."""
node_indices = leaf_indices # (B)
leaf_values = self._values[self._batch_range, leaf_indices]
while True:
is_root = node_indices == 0
if is_root.all():
return

parents = np.where(is_root, 0, self._parents[self._batch_range, node_indices])
root_mask = 1.0 * is_root
not_root_mask_int = (1 - is_root)
not_root_mask = 1.0 - root_mask
Update the parent nodes iff their child is not the root.
We therefore mask the updates using not_root_mask and root_mask.
self._values[self._batch_range, parents] = not_root_mask * (self._values[self._batch_range, parents] *

self._visit_counts[self._batch_range, parents] + leaf_values) /
(self._visit_counts[self._batch_range, parents] + 1.0) + root_mask *
self._values[self._batch_range, parents]

self._visit_counts[self._batch_range, parents] += not_root_mask_int
actions = np.where(is_root, 0, self._action_from_parents[self._batch_range, node_indices])
self._children_values[self._batch_range, parents, actions] = not_root_mask *

self._values[self._batch_range,node_indices] + root_mask *
self._children_values[self._batch_range, parents, actions]

self._children_visits[self._batch_range, parents, actions] += not_root_mask_int

Go up
node_indices = parents

